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ABSTRACT

We consider the binary consensus problem over the wire-
less sensor networks (WSN), where each node of the network
initially observes one of two states and the aim of each node
is to decide which one of the two states was held by the
majority of nodes. In this paper we consider the averaging of a
measurement in a WSN composed ofN nodes. We evaluate the
distributed binary consensus algorithm by deriving the average
convergence time of the algorithm. Since this time has been
evaluated theoretically for mathematical aspects [1], we com-
plete this work by considering real life environment including
packet loss phenomenon and automatic repeat request (ARQ)
protocol used in real message transmissions. In addition we
compare the new analytical results with those obtained by a
hardware emulation of the same binary consensus algorithm
under TinyOS and TOSSIM. In performance evaluation, we
consider the analysis of the average convergence time for
node states. In the simulations, we apply the distributed binary
consensus algorithm for fully connected, ring, path, Erdos
Reny random, and star-shaped topologies.

Keywords—Binary consensus algorithm, distributed computa-
tion, TinyOS, IRIS Motes, Tossim, Wireless sensor network, ARQ,
packet loss.

I. INTRODUCTION

Distributed computations within wireless sensor networks
(WSNs) are currently of great interest to engineers and re-
searchers. The significant challenge in this field is how can
we achieve the overall reliability of the whole network in
face of faulty nodes. The consensus problem is related to the
distributed manipulation of a single data within the nodes of
the network [2]–[4]. In order to accomplish this, it is often
required for all nodes in the network to reach agreement on
a specific piece of data required for a computation. In [2],
Bashir et al. use consensus algorithm to provide a powerful
solution for distributed routing failure detection in wireless
sensor networks. Indeed, a consensus about suspected node
is generated by the collaboration of neighbors node. A simple
algorithm for consensus is presented; every neighbor considers
a decision factor for every other neighbor in order to gener-
ate a unified agreement about the node under suspicion. In
their work, the authors analyze and show that their approach
performs better for energy conservation and node lifetime
better than previously. However, this method is limited to a
network with a specific tree around the suspected node, and
mechanism is more close to the well known voting method

[5]. In [3], the authors proposed a new average consensus
algorithm, where each node selects its own weights on the
basis of some local information about its neighborhood. The
proposed algorithm is tailored for networks having cluster
structure. The neighborhood algorithm is designed to identify
such links and give them higher weights in order to speed-up
information propagation among different parts of the networks.
In realistic sensor network topologies, the algorithm shows
faster convergence than other existing consensus protocols
[5]–[8]. In their work in [4], the authors present an iterative
decentralized consensus algorithm for routing in WSN by
considering the minimization of the number of iterations and
then ensure the limitation of the energy consumption.

Binary consensus algorithm is a subclass of consensus
problem and it is applied when there is delimitation on the
memory and the processing speed [1], [9]–[20]. In a binary
consensus algorithm, all nodes initially compute a TRUE or
FALSE answer to a given question (such as whether the current
temperature is over 35 degrees) and then attempt to reach
agreement on which state the majority of nodes hold. In [9],
Mostefaoui et al. proposed a reduced complexity algorithm in
asynchronous systems with crash failures. In their algorithm,
each process runs a series of binary consensus subroutines,
sequentially, in order to solve multivalued consensus. Nev-
ertheless, the number of subroutines necessary to solve one
multivariate consensus instance is unlimited and depends on
the message delay. Applications of this algorithm include
coordination of autonomous agents, estimation, and distributed
data fusion in ad-hoc or social networks. In [10], the authors
consider the binary consensus problem where each node in the
network initially possesses one of two states and the goal is to
decide which one of both states was initially held by the major-
ity of nodes. The states considered in their paper is 0 (when the
measurement is under 0.5), 1 (when the measurement is over
0.5) and e (for undetermined measurement). The authors show
also that extending, both the signaling and memory, by just
one state, may improve the reliability and speed to reach the
correct consensus. Thus, it has been proved that the probability
of error decays exponentially with the number of nodes N.

In [11], the authors design quantized average consensus
algorithm on arbitrary connected networks. In fact, quantized
algorithms cannot produce a real, analog average. Instead,
their algorithm reaches consensus on the quantized interval
that contains the average. In their work, the authors prove
that this consensus in reached in finite time almost surely.
In [12], the authors develop and implement a randomized
consensus protocol for the contexts where users can frequently
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remain dispersed over a large area, frequently resulting in
sparse patches containing fewer users per unit area. Their work
establishes the liveness condition that any ad-hoc network must
satisfy for consensus to be solvable using the randomized
approach. Performance analysis of the developed protocol
show the effects of randomization in speeding up the consensus
when network gets sparser. In [13], the authors consider a
network that is trying to reach consensus over the occurrence
of an event while communicating over additive white Gaussian
noise (AWGN) channels. Indeed, the authors characterize the
impact of different link qualities and network connectivity on
consensus performance.

In [1], the authors derived an upper-bound of the expected
convergence time of the distributed binary consensus algo-
rithm. The bound is derived for a particular network topology
with a connected graph. In addition, they instantiated the upper
bound for some other network topologies such as complete
graph, star-shaped, ring and Erdos-Renyi random graphs. How-
ever, the contribution of Draief et al. presents the average
convergence time without considering real conditions of the
WSN such as communication protocols, routing, ACK and
NOACK. Indeed, the average convergence time depends on the
implementation and tests conditions of the binary consensus
algorithm over the simulation and testbed framework.

In this paper, we extend the contribution of Draief et al. [1]
by the deployment of distributed binary consensus algorithm in
a wireless sensor network. We propose the implementation of
the binary consensus algorithm, where each node has its own
temperature value at the beginning and all the nodes start com-
municating with each other to reach the final decision. In this
system, the final decision represents the majority opinions of
all the nodes. Moreover, we implement our system on TinyOS,
and simulate it using a simulator called TOSSIM [21]–[25].

The remainder of the paper is organized as follows. In
Section II, we present the binary consensus algorithm. Section
III details the distributed implementation and the routing
features of the binary consensus algorithm. The analytical
characterisation of the average convergence time of the binary
consensus algorithm is detailed in Section IV. Section V-A
presents the testbed environment and the simulation tools based
on TinyOS operating system. The simulations as well as the
hardware results followed by analysis are presented at Section
V. In the final Section, we conclude the paper.

II. THE BINARY CONSENSUS ALGORITHM

Recently, there has been a great deal of research on
distributed computing with respect to the processing, storage
constraints and the communication channel between nodes.
For example sensors, tags, PDAs and wireless communications
have become massively pervasive in houses, streets and in
offices and they require capability of dynamically organize and
adapt their computational/communication/storage capabilities.
We detail the interval binary consensus algorithm with the
routing protocol used in the simulation and the testbed of the
wireless sensor network. Assume that at every time instant,
each node of the network has a state taking as values 0, e0,
e1 and 1. Consider that the states satisfy 0 < e0 < e1 < 1.
Here, e0 represents the values smaller than 1

2 and e1 refers

to the values larger than 1
2 . As an example, we consider a

network with four nodes labeled n1, n2, n3 and n4, starting in
state (0, 0, 1, 0). A first interaction between node n3 and node
n4 with opposite states, the two nodes disagree then they will
become undecided and their new states will be respectively
e0 and e1. The new vector of states becomes (0, 0, e0, e1). If
this interaction happens between node n1 and node n2 then
no change in their states and the vector of states remains
unchanged. If node n3 and node n4 interact again, their states
are swapped according to the update rules and the vector of
states will be (0, 0, e1, e0).

A. Update rules

In distributed binary consensus algorithm, when two nodes
get in contact, the states at each node are updated according
to the following table

Actual states (node1 , node2) New states (node1 , node2)

(0 , 1) 7−→ (e0 , e1)
(e0 , 1) 7−→ (1 , e1)
(e1 , 0) 7−→ (0 , e0)
(e0 , 0) 7−→ (0 , e0)
(e1 , 1) 7−→ (1 , e1)
(e0 , e1) 7−→ (e1 , e0)
(ex , ey) 7−→ (ex , ey)

TABLE I. UPDATE RULES OF THE STATES FOR TWO COMMUNICATING

NODES.

B. Convergence of the algorithm

As indicated in [10], the communications between nodes
are assumed to be asynchronous where the instance of in-
teraction is Poisson with rate qij ≥ 0. If we denote by
V = {n1, n2, . . . , nN} the set of nodes, the interaction rates
are given by the matrix Q = (qij) , i, j ∈ V G = (V,E)
comprising a set V of vertices or nodes together with a set E of
edges or lines representing the set of couples (i, j), ∀i, j ∈ V .
The graph G = (V,E) is induced by the matrix Q with
(i, j) ∈ E if only if qij > 0. Let us characterize the average
convergence time of the algorithm according to [1] in a real-life
environment. As the algorithm runs, it goes through following
phases

• Phase 1 : (disappearance of state 1) starts from initial
state and ends when nodes in state 1 disappear upon
interacting with nodes in state 0.

• Phase 2 : (disappearance of state e1) follows the first
phase and ends when state e1 disappears. Only nodes
with state e0 and state 0 remain.

- At the end of phase 1, none of the nodes is in state 1 (2α−
1)N are in state 0 and the remaining (2(1− α)N) nodes are
in either state e0 or state e1. α > 1/2 denotes the fraction of
nodes that initially held the majority state.

- At the end of phase 2, there are exactly (2α − 1)N nodes
in phase 0 and 2(1−α)N nodes in state e0. According to the
work in [1], the smallest time at which all the nodes in state
1 are depleted is given by its mean

E (T1) 6
1

δ(Q, α)
(log(N) + 1) , (1)

where E(x) denotes the mean of x and δ =
min |λQS

|S⊂V,|S|=(2α−1)N with λQS
is the largest eigenvalue



of QS . QS is derived from the contact rate matrix Q as
follows

qSi,j =

{

−
∑

l∈V qi,l i = j
qi,j i ∈ Sc, j 6= i
0, i ∈ S, j 6= i

(2)

Where S is a subset of the set of vertices V and Sc = V \ S.
Furthermore, the time T2 for all the nodes in state e1 to be
depleted starting from initial state with no node in state 1 will
have the following average

E (T2) 6
1

δ(Q, α)
(log(N) + 1) , (3)

1) Case of N-vertices complete graph network : A network
with a complete graph, N > 1 nodes and edge e ∈ E and
a rate q = 1

N−1 δ(Q, α) > (2α − 1), then for every fixed

α ∈ (1/2, 1], the expected convergence time during the first
phase is given by

E(T1) =
1

2α− 1
log(N) + O(1) (4)

the approximation function o(1) is defined as E(T1) goes to
∞ 1

2α−1 log(N) + const when N goes to ∞.

When α approaches 1/2, case where initially there is an
equal number of nodes in states 0 and state 1, according to
[1], E(T1) is given by

E(T1) =
π2

6
N(1 + o(1)), (5)

where o(1) is the approximation function that goes to 0 when
N go to ∞.

2) Case of N-vertices paths network : A network with a
path graph is characterized by a sequence of vertices such that
from each of its vertices, there is an edge to the next vertex.
We consider a path with N > 1 nodes, where each edge is
activated at a rate q = 1 at instances of a Poisson process. The
contact rate matrix is given by qi,i+1 for i = 1, . . . , N−1 and
qi,i−1 for i = 2, 3, . . . , N and all other elements equal to 0.

Q =

























0 1 0 . . . 0

1 0 1 0
...

0 1 0 1
. . .

. . .
. . .

. . .
. . . 0

... 0 1 0 1
0 . . . 0 1 0

























(6)

The average convergence time for N > 1 and α ∈ [1/2, 1)
and for each phase l = 1 and l = 2

E(Tl) 6
16(1− α)2

π2
N2 log(N) + O(1) (7)

3) Case of N-vertices cycle networks : A network with a
ring graph is characterized by a graph of N > 1 nodes which
contains a single cycle. In this graph, each edge is activated
at instances of Poisson process with rate 1. The contact rate

is given by qi,i+1 = 1 for i = 1, . . . , N − 1, qi,i−1 = 1 for
i = 2, 3, . . . , N and qN,1 = q1,N = 1 for all other elements.

Q =



















0 1 0 . . . 0 1
1 0 1 0 . . . 0

0 1 0 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 0 1 0 1
1 0 . . . 0 1 0



















(8)

The average convergence time for N > 1 and α ∈ [1/2, 1)
and for each phase l = 1 and l = 2

E(Tl) 6
4(1− α)2

π2
N2 log(N) + O(1) (9)

4) Case of N-vertices star-shaped network : This kind of
network has a complete bipartite graph with an internal node
(called also hub) and N − 1 leaves. The contacts between a
leaf node and the hub are assumed to occur at instances of
Poisson process with rate 1

N−1 . The elements of matrix Q are

given by q1,i = qi,1 = 1
N−1 for i = 2, . . . , N , and 0 for the

other, Q is defined as follows

Q =









0 q . . . q
q 0 . . . 0
...

...
. . .

...
q 0 . . . 0









, (10)

the average convergence time for phase l satisfies

E(Tl) 6
1

2α− 1
N (log(N) + 1) , (11)

and

According to Draief [1], for N > 1 and α ∈ [1/2, 1) the
expected time to deplete nodes in state 1 satisfies

E(T1) =
1

(2α− 1)(3− 2α)
N log(N) + O(n). (12)

where O(n) is approximated by Kn when n goes to ∞, with
K a positive constant.

III. DISTRIBUTED IMPLEMENTATION AND ROUTING

PROTOCOLS

In this section, we study the use of the binary consensus
algorithm in wireless sensor network real-life. We also detail,
the routing protocols and their implementation for a wireless
sensor network characterized by fully connected, paths, ring,
star-shaped and Erdos-Rényi Random Graphs, respectively.
In general, regardless to the topology of the network, let us
consider two nodes called respectively ”Localnode” and ”Oth-
ernode” getting connected. If we assume that ”Localnode”
receives the state of ”Othernode”, the distributed version of
the binary consensus algorithm, running in both Localnode and
”Othernode”, is described by the pseudo-code in Algorithm
1. This pseudo code applies exactly the Binary consensus
rules defined in II-A with communication features and in a
distributed manner.

In the following section, we consider the implementation of
the distributed binary consensus algorithm with an emphasis on



Algorithm 1 Distributed Binary Consensus Algorithm

1: if node state = 0 and othernode state = 1 then
2: Send 0  OtherNode
3: node state ← e1

4: else if node state = 1 and othernode state = 0 then
5: Send 1  OtherNode
6: node state ← e0

7: else if node state = e0 and othernode state = 0 then
8: Send e0  OtherNode
9: node state ← 0

10: else if node state = 0 and othernode state = e0 then
11: Send 0 OtherNode
12: node state ← e0

13: else if node state = e0 and othernode state = e1 then
14: Send e0  OtherNode
15: node state ← e1

16: else if node state = e1 and othernode state = e0 then
17: Send e1  OtherNode
18: node state ← e0

19: else if node state = e0 and othernode state = 1 then
20: Send e0  OtherNode
21: node state ← 1

22: else if node state = 1 and othernode state = e0 then
23: Send 1 OtherNode
24: node state ← e1

25: else if node state = e1 and othernode state = 1 then
26: Send e1  OtherNode
27: node state ← 1

28: else if node state = 1 and othernode state = e1 then
29: Send 1 OtherNode
30: node state ← e1

31: else if node state = 0 and othernode state = e1 then
32: Send 0 OtherNode
33: node state ← 0

34: else if node state = e1 and othernode state = 0 then
35: Send e1  OtherNode
36: node state ← e0

37: else
38: othernode state=DEAD
39: end if

NOACK

ACK

ACK

ACK

nodenodenodenode

m02

m10

m01

m0 N−1

m20

m02

nN−1ni+2ni+1ni

mN−1 0

Fig. 1. Protocol for Star shaped topology

the routing features for the topologies introduced previously.
In addition, we detail the protocol for each graph such as
star-shaped, fully connected and ring graph topology. We
assume here that the network is composed of N nodes. For

ACK

ACK

NOACK

ACK

node node node node

m0 N−1

m1 N−1

m13

m2 N−1

m23

m12

m02

m10

mN−1 2

m02

m20

ni

m01

ni+1 ni+2 nN−1

mN−1 N−2

Fig. 2. Protocol for fully connected topology.

nodenode node node

NOACK

ACK

ACK

ACK

ACK

ACK

ni+2ni ni+1

m12

nN−1

m2 3

m01

m0 N−1

mN−2 N−1

mN−1, 0

m12

Fig. 3. Protocol for cycle topology.

both simulation and hardware implementation, the algorithm
running at each node starts by an initialization step. This step
starts when the sensor mote is turning on. The initial value is
set when the Boot.booted event is signaled. For the simulation,
the initialization is also done when Boot.booted occurs and the
measured value is taken as random.

A. Protocol and binary consensus algorithm for star-shaped
topology

For this topology, all nodes in the network are connected
to a central node (assumed to be node N0) and no others.
Each node receives a message m0,i from node 0 with i ∈
{1, . . . , N} containing a state from {0 , e0 , e1 and 1}. After
applying local version of the binary consensus algorithm, the
received node retransmits a message to node 0 containing the
states decided by the algorithm. The details of this protocol and
the acknowledgement mechanism are shown in details in Fig.
1. In addition, an acknowledgment mechanism is employed
to resubmit each non received message after a small timeout
optimized according to the network charge.

B. Protocol and binary consensus algorithm for fully con-
nected topology

For this topology, each node exchanges messages with all
other nodes in the network. The network is scanned when each
node with index ni communicates with all nodes with higher
index such as ni+1, . . . , ni+N . Then, in each receiving node, a
receiving event calls a subroutine containing the update rules
of the binary consensus algorithm and then exchanges states,



if necessary, with the submitting node. Once the source node
detects the receiving events, the received message is read and
analyzed to collect the OtherState, which represents the state of
the corresponding node, and then apply the update rules of the
binary consensus algorithm as in the pseudo-code of algorithm
0. Fig. 2 presents the details of the messages exchanged by
the nodes in fully connected topology. An acknowledgment
mechanism is also employed to resubmit each non received
message after a small timeout optimized according to the
network charge.

C. Protocol and binary consensus algorithm for ring topology

For this topology, each node exchange message with node
that follows. Specifically, a node with index ni communicates
with the node indexed ni+1 and then the receiving node applies
the update rules of the binary consensus algorithm and sends
its state, if necessary, to the source node ni. At the end of the
ring, node n0 communicates with node nN and applies the
update rules of the binary consensus algorithm. The process
is repeated until convergence is obtained. As in the other
topologies, an acknowledgment mechanism is also employed
to resubmit each non received message after a small timeout
optimized according to the network charge. Fig. 3 presents the
protocol for ring topology.

IV. AVERAGE CONVERGENCE TIME OF THE BCA IN REAL

WSN ENVIRONMENT

The major problem in wireless sensor network and dis-
tributed algorithms is how to introduce the wireless losses and
packet losses effects in overall performance analysis. In the
previous work, we have characterized the average convergence
time of the binary consensus algorithm (BCA) on WSN
for several topologies. In this part, we extend the analytical
derivation of the average convergence time of the BCA in [1]
to cover the real life conditions of the wireless channel such
as packet losses and congestions.

A. Packet losses and wireless sensor network

Packet delivery performance is of great importance in
wireless sensor network, since it reflects the lifetime of the
network. Packet delivery or packet loss is mostly depending
on the environment such as channel noise, interference and
congestion due to multiple reception from other sources.
In WSN performance analysis there exist several studies to
evaluate the packet loss/delivery. Woo et al. [26] has examined
the packet loss problem between a pair of nodes. The variation
of packet loss is specific to the physical environment and
the congestions due to multiple receptions. This packet loss
increases with distance relating the base station and the sensor
node and the noise/interference coming from external sources.
Packet loss is the failure of one or more transmitted packets
to arrive at their destination. This event can cause noticeable
effects in all types communications; Errors in Data, create
Jitter in video conference, in worst case, packet loss can cause
sever mutilation of received data and finally broken images or
complete absence of a received signal.

B. System Modelization

Let N i(pd), be the minimum number of transmissions per
processed packet at each node i that guarantee a successful
delivery to the neighbor node with probability pd. Let also,
E(pd) be the expected value of the number of transmissions
(data and ACKs) per processed data to guarantee a successfully
delivery with probability pd.

Proposition 1: For single hop transmission, the minimum
number of transmissions per processed packet is explained as
follows:

N ij(pd) =

⌈

log(1 − pd)

log(pij)

⌉

(13)

Proof : A processed message transmitted by node i is received
by node j successfully with probability 1− pi,j regardless the
ACK mechanism. If no ACK received within a predetermined
timeout, the message is retransmitted again. For any given
number of transmissions per sensed data N ij , the message

is delivered to node j successfully with probability 1− pN
ij

ij .
For a good reliability along the transmission, we require that

each N ij value satisfies (1− pN
ij

ij ) ≥ pd. It is straightforward
to verify that for equality (minimum value of N ij), we obtain
a proof of (13) We evaluate now, the total expected number of
transmission (data and ACKs) E(pd) per processed packet.

Proposition 2 : For ARQ with Acknowledgment protocol,

E(pd) =
1− (1− pijqij)

Nij(pd)

pijqij
(1 + pij) (14)

Let X ij be the number of processed packet transmissions from
node i to node j (one single hop), and Y ij be the number of
ACKs from node j to node i. Note here that X ij is a trun-
cated geometrically distributed random variable with success
probability of pijqij taking values inf {1, . . . , N ij(pd)}. Since
ACK is sent for each packet that is successfully received at
node i, then

E[Y ij ] = pijE[X ij ] (15)

for one hop communication, E(pd) is given by

E(pd) = E[X ij + Y ij ] =
1− (1− pijqij)

Nij(pd)

pijqij
(1 + pij)

(16)

V. SIMULATION RESULTS

A. Test Environment

In this work, we consider the simulation of the distributed
binary consensus interval in WSN composed of N sensor
nodes. We analyzed the average convergence time of the binary
consensus algorithm with N taking values up to 1000 nodes.
In addition, we show the complex behavior of the processing
and communication protocols between nodes. There are a
number of options for testing a protocol for WSNs, such
as a WSN simulator (TOSSIM), micro-controller instruction
set simulators (AVRORA) and testbeds (MoteLab). In our
approach, we selected a test method that allows us to use the
same test case and source code (in nesC). For simulation, we
selected TOSSIM simulator which is given as part of module
in TinyOS distribution.



TinyOS : TinyOS is an open source operating system
specifically designed for wireless sensor motes. This OS has
several important features that influence nesC’s design : a sim-
ple event based concurrency model and split phase operations.

TOSSIM simulator : TOSSIM is a discrete event simu-
lator for TinyOS applications which replaces components with
simulation implementations. As TOSSIM runs on a PC, users
can examine TinyOS code using debuggers and other tools.
The worst limitation of TOSSIM is that each node in the
network uses the same nesC code as the others. This means
that all nodes are identical which is not correct in general.
TOSSIM can also use a large simulated radio topology, but
limited memory forces us to use low charged network. Since
TOSSIM is the unique simulator in WSN and because the
application at each node is an instantiation of the distributed
binary consensus algorithm, we use this simulation tool in a
network with a number of nodes under 1000.

In this Section, we evaluate the distributed binary interval
consensus algorithm using TOSSIM. To do that, let us describe
the requirements and properties of the distributed binary con-
sensus program for measurement averaging. The program is
written in the nesC language under TinyOS operating system.
In terms of running the simulation experiments, a small script
written in python or C++ is used to control and manage
the overall simulation with TOSSIM. The script is used to
configure the network topology, start up the nodes, etc. The
source code being simulated contains large numbers of debug
messages which can be analyzed to extract routing information
and control packets during simulation.

B. Simulation Behavior

We consider the test of the distributed binary consen-
sus algorithm for a fully connected wireless sensor network
equipped with N nodes. We note here that the fully connected
topology is based on a complete graph with N(N − 1)/2
edges. The screen shot presented by Figs. 4 and 5 show
the debugging results for the booting and processing steps
respectively. As given by the booting step in Fig. 4, the
initial values of node states are taken randomly from the set
{0, e0, e1, 1} and the vector states representing the nodes
states is {0, e0, e1, 1, 0, e0, e1, 1}.

Fig. 4. Messages exchanged for fully connected topology: booting step.

After the boot step, the communication is initiated by the
node with lower index and transmits its state to all the nodes
with higher index. Each receiving node applies the update
rules of the local binary consensus algorithm and replies to the
source node by sending its local state and modifying its state
according to the update rules. The fully connected routing table
is scanned after all pairs of sends and replies. An acknowledge
mechanism is employed to check and resubmit each lost packet

if necessary. In Fig. 5, the solid and dashed rectangles track
the connections established between node 4 and node 7 and the
node states at each step. In debugging steps, indicated by the
red rectangle number 1, node 4 with state e0 send a message
e1 to node 7. After rules update, the result is the connection
established by node 7, with new state 0, to send the state
e0 to the node number 4. The third solid rectangle presents
the ACK of the first transmission from node 4 to node 7.
However, the dashed rectangle number 1 shows a NOACK for
the responding connection, from node 7 to node 4. In dashed
rectangle number 2, a retransmission of the missed message is
done after the last NOACK. The dashed rectangle number 3
shows the transmission with ACK of the last missed message
from 7 to 4.

2

3

1

1
2

3

Fig. 5. Messages exchanged for fully connected topology.

Without loss of generalities, in Fig. 6, we show the simu-
lated wireless sensor network with N=8 nodes and ring graph
topology. In this network, the communication is established
in cycle as 0 → 1, 1 → 2, 2 → 3 . . ., 6 → 7 and 7 → 0.
Briefly, from Fig. 6, we can summarize with the solid line and
the dashed line that the connection between 4 and 5 and that
between 6 and 7 succeed after one NOACK.

C. Simulation Results

In the following, we consider the evaluation of the average
convergence time of the distributed binary consensus algorithm
in a wireless sensor network equipped with N nodes. In this
simulation, we provide a comparison between the analytical
results obtained in [1] and the simulated results obtained by the
TOSSIM simulator. The results are given for three topologies:
fully connected, star, and ring.

Fig. 7 shows our results for a star topology. The blue
lines represent analytical results from [1], while the red points
represent the results of our TinyOS simulation. According to
these results, the mean convergence time is in inverse ratio
with 2α − 1 but increase when the number of nodes of the
network growth. The particular value of α = 0.5 means that
there is no group of nodes that initially held the majority
states. All the initial states are spread on all the nodes of
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Fig. 6. Messages exchanged for cycle topology.
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Fig. 7. E(T1) for star shaped network versus 2α− 1.

the network. It will be then difficult to converge the system.
Otherwise, when α goes to 1, (2α − 1 goes to 1), initially,
the majority state is held by a number n of nodes close to N ,
which means that the distributed binary consensus algorithm
converges rapidly. In addition, if we consider, as an example,
that α = 0.52 of the nodes held the majority state, from a
network with N = 10 nodes and another with N = 30 nodes,
the average convergence time increases hugely (by a value
more than 10 second). However, this increase is limited to 1
second for 2α−1 = 0.8. Regarding that the implementation is
done in a real life environment, including the routing problems,
the ACKnowledgment and NOACKnowledgment mechanism,
the average convergence time cannot directly be compared to

the analytical results. However, if we consider the evaluation
of this time for a network with N nodes, this implies that
the ACK and NOACK probably will be the same for two
different values of α. The behavior of the average convergence
time is still the same for both simulation and analysis. Results
presented in Fig. 7 show that the behavior of the average
convergence time curve for simulated results is the same
as for analytical results. The important random differences
can be justified by the ACK and NOACK effects which are
a complex phenomenon due to the random reproduction of
channel representing the link from node i to node j.
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Fig. 8. E(T1) for a network with complete graph.

The results in Fig 8 show the average convergence time
versus the number of nodes in the network for a fully con-
nected topology. For both curves, α = 0.6 and α = 0.9, the
consensus takes more time for a network with a large number
of nodes, the number of messages depends on the number of

edges which is close to
N(N−1)

2 (complete graph). In addition,
it is shown that the convergence speed depends on α. For a
network with N = 10 nodes, to reach the consensus values,
the system spends 8.55 as an average time from a scenario
of α = 0.9 to α = 0.6 . The simulation using TOSSIM
characterizes the near real life environment by including the
channel path loss, packet loss and ACK/NOACK mechanism.
Therefore, the upper bound of the average convergence time,
given by analytical results, is not crossed by the simulation
points.

In Figs. 9 and 10 the simulation results and the analytical
results characterize the behavior of the average convergence
time versus the number of nodes. It is noticed that the curves
are similar except that the slope of the figure is different by a
fraction close to 1/4 and the initial value of the convergence
time starts at N = 3 for paths graph with α = 3/4. However
this same initial value starts at N = 5 for ring path with α =
3/4. The point representing the simulation value are presented
by star (∗) and triangle (△) markers. These points are over the
average convergence time bound. Again, this is due to real life
phenomenon that appear in simulation using TOSSIM such as
lost packet due to the link quality or to the congestions. These
effects are present by the ACK and NOACK for messages
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Fig. 9. E(T1) for ring topology.

traces present by Figs. 5 and 6.
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Fig. 10. E(T1) for cycles network.

VI. CONCLUSION

In this paper code implementation and evaluation of binary
consensus algorithm in WSN is presented for TinyOS and
network community. The output in this paper completes the
theoretical results presented previously. The evaluation of the
algorithm was done on TOSSIM simulator to support the future
hardware implementation using a testbed based on IRIS sensor
motes from Crossbow.

Some limitations have been noticed during this work. For
TinyOS simulation, the same code runs on each sensor node. In
addition, some physical phenomenon, such as power consump-
tion, or analog sensed values cannot be easily evaluated. The
use of python as the main simulator of WSN, in cooperation
with nesc limits the running time and the debugging features

of the simulation. Therefore, it will be so important to use
c++ as main simulator instead of python to have a real time
simulation with complete features.
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