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Abstract

In this paper, we present an eavesdropping-based gossip algorithm (EBGA). In the novel algorithm,

when a node unicasts its values to a randomly selected neighboring node, all other nodes, which eavesdrop

these values, simultaneously update their state values. By exploiting the broadcast nature of wireless

communications, this novel algorithm has similar performance to broadcast gossip algorithms. Although

broadcast gossip algorithms have the fastest rate of convergence among all gossip algorithms, they either

converge to a random value rather than the average consensus, or need out-degree information available

for each node to guarantee convergence to the average consensus. Utilizing non-negative matrix theory

and ergodicity coefficient, we have proved that this novel algorithm can converge to the average consensus

without any assumption which is difficult to be realized in real networks.

I. INTRODUCTION

For gossip algorithm, each node holds an estimating state value of the network. At the beginning, the

initial state value is captured by each node. At one iteration, one node is randomly activated and exchanges

state values with one of its randomly selected neighbors. By convex combination, these two nodes can

update their state values to the average of their previous state values. By iterating this procedure, all nodes

can eventually arrive at the average consensus that is the average of the initial state values at each node
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[1]. The drawback of this gossip algorithm is slow rate of convergence [2]. To accelerate convergence,

eavesdropping method was first introduced by Deniz et al. in their greed gossip with eavesdropping

(GGE) algorithms [3]. During the operation of GGE, when a node decides to gossip, instead of randomly

choosing one of its neighbors, it chooses the node which has the state value most different from its own.

Although GGE can accelerate convergence, it is still too slow to converge because only two nodes are

allowed to exchange state values at each iteration.

To further accelerate convergence, a more competitive algorithm called broadcast gossip algorithm [4]

was proposed. For broadcast gossip algorithms, when a node transmits its state value, all of its neighbors

can hear about this state information and simultaneously update their state values. Although broadcast

gossip algorithms have been studied for several years, the best trade-off between the rate of convergence

and the error of convergence is still an open problem. As our knowledge, only three types of broadcast

gossip algorithms have been proposed. One of them (called BGA-1 in the sequel) cannot converge to the

average consensus [4]. Although recent research results indicate that the error upon the average in BGA-1

is small on large networks [5], we are more interested to propose a novel algorithm that can converge to

the average consensus for any network in this paper. Another broadcast gossip algorithm (called BGA-2

in the sequel) converges more slowly than BGA-1, and no proof of convergence is available [6]. The

third one (UBGA) proposed by us in a previous research [7] can converge to the average consensus with

companion values and a strong assumption that all nodes should know its out-degree information (the

same assumption is also needed for BGA-2), which is somewhat difficult to be satisfied in real networks.

In this paper, we also utilize companion values as a compensation rule to preserve average consensus.

This kind of compensation rules was firstly proposed for linear gossip algorithms in BGA-2. Then this

method was further expanded for digraphs in [7] and [8]. All these algorithms can preserve average at

the cost of out-degree information available for each node. All above drawbacks motivate us to propose

a novel gossip algorithm that has the same rate of convergence as broadcast gossip algorithms and can

be proven convergence to the average consensus without any assumption which is difficult to be realized.

II. EAVESDROPPING-BASED GOSSIP ALGORITHM

The algorithm can be divided into three main processes: initialization, eavesdropping-based gossip, and

repairing. We first introduce some notation. If there are n nodes {1, 2, . . . , n} distributed in the network,

then Nk denotes the set of neighboring nodes for node k, and li,j denotes there is a link between node

i and node j.

Initialization: Each node i has an initial state value xi(0) and an initial companion value yi(0) = 0.
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At the beginning, a randomly selected node will wake up and trigger the eavesdropping-based gossip pro-

cess. The state values and companion values can be stacked into vector forms x(t) = [x1(t) x2(t) . . . xn(t)]
T

and y(t) = [y1(t) y2(t) . . . yn(t)]
T .

Eavesdropping − based gossip process: If node k wakes up at time slot t, it will unicast its state

value xk(t) and companion value yk(t) to a randomly selected neighboring node j. Each node, including

any node that eavesdrops these values, will update its state value and companion value as follows.

1) Transmitting node k

xk(t+ 1) = xk(t) (1)

yk(t+ 1) = 0 (2)

2) Selected neighboring node j

xj(t+ 1) =
xj(t) + xk(t)

2
(3)

yj(t+ 1) =
xj(t)− xk(t)

2n
+ yj(t) + yk(t) (4)

3) Eavesdropping node l ∈ Nk and l ̸= j

xl(t+ 1) =
xl(t) + xk(t)

2
(5)

yl(t+ 1) =
xl(t)− xk(t)

2n
+ yl(t) (6)

4) Idle nodes i ̸= k and i /∈ Nk

xi(t+ 1) = xi(t) (7)

yi(t+ 1) = yi(t) (8)

Then the selected node j will wake up at time slot t+1 and continue this eavesdropping-based gossip

process until x(t) and y(t) converge, which will be specifically discussed in Section IV.

We briefly introduce the local silencing rules [9] for each node to locally determine when its state

value is accurate enough to be regarded as convergence. For companion value, the same rules can also be

used. Each node holds two parameters: an error margin τ and a threshold value C. In addition, each node

i maintain a local count ci with initial value ci = 0. Each time when a node receives or eavesdrops a

gossip packet, it computes the change of its state value in absolute value after this iteration. If the change

was less than or equal to τ then the count ci is incremented. Otherwise, ci is reset to 0. When ci ≥ C,

this node ceases to trigger gossip process when its clock ticks. In order to avoid incorrectly terminating,

if node i is contacted by a neighbor then it will still gossip and test whether its state value has changed.
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In this manner, a node may change its operating mode between silence and activity. If all nodes reach

counts ci ≥ C, then no node will initiate another round of gossip and all nodes remain silent. By this

method, each node can locally determine whether algorithms have convergence. As introduced in [9], the

local silencing rules can ensure algorithms stop almost surely after a finite number of iterations.

Repairing process: Let l denote the node that first finds convergence of the eavesdropping-based

gossip process. Then node l triggers repairing process and floods its companion value yl to all nodes in

the network. Each node that receives the companion value for the first time will replace its companion

value as yl and then broadcast this companion value again. Otherwise, nodes will directly drop this

packet.

After these three processes, each node will sum its state value and companion value together as its

final estimation of the initial average. Denote as z(t) = x(t) + y(t).

III. CONVERGENCE OF THE ALGORITHM

To prove the novel algorithm converge to the average consensus, we will fist prove three lemmas.

Lemma 1: The sum of the initial state values will be preserved in eavesdropping-based gossip process

at each iteration, that is
1

n

(
1Tx(t)

)
+ 1T y(t) =

1

n

(
1Tx(0)

)
(9)

where the bold 1 denotes a n-dimensional vector with all entries equal to 1.

Proof: We prove the lemma by induction on t. For t = 0, it is obvious that (9) holds because of

1T y(0) = 0. Assuming that (9) holds when t = k, k = 0, 1, 2, . . .. One can use (1)-(8) to verify

1

n

(
1Tx(k + 1)

)
+ 1T y(k + 1) =

1

n

(
1Tx(k)

)
+ 1T y(k) (10)

By induction assumption, (9) must hold.

Lemma 2: For a connected network, state values will converge to a random number. That is

lim
t→∞

x(t) = α1, (11)

where α is a random number.

Proof: See Appendix.

Lemma 3: For a connected network, the companion value of each node is 1
n1

Tx(0)−α after repairing

process, where α is the same random number as (11).

Proof: Supposing the first time that (11) holds is time slot t1, it is evident that x(t) will not

influence companion value y(t) from then on as illustrated in (1)-(8). From time slot t > t1, only the

January 28, 2015 DRAFT



1070-9908 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LSP.2015.2398191, IEEE Signal Processing Letters

IEEE SIGNAL PROCESSING LETTERS, VOL. X, NO. X, XX XXXX 5

current transmitting node and the selected node will change their companion values. The former resets

its companion value to zero, and the latter sets its companion value to the sum of its companion value

and the transmitting node’s companion value. This process will continue. As long as each node wakes up

at least once along this random activated path after time slot t1, all nodes’ companion values are zeros

except current wake-up node, whose companion value is the sum of all nodes’ companion values at time

slot t1. Combining this result with Lemma 1 and Lemma 2, we have

lim
t→∞

1T y(t) =
1

n

(
1Tx(0)

)
− lim

t→∞

1

n

(
1Tx(t)

)
=

1

n
1Tx(0)− α. (12)

Since only the wake-up node has non-zero companion value, its companion value must be 1
n1

Tx(0)−α.

After repairing process, the companion value of each node must also be 1
n1

Tx(0) − α. The lemma is

proved.

Theorem 1: For a connected network, the eavesdropping-based gossip algorithm converges to the

average consensus.

Proof: After repairing process, we have

lim
t→∞

z(t) = lim
t→∞

x(t) + lim
t→∞

y(t) = α1+ 1(
1

n
1Tx(0)− α)

=
1

n
11Tx(0) (13)

The theorem is proved.

IV. RATE OF CONVERGENCE

A. Convergence Rate of State Values

The iterative process for state values is the same as BGA-1. One can notice this by assuming companion

values inexistent and deleting corresponding equations (2), (4), (6) and (8). In this case, the corresponding

algorithm described by remained equations (1), (3), (5) and (7) is the same as BGA-1. Therefore, we

have the following proposition.

Proposition 1: ( [4], proposition 4) The ϵ-converging time of state values is bounded by

Pr

{
∥x(t)− 1

n11
Tx(t)∥2

∥x(0)− 1
n11

Tx(0)∥2
≥ ϵ

}
≤ ϵ (14)

where

T (n, ϵ) = O

(
n5/2 log ϵ−1

√
log n

)
(15)
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B. Convergence Rate of Companion Values

In the worst case, companion values will begin to converge after state values have converged. As stated

in Lemma 3, as long as each node wakes up at least once along this random activated path after time slot

t1, all nodes’ companion values are zeros except current wake-up node, which is regarded as convergence

of companion values. Therefore, the convergence rate of companion values can be formulated as classical

cover time problem of simple random walk on a graph. A simple random walk on a graph is a stochastic

process that starts at one node of a graph, and at each step moves from the current node to an adjacent

node chosen randmly and uniformly from the neighbors of the current node. Cover time of the walk

is the expectation of the maximal number of steps required to visit every node, which abides by the

following proposition [10].

Proposition 2: The convergence rate of companion values is O(n log n).

C. Summary of Convergence Rate

It is evident that the number of transmission is n during the repairing process, which can be gracefully

ignored compared with the rate of state values and the rate of companion values. By combining Propo-

sition 1 and Proposition 2, the rate of convergence for EBGA is O
(
n5/2 log ϵ−1

√
logn

)
, which is the same as

BGA-1.

V. PERFORMANCE ANALYSIS

The topology of simulation scenarios is generated by randomly deploying 500 nodes in a unit square.

A link exists if the distance between two nodes is no more than transmission radius r =
√

2 log n/n.

Each node is initialized with a random number uniformly distributed between 0 and 1. Each point is an

average over 100 Monte Carlo trials.

To evaluate the rate of convergence, we define the variance for EBGA as

v1(t) =
1

n

∥∥∥∥z(t)− 1

n
11T z(t)

∥∥∥∥2
2

(16)

where we assume that each wake-up node floods its companion value to all nodes at each iteration. We

just utilize this method to evaluate the rate of convergence rather than really triggering a repairing process

at each iteration.

For BGA-1, BGA-2 and UBGA, the variance is defined as

v2(t) =
1

n

∥∥∥∥x(t)− 1

n
11Tx(t)

∥∥∥∥2
2

(17)
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Fig. 1. Variance performance of gossip algorithms with 500 nodes.

As illustrated in Fig. 1, EBGA and BGA-1 has the same rate of convergence, which coincides with the

analysis in Section IV. Although they have the same rate of convergence, BGA-1 converges to a consensus

which is generally not on the average. On the contrary, BGA-2, UBGA and EBGA can converge to the

average of initial state values. In comparison with UBGA, EBGA has decaying variance more slowly

for the first 1500 iterations. After that, EBGA converges much faster than UBGA, which means EBGA

is more suitable for high-accuracy application such as the requirement of variance is lower than 10−4.

Even if UBGA illustrates faster convergence rate for the first 1500 iteration, we should keep in mind that

UBGA needs each node know its out-degree information, which is a strong assumption and difficult to

be satisfied. Therefore, EBGA is more suitable for practical applications.

VI. CONCLUSIONS

By eavesdropping method, GGE only allow two nodes to update state values at each iteration. In this

paper, we propose another eavesdropping-based gossip algorithm that allows all neighboring nodes to

participate in update at each iteration. Therefore, EBGA can converge faster than GGE and demonstrate

similar rate of convergence as BGA because it utilizes the broadcast nature of wireless communications.

Furthermore, for all BGA algorithms, they either cannot converge to the average consensus (BGA-

1), or need out-degree information (BGA-2 and UBGA). The novel algorithm can converge to the

average consensus without any extra information except for the number of nodes. In the near future,

the quantization of state values and companion values for limited bandwidth channel and the failure of

packets transmission will be studied.
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VII. APPENDIX

First, we will shortly review some basic conceptions and propositions of ergodicity coefficient [11].

A. Ergodicity Coefficient

The ergodicity coefficient in the one norm applied to a stochastic matrix W is defined as

τ1(W ) = max
∥x∥1=1
xT1=0

∥∥W Tx
∥∥
1
, (18)

where the one norm ∥x∥1 =
∑n

i=1 |xi| for vector x is the absolute sum of the vector.

Proposition 3: ( [11], theorem 3.4) If W is a stochastic matrix, then 0 ≤ τ1(W ) ≤ 1, and τ1(W ) =

0 ⇔ rank(W ) = 1.

Proposition 4: ( [11], theorem 3.6) If W , W1, and W2 are stochastic, then |λ| ≤ τ1(W ) for all

eigenvalues λ ̸= 1 of W , and τ1(W1W2) ≤ τ1(W1)τ1(W2).

B. Proof of Lemma 2

From (1), (3), (5) and (7), we can notice that the eavesdropping-based process for state values x(t) is

a convex combination, so we can use matrix form to present it

x(t+ 1) = P t
Wx(0) = W (dt) . . .W (d1)W (d0)x(0), (19)

where di ∈ {1, 2, . . . , n} denotes that current wake-up node is di. It is evident that the coefficient matrix

W (di) is stochastic for any di ∈ {1, 2, . . . , n}.

With above preliminary results, we will prove Lemma 2 in this subsection. Firstly, we need following

three lemmas to continue with the proof.

Lemma 4: For finite stochastic matrices set {W (i)}, τ1
(
P j
W

)
≤ τ1

(
W (dj)

)
τ1

(
W (dj−1)

)
. . . τ1

(
W (d0)

)
≤

1, where di is freely chosen from {1, 2, . . . , n}.

Proof: This lemma is a directed corollary from Proposition 3 and Proposition 4.

Lemma 5: If j is large enough, τ1
(
P j
W

)
< 1 for a connected network.

Proof: In Lemma 4, the equal mark can only be achieved if there is a vector y to satisfy∥∥∥∥(W (dj)
)T

y

∥∥∥∥
1

=

∥∥∥∥(W (dj−1)
)T (

W (dj)
)T

y

∥∥∥∥
1

= . . .

=

∥∥∥∥(W (d0)
)T

. . .
(
W (dj−1)

)T (
W (dj)

)T
y

∥∥∥∥
1

= 1, (20)
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where ∥y∥1 = 1 and yT1 = 0. Clearly, column vectors y,
(
W (dj)

)T
y,

(
W (dj−1)

)T (
W (dj)

)T
y, . . . ,(

W (d0)
)T

. . .
(
W (dj−1)

)T (
W (dj)

)T
y are all orthogonal to 1 and their absolute sums are all ones. Next,

we will first prove that all these column vectors have the same sign for each corresponding entry. If we

suppose that there is a vector y to hold the equal mark of Lemma 4, we have x =
(
W (dj)

)T
y with

x =

ydj
+ 0.5

∑
i∈Ndj

yi

 edj
+

∑
i∈Ndj

(0.5yiei) +
∑

i/∈dj

∪
Ndj

(yiei) (21)

where ei is the i-th canonical basis vector. The one norm of vector x is

∥x∥1 =

∣∣∣∣∣∣ydj
+ 0.5

∑
i∈Ndj

yi

∣∣∣∣∣∣+ 0.5
∑
i∈Ndj

|yi|+
∑

i/∈dj

∪
Ndj

|yi|

≤
∣∣ydj

∣∣+ 0.5
∑
i∈Ndj

|yi|+ 0.5
∑
i∈Ndj

|yi|+
∑

i/∈dj

∪
Ndj

|yi|

= ∥y∥1 (22)

Since ∥x∥1 = ∥y∥1 = 1, we must adopt the same sign for yi, i ∈ dj
∪

Ndj
, so that the equality can hold.

We claim that xi has the same sign as corresponding yi for each i. Indeed, we can notice that xi has the

same sign as corresponding yi for i ∈ dj
∪

Ndj
because xi = 0.5yi, i ∈ Ndj

and xi = ydj
+
∑

l∈Ndj
0.5yl,

i = dj , combined with the fact that yi have the same sign for i ∈ dj
∪

Ndj
. Furthermore, xi will

also have the same sign as yi if i /∈ dj
∪

Ndj
because xi = yi. Therefore, xi has the same sign

as corresponding yi for each i. Recursively, the column vectors y,
(
W (dj)

)T
y,

(
W (dj−1)

)T (
W (dj)

)T
y,

. . . ,
(
W (d0)

)T
. . .

(
W (dj−1)

)T (
W (dj)

)T
y have the same sign for each corresponding entry. This property

reveals that each entry of vector y will not change its sign after each iteration. As shown in (22), any

two entries yi and yj , if their corresponding nodes i and j are neighboring along this path, must have

the same sign. Since there is a path to connect any pair of nodes in a connected network, all entries in

vector y must have the same sign, which contradict with ∥y∥1 = 1 and yT1 = 0.

Lemma 6: For a connected network, limj→∞ τ1

(
P j
W

)
= 0.

Proof: According to Lemma 5, if j is large enough, τ1

(
P j
W

)
< 1 for a connected network.

Therefore, we can recombine limj→∞ P j
W to the infinite product of P j1

W , P j2
W ,. . . by associativity of

matrix multiplication so that τ1
(
P ji
W

)
for any i is less than 1. Therefore,

lim
j→∞

τ1

(
P j
W

)
= τ1

(
P j1
WP j2

W . . .
)

≤ τ1

(
P j1
W

)
τ1

(
P j2
W

)
. . .

= 0. (23)
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Now, we formally prove Lemma 2.

Proof: According to Lemma 6 and Proposition 3, the infinite product limj→∞ P j
W of matrices in set

{W (i)} converges to a rank one matrix. Since 1 is the right 1-eigenvector for each W (i), the convergent

matrix has the form 1vT , where vT1 = 1. Combining with (19), we have

lim
t→∞

x(t) = 1vTx(0) = 1[vTx(0)] (24)

Therefore, Lemma 2 holds with α = vTx(0).
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