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Abstract—In wireless sensor networks, distributed consensus
algorithms can be employed for distributed detection. Each
sensor node can compute its log-likelihood ratio (LLR) from local
observations for a target event and using an iterative distributed
algorithm, the average of sensors’ LLRs can be available to all
the sensor nodes. While the average of sensors’ LLRs allows each
sensor node to make a final decision as a decision statistic for
an overall detection problem with all sensors’ LLRs, it may be
desirable if all sensors’ LLRs or local observations, which form
a full information vector and denoted by x, could be available
to each sensor for other purposes more than the detection of a
target event. In this paper, we show that each sensor can have not
only the average of local observations, but also full information
vector, X, (or its estimate) using a well-known iterative distributed
algorithm. We extend the proposed approach to estimate x when
x is sparse based on the notion of compressed sensing.

[. INTRODUCTION

Wireless sensor networks (WSNs) have various applications
including environmental monitoring and surveillance [1], [2].
In the context of distributed detection , the central unit is called
a fusion center (FC) as all sensors’ local decisions regarding a
target event are collected and combined for a final decision, in
which each node only makes a local decision. The detection
performance at the FC depends on the number of sensors if
local decisions can be correctly received at the FC. However, if
local decisions from sensors are not reliably received at the FC
due to wireless channel impairments, the channel conditions
also affect on the performance. In general, the signals from
sensor nodes that are far away from the FC may not be reliably
received at the FC , which is not desirable as sensor nodes
could have limited power sources. In the centralized approach
with a FC, when the final decision is required at sensor nodes
for further processing, the FC can broadcast it to sensors.
Howeyver, in this case, the sensors that are far away may not
reliably receive this final decision.

Distributed consensus algorithms (DCAs) [3], [4] can be
employed for WSNs to overcome these problems. As DCAs
only require local communications between neighbor sensor
nodes, the transmission power could be lower than that in
the centralized approach with a FC for distributed detection.
Through iterative information exchanges between neighbor
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sensor nodes, the consensus or averaging can be achieved
at all the sensor nodes. Each sensor can have the average
of all sensors’ log-likelihood ratios (LLRs) by an iterative
distributed algorithm for distributed detection [3]. As each
signal transmission for information exchange requires a certain
amount of energy consumption, in general, iterative distributed
algorithms of fast convergence rate are required [4], [5].

Suppose that x; denotes the observation or local LLR at
sensor [. DCAs can provide each sensor with the average of
z;’s. In some applications, however, sensor nodes may need to
know more than the average of sensors’ LLRs or observations.
In this case, DCAs could be modified. In this paper, we show
that a well-known iterative distributed algorithm can be used to
provide every sensors’ observations to all sensor nodes without
any modification. In particular, if the sensors’ observations
are sparse, compressed sensing based approaches [6], [7], [8]
can be used to estimate spare sensors’ observations with an
iterative distributed algorithm. As a result, each sensor node
can have the average of sensors’ observations as well as an
estimate of all sensors’ observations.

II. DISTRIBUTED CONSENSUS ALGORITHMS

In some WSNs, it is possible that each sensor can make a
final decision as a FC does using DCAs [3], [4]. Suppose that
a WSN is connected and the corresponding network topology
is given by G = (V, E), where V = {1,...,L} is the set
of sensor nodes and E = {(I,m)} is the set of edges. Here,
L is the number of sensor nodes and an edge is the pair of
two connected sensors that can communicate with each other
directly.

Let N; denote the set of the sensors that are connected
with sensor [. Denote by x; the observation at sensor [. In
the context of distributed detection, z; is the local LLR from
observations of a target event at sensor /. Using a DCA, each
node can have the average of z;’s. In this case, each sensor
can make the final decision through an optimal decision rule as
the overall LLR is available if z; is conditionally independent.

DCAs are iterative algorithms that are based on information
exchange between neighbor sensor nodes at each iteration.
Let x;(t) denote the state variable at sensor ! at time ¢ with



z1(0) = xz;, where ¢t is the index for iteration. Then, each
sensor can have the average of z;’s by using the following
iterative distributed algorithm [3]:

at+ ) =m@) +p Y, @nt)—z() D)
meEN;
in which [ =1,...,L and u is the gain for the disagreement,

Zm (t) — z1(t). We mainly consider the iterative distributed
algorithm in (1) for distributed consensus or averaging in this
paper. The convergence properties of the iterative distributed
algorithm in (1) depends on the Laplacian matrix. The Lapla-
cian matrix is given by

L = diag(dy,...,dr) —
where A is the adjacency matrix that is given by
(Al — { 1, if (I,m) or (m,l) € E;

0, otherwise
and d; is the degree of node [, i.e., d; =
distributed algorithm is now rewritten as
x(t+1) = x(t) - pLx(t) = (I- pL)x(t) (@)

where x(t) = [z1(t) ... z1(?)]T is the state vector. For a
connected and undirected graph, G = (V| E), the minimum
eigenvalue of the Laplacian matrix, L, is 0 and its correspond-
ing eigenvector is —= [1 . 1]T . Thus, the largest eigenvalues
of I —uL is 1, the magmtudes of the other eigenvalues are
less than 1 if

)

|Vi|. The iterative

O<pu<

3)

Since the eigenvector corresponding to the largest eigenvalue,
1, of I — L is %[1 ... 1]T, it can be shown that

sz—x, l=1,.

That is, z;(¢) of each sensor node can reach the consensus or
average of x;’s as ¢t — oo.

Other distributed consensus algorithms are available from
(1). With a weight matrix, W, the iterative distributed algo-
rithm in (1) can be generalized as

xl(t‘Fl) VVllxl Z VVlmxm
meN;

where Wi, = Wiy, or x(t + 1) = Wx(2). In [4], the
conditions for the convergence can be found. For the consensus
over averaging in (4), a necessary condition for W is

max; d;

4)

l1m zi(t) =

L, (5)

W1=1(1TW =1T as W is symmetry). (6)
In addition to (6), if the following condition is satisfied,
p<W— %nT) <1, (7

where p(-) denotes the spectral radius of a matrix, the con-
sensus or averaging in (4) can be achieved.
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III. MORE THAN AVERAGE

Using a DCA, distributed detection can be performed as
the average of x;’s is available at every sensor nodes after
some iterations. If we need more than the average of x;’s,
distributed consensus algorithms may not be suitable or require
some modification. For example, it would be required that
each sensor is to know x, which is referred to as the full
information vector throughout the paper. A simple approach
with the iterative distributed algorithm in (1) is based on
making use of an iterative distributed algorithm L times. For
the Ith phase, the initial value of state variable is set to x; at
sensor [ (i.e., ;(0) = x;) and set to zero at the other sensors
(i.e., ,,(0) = 0 for m # 0). In the [th phase, the average
value becomes % and after L phases, each sensor knows x.

A. Main Result I: Full Information Acquisition

Let D I — yL and D™ I — pL)™
[y 1,d% 9, dy, 17 ie, df; is the Ith row vector of
I- ,uL)m For a undirected graph, L is symmetric. Thus,
d,,; is also the Ith column vector of (I — uL)™. At sensor [,
we have

21 = [@(0) @(1) ... ;M) =[dg,,dT,, -, dig]"
)
where x = x(0) = [z1 ... z1]T.
Lemma 1: The rank of the following matrix
Ci=[dogdi; ... dumy] )]

is full if and only if the rank of the controllability matrix of
{D,b;}, [b; Db; D?b; ... DMb,] is full. Here, b; stands
for an L x 1 column vector of zeros except the ith element
whose value is 1, i.e., b; is the lth standard basis vector.

Theorem 1: Sensor [ can have x with M = L—1 iterations
of (2) if the rank of the controllability matrix of {D,b;} is
full.

In Theorem 1, sensors can have the full information vector,
x, not just the average of x, ¥, with L — 1 iterations of (1).
Theorem 1 is referred to as the full information acquisition
(FIA) process in this paper as it can provide x through the
iterative distributed algorithm in (1). Since the applicability of
the FIA process at sensor [ depends on the rank of C;, we
need to see more details for the conditions of full rank C;.

Lemma 2: If i) the elements of the Ith row vector E are
not zero and ii) {1 — uA;} are distinct, C; is full rank.
Consider a WSN in Fig. 1. The corresponding eigenvalues are
{0,2,2,4}. Thus, this Laplacian matrix does not satisfy the
conditions in Lemma 2. Furthermore, it can be verified that
C, is not full rank (rank(C;) = 3 for all l). On the other
hand, if we consider the case where the connection between
nodes 1 and 2 disappears, all the elements of the eigenvectors
of this Laplacian matrix are not zero and the eigenvalues are
distinct. Thus, {C,;} are full rank for all .



node 1 node 4

node 2 node 3

Fig. 1. An illustration of a WSN of 4 nodes as an undirected graph.

B. Main Result II: Partial Information Acquisition

If C; is full rank, x is available to sensor [ using the FIA
process. However, if C; is not full rank, the full information
vector, X, may not be available. Thus, it is important to find any
limitations to extract x from z;, which are strongly dependent
on the rank of C;.

Lemma 3: Suppose that the number of the distinct eigen-
values of L, i.e., {\;}, is Lq < L. Then, we have rank(C;) <
min(M +1, Lg).

The result in Lemma 3 shows that the multiplicity of the
eigenvalues of the Laplacian matrix, L, decides the rank of C;.
For strongly regular graphs, the number of distinct eigenvalues
of the Laplacian matrix is 3 , ie., Lg = 3. Howeyver,
we can have more than the average of x by using the FIA
process. When C; is not full rank, since x is not available,
we may consider its estimate from the FIA process, which
is referred to as the partial information vector. For example,
from Theorem 1, if C is rank deficient, we can have

% = argmin ||z; — CTx||? = (CT)'z (10)
X

where the superscript T denotes the pseudo-inverse. In this
case, X is a partial information vector. Furthermore, X = Z1 is
also a partial information vector. The ratio of the rank of C; to
L, denoted by 3y, is referred to as the information acquisition
ratio (IAR). The order of a partial information vector of x, X,
is defined as the rank of T if x and % are related as follows:
x = Tx.

Thus, the order of a partial information vector, X, at sensor
lis £ L and upper-bounded by L. As the order increases, the
partial information vector x can approach the full information
vector X.

In order to see what information we can extract from z; as
a partial information vector, we need to define new variables.
From (8) and Lemma 3, we have

L
a(m) =viT™y = v, (11)
p=1

where y = ETx and Yp = egx. For convenience, let v; >
2 > ...> . Clearly, 1 = 1 and e; = %[1 1T As
m — 00, we can confirm that

L
PE

L
1
. T m,, .
i ) = i S g~
p= i=
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Letting w; = [(v,1%1) .. (vi,Lye)]T, from (11), we have

z; =Q (12)

where Q is a Vandermonde matrix . Let M = L ;—1. Consider
the set of the distinct eigenvalues {¥;, [ = 1,..., L4} from
{v, 1=1,...,L}. Thatis, 7; denotes the jth largest distinct

eigenvalue among {7, { =1,...,L}. Then, we have
z, = Qu, (13)
where
[l = Y [w];
JEM,

Here, M, = {l|; = %,}. Since Q is full rank, we can obtain
1; once z; is available with M = L4 — 1 at sensor /.

Now, we will focus on the relation between 1; and x. Since
u,; = diag(v;)y, we have

T

u; = diag(v;)E"x. (14)
The relationship between @; and u; is given by
a; = Juy, (15)
where L lem
e ={ 0 15 a
From (14) and (15), we have
a; = PETx. (16)

where P; = Jdiag(v;) of size Ly x L plays a crucial role in
deciding the rank of C; as follows. Letting @i; be the partial
information vector, the order of @; is the rank of P; (note
that E is full rank). Thus, we can see that as the rank of P;
increases, @; can approximate x better.

Lemma 4: The rank of C; when M = Lz — 1 is equal to
the rank of P; and rank(P;) > 1.

From (16), we can show that the minimum number of
iterations for the consensus of (1) as follows.

Theorem 2: For a graph whose Laplacian matrix has Ly
distinct eigenvalues, only Lz — 1 iterations of the iterative
distributed algorithm in (1) are required to obtain Z at every
sensor nodes.

Theorem 3: For a connected and undirected graph G,
the diameter, denoted by diam(G), is upper-bounded as
d1am(G) < Ld —-1.

C. Learning Phase

Note that each sensor should know network topology or L
to have C;. For a WSN, a learning phase could be required
so that each sensor can have C;. We can modify (1) to allow
that each sensor can have C;. From (8), we have

z; = Cl'x. (17)



Here, we assume that M = L — 1. Suppose that the learning
phase consists of L sub-phases. In each sub-phase, the sensors’
initial state vector is different and denoted by s, for the pth
sub-phase. We assume that each sensor knows the L initial
signal vectors, {s1,...,sp}. Let S =[s1 ... sp]. We assume
that S has full rank (thus, S~! exists). During the pth sub-
phase, after L — 1 iterations, z; at sensor [ is given by

zl:rp,l:CFsp, p=1,...,L. (18)
After L sub-phases, sensor { can have
Ry=|ry, ... rp;] =CTS. (19)
As S is known at each sensor, we have
Cf =R;S7L. (20)

This learning phase requires L(L —1) iterations of the iterative
algorithm in (1) or (2). The significance of (20) is that each
sensor does not need to know the Laplacian matrix, L, or
topology of the WSN to have C,;. Furthermore, we only need
to know C; (not L) for the FIA process in Theorem 1.

IV. COMPRESSED SENSING FOR SPARSE SAMPLES

For some applications of WSNS, a fraction of sensor nodes
may have some significant observations, while the others’
observations could be insignificant . In this case, x becomes
sparse. In this section, we consider the application of com-
pressed sensing (CS) [7], [8] to estimate sparse x at each
sensor node through the iterative distributed algorithm.

A. Compressed Sensing Problem

Suppose that x is an S-sparse vector. A vector is called
S-spare if its elements are zero excepts at most .S elements.
From (8), based on [7], [9], we can formulate the following
constrained ¢;-minimization problem:

min ||x||; st z =Cfx (1)
x

which is the sparse signal recovery problem from undersam-

pled data when rank(Cf) < L. In CS, C becomes the

sensing matrix. Conditions to recover an S-sparse vector from

(21) are found in [7], in particular, when the sensing matrix

is random. From (13), (14), and (15), we have

z; = QP,ETx. (22)

Denote by 4); the ith column vector of ET (ie., ¥ =
[¢1 Y2 ... 1] = ET). In CS, y = ETx can be considered a
signal vector that can be expressed by a linear combination of
a few basis vectors of {1;}, which is called the representation
basis. Using (13), the constraint in (22) can be replaced by

i, =Q 'z = & Ux, (23)

where ®; = [¢1 @2 ... ¢r,] = PF. It is easy to see that the
column vectors of ®; are orthogonal. This means that ®; is the

19

(unnormalized) sensing basis. Since v; = ETb; = Wb, = v,
the sensing basis, ®; = diag(v;)JT = diag(v;)J7, is not
independent of the representation basis, ¥. In order to have
a good performance for the estimation of x by (21), it is
usually required that the sensing and representation bases are
incoherent. As most elements of a column vector of J are zero,
the sensing basis is a spike basis. Thus, if ¥ is the Fourier
basis, the incoherence between ¥ and ®; could be maximized.
The Laplacian matrix of a special class of graphs is a circulant
matrix. For example, the Laplacian matrices of the ring and
complete graphs are circulant. Since the eigenvectors of a
circulant matrix are the column vectors of a discrete Fourier
transform (DFT) matrix, ¥ of those graphs is the Fourier basis.
In order to characterize the graphs whose W is the Fourier
basis, when V = {0,1,..., L— 1}, we consider the following

2d-regular graphs whose set of edges are given by
E={(wk), k={(u+1), I ==1,...,£d}, (24)

where (z)r denotes the modulo-L of z. Then, the Laplacian
matrix of such a 2d-regular graph is the circulant matrix whose
first row vector is given by

L, =[2d) -1 ... -10 ...

d-times

0-1...—-1].

d-times

(25)

This graph is referred to as a circulant 2d-regular graph.
The eigenvalues of L are

d
)\l=2<d—Zcos (%”kl)) 1=0,1,...,L—1. (26)

k=1
We can see that the eigenvalues are not distinct. For example,
M =Ar_i,1=1,2,...,|L/2]. This implies that the number
of the distinct eigenvalues is bounded as Lq < |L/2] + 1.
Consequently, for a circulant 2d-regular graph, since Lg <
|L/2] +1, the number of measurements is at most | L/2] +1.
From [10, Eq. (7.45)], an upper-bound on S for the sparse
signal recovery with a sufficiently high probability is given
by L
S O3 log 1)’

where o > 0 is a small constant.

While circulant 2d-regular graphs are deterministic and
structured, most graphs of WSNs could be random. Since
D =1 — pL, most elements of D will be zero or u. Thus,
the elements of C; may not be sufficiently random although
a graph can be random. In this case, the performance of the
sparse signal recovery in (21) may not be satisfactory. To avoid
this problem, the iterative distributed algorithm in (1) can be
modified as (5) and the weights, W, ,,,, could be random. Due
to (6), we have

@7)

Wiy=1— > Wipn. (28)

meN;



Thus, Wy, = Wy, m # [, can be randomly generated,
but W;; will be decided by (28). For achieving consensus or
averaging, (7) should be satisfied. However, if the W; ,,,’s are
random, (7) would be satisfied with a certain probability. Since
p(W — £11T) < 1 means that s™(W — $£117T)s < 1 for any
s of unit-norm, assuming s is also random, we can find a
condition for W;,,,,’s that guarantees E[s™(W — $+117)s] < 1
as follows.

Theorem 4: Suppose that W, ,,, (I, m) € E, are indepen-
dent and identically distributed (iid) with E[W;,,,] = 0 and
E[|[Wim|?] = 0% . Let s =[s; ... s1]T and assume that the
s’s are iid with E[s;] = 0 and E[|s;|?] = £ (so that E[||s||?] =
1). Furthermore, we assume that E[|s;|*] = pg < 7. If

2
< —, 29
Ow < 47 (29)
where d = #, we have

1
E[sT (w - ZHT> s| < L. (30)
Since the condition in (29) only guarantees that
E[sT (W—-+$11T)s] < 1, it would be a necessary

condition for s (W — +117) s < 1 for any s of ||s|| = 1.

B. Numerical Results

In this subsection, we present numerical results when the
iterative distributed algorithm is used to estimate sparse sig-
nals. The number of iterations is set to M = Li; — 1. With
L = 100, 2d-regular graphs with Laplacian matrices in (25)
are considered for simulations. Two different types of x are
considered. For the first type, each element of x is independent
and 2; ~ N(0,1). This type of x, denoted by x(q), is not
sparse. The second type of x, denoted by x(g), is S-spare:

x@)l = {
(31

For x = x(1), we use the {5-minimization to estimate x, i.e.,
(10). For x = x(g), we use both the £5- and ¢;-minimization
(i.e., (21)). The following normalized mean squared error
(NMSE) is used as a performance measure:

E[||% — x|?]

E[[lx[[2]

Fig. 2 shows the NMSE values when both types of x are
to be estimated using the iterative distributed algorithm for a
WSN of circulant 2d-regular graph. It is assumed that L = 100
and d = 8. Each NMSE value is obtained by averaging the
NMSE values at L = 100 sensor nodes and 1000 runs (in each
run, independent x () and x(gy are generated). The estimation
of x by the £s-minimization in (10) is considered for both
the first and second types of x. It is shown that NMSE is
independent of S when x = x(g) if the £-minimization is
used. On the other hand, for x = x(3) (i.e., sparse signals),

X, if |[x()]s] is the largest signals
0, otherwise.

NMSE =

20

—— |2-estimation of non-sparse signal

—©— |1-estimation of sparse signal
—&— |2-estimation of sparse signal
T T

8 9

T
7 10

Fig. 2. NMSE versus S: £1- and £2-minimization to estimate x (a circulant
16-regular graph of L = 100 scnsor nodes).
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Fig. 3. NMSE versus d: £1- and £2-minimization to estimate x (a circulant
2d-regular graph of L = 100 sensor nodes and S = 4).

the £1-minimization in (21) provides a lower NMSE than the
{5-minimization and NMSE increases with S.

In order to see the impact of d, we consider simulations
with circulant 2d-regular graphs of L = 100 sensor nodes
and S = 4 for sparse signals. The NMSE values obtained
by simulations of 1000 runs are shown in Fig. 3. It is shown
that if sensors are more connected (i.e., d increases), the ¢;-
minimization can provide a better estimate of x = x (9 as the
NMSE decreases with d. On the other hand, the performance
of the £>-minimization is almost independent of d.

For WSNs with random graphs, we consider a normalized
area of 1 x 1 with L sensors located randomly. Sensors are
connected if they are within a range of 0 < R < 1. If the graph
is not connected, sensors’ locations are re-generated randomly
until the resulting graph is connected. This random graph is



—— |2-estimation of non-sparse signal
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Fig. 4. NMSE versus S: £1- and £o-minimization to estimate x (random
R-graphs of L = 100 scnsor nodes and R = 0.4).

referred to as a random R-graph. For simulations in Fig. 4
and 5, we assume that the elements of W for the iterative
distributed algorithm are randomly generated with 0%, = %
tTW- %11T has a spectral radius greater than 1, the weights,
Wi m, are re-generated until the spectral radius becomes less
than 1. Fig. 4 shows the NMSE values when both types of x
are to be estimated using the iterative distributed algorithm for
random R-graphs of R = 0.4 and L = 100. Each NMSE value
is obtained by averaging the NMSE values at L = 100 sensor
nodes and 1000 runs. It is shown that the ¢;-minimization in
(21) provides a lower NMSE than the ¢;-minimization and
the NMSE increases with S. For example, when S = 5, the
NMSE obtained from the ¢;-minimization is 10 times smaller
than that obtained from the £»-minimization.

In order to see the impact of the number of sensor nodes in a
WSN, NMSE is obtained with different values of L for random
R-graphs of R = 0.4. It is assumed that S is proportional
to L. That is, S = L/10. Simulation results are shown in
Fig. 5. When x is sparse (i.e., X = X(3)), the NMSE of the
estimate obtained by the #;-minimization decreases with L.
On the other hand, the NMSE of the estimate obtained by the
{2-minimization increases with L for both x(;) and x(3).

V. CONCLUDING REMARKS

An iterative distributed algorithm was proposed in this
works, which was originally derived for achieving consensus
or averaging, to provide an estimate of the full information
vector x at each sensor node. It was shown that the iterative
distributed algorithm can provide not only the average of
sensors’ observations {z;}, but also an estimate of x
[#1 ... zz]T under a certain condition. We have found that
this condition is related to a controllability matrix and the order
of a partial information vector, as an estimate of x, depends
on the number of distinct eigenvalues of a graph. From the
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NMSE versus L: £1- and £o-minimization to estimate x (random
R-graphs with R = 0.4 and S = L/10).

Fig. 5.

latter result, we had two immediate results: i) the minimum
number of iterations of the iterative distributed algorithm for
achieving consensus is Lq — 1, where Ly is the number of
distinct eigenvalues; ii) the diameter of a connected graph is
upper-bounded by Lg — 1.
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