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Abstract

In this paper, we present a general family of iterative methods to solve linear equations, which includes the well-known Jacobi
and Gauss–Seidel iterations as its special cases. The methods are extended to solve coupled Sylvester matrix equations. In our
approach, we regard the unknown matrices to be solved as the system parameters to be identified, and propose a least-squares
iterative algorithm by applying a hierarchical identification principle and by introducing the block-matrix inner product (the
star product for short). We prove that the iterative solution consistently converges to the exact solution for any initial value.
The algorithms proposed require less storage capacity than the existing numerical ones. Finally, the algorithms are tested on
computer and the results verify the theoretical findings.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Lyapunov and Sylvester matrix equations play important roles in system theory[5,6,33–35]. Although exact
solutions, which can be computed by using the Kronecker product, are important, the computational efforts rapidly
increase with the dimensions of the matrices to be solved. For some applications such as stability analysis, it is of-
ten not necessary to compute exact solutions; approximate solutions or bounds of solutions are sufficient.Also, if the
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parameters in system matrices are uncertain, it is not possible to obtain exact solutions for robust stability results
[10,12,16,21–26,28–32,37].

Alternative ways exist which transform the matrix equations into forms for which solutions may be readily
computed, for example, the Jordan canonical form[15], companion-type form[2,3], Hessenberg–Schur form[1,13].
In this area, Chu gave a numerical algorithm for solving the coupled Sylvester equations[7]; and Borno presented
a parallel algorithm for solving the coupled Lyapunov equations[4]. But, these algorithms require computing some
additional matrix transformation/decomposition; moreover, they are not suitable for more general coupled matrix
equations of the form:

p∑
j=1

AijXjBij = Ci, i = 1,2, . . . , p, (1)

which includes thecoupledLyapunovandSylvester equationsas its special cases. In (1),Xi ∈ Rm×n are theunknown
matrices to be solved;Aij , Bij , andCij represent constant (coefficient) matrices of appropriate dimensions. For
such coupled matrix equations, the conventional methods require dealing with matrices whose dimensions are
mnp ×mnp. Such a dimensionality problem leads to computational difficulty in that excessive computer memory
is required for computation and inversion of large matrices of sizemnp ×mnp. For instance, ifm= n= p = 100,
thenmnp ×mnp = 106 × 106.

In the field of matrix algebra and system identification, iterative algorithms have received much attention
[8,10,14,27,32]. For example, Starke presented an iterative method for solutions of the Sylvester equations by
using the SOR technique[36]; Jonsson and Kägström proposed recursive block algorithms for solving the coupled
Sylvester matrix equations[18,19]; Kägström derived an approximate solution of the coupled Sylvester equation
[20]. To our best knowledge, numerical algorithms for general matrix equations have not been fully investigated,
especially the iterative solutions of the coupled Sylvester matrix equations, as well as the general coupled matrix
equations in (1), and the convergence of the iterative solutions involved, which are the focus of this work.

In this paper, the problem will be tackled in a new way—we regard the unknown matricesXj to be solved as the
parameters (parameter matrices) of the system to be identified, and apply the so-calledhierarchical identification
principle to decompose the system into some subsystems, and derive iterative algorithms of the matrix equations
involved. Our methods will generate solutions to the matrix equations which are arbitrarily close to the exact
solutions.

The paper is organized as follows. In Section 2, we extend the well-known Jacobi and Gauss–Seidel iterations and
present a large family of iterative methods. In Sections 3 and 4, we define the block-matrix inner product (the star
product for short) and derive iterative algorithms for the coupled Sylvester matrix equations and general coupled
matrix equations, respectively, and study the convergence properties of the algorithms. In Section 5, we give an
example for illustrating the effectiveness of the algorithms proposed. Finally, we offer some concluding remarks in
Section 6.

2. Extension of the Jacobi and Guass–Seidel iterations

Consider the following linear equation:

Ax = b. (2)

Here,A= [aij ] (i, j = 1,2, . . . , n) is a given full-rankn× n matrix with non-zero diagonal elements,b ∈ Rn is a
constant vector, andx ∈ Rn an unknown vector to be solved. LetD be the diagonal part ofA, andL andU be the
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strictly lower and upper triangular parts ofA:

D = diag[a11, a22, . . . , ann] ∈ Rn×n,

L=




0 0 · · · · · · 0

a21 0
. . .

...

a31 a32 0
. . .

...
...

. . .
. . . 0

an1 an2 · · · an,n−1 0




∈ Rn×n, U =




0 a12 a13 · · · a1n
0 0 a23 a2n
...

. . .
. . .

. . .
...

...
. . .

. . . an−1,n
0 · · · · · · 0 0


 ∈ Rn×n,

which satisfyL+D + U = A. Then both the Jacobi and Gauss–Seidel iterations can be expressed as[8,14]

Mx(k)=Nx(k − 1)+ b, k = 1,2,3, . . . ,

wherex(k) is the iterative solution ofx. For the Jacobi method,M =D andN = −(L+ U); for the Gauss–Seidel
method,M = L+D andN = −U .

Unfortunately, the Jacobi and Gauss–Seidel iterations cannot guarantee thatx(k) converges to the exact solution
x = A−1b, and are not suitable for solving the non-square system:Hx = g with H ∈ Rm×n. This motivates us to
study new iterative methods.

LetG ∈ Rn×n be a full-rank matrix to be determined and�>0 be the step-size or convergence factor. We present
a large family of iterative methods as follows:

x(k)= x(k − 1)+ �G [b − Ax(k − 1)], k = 1,2,3, . . . , (3)

which includes the Jacobi and Gauss–Seidel iterations as special cases. For example, whenG = D−1 and� = 1,
we get the Jacobi method; whenG= (L+D)−1 and� = 1, we obtain the Gauss–Seidel method.

The following two lemmas are straightforward and their proofs are omitted here.

Lemma 1. If we takeG= AT, then the gradient iterative(or iterative gradient) algorithm,

x(k)= x(k − 1)+ �AT[b − Ax(k − 1)], 0<�<
2

�max[ATA] or 0<�<
2

‖A‖2 , (4)

yieldslimk→∞ x(k)= x. Here, ‖X‖2 = tr[XXT].

Lemma 2. If we takeG= A−1, then the following iterative algorithm converges to x:

x(k)= x(k − 1)+ �A−1[b − Ax(k − 1)], 0<�<2. (5)

If A is a non-squarem× n full column-rank matrix, then we havelimk→∞ x(k)= x in the following:

x(k)= x(k − 1)+ �(ATA)−1AT[b − Ax(k − 1)], 0<�<2. (6)

It is easy to prove that the iterative solutionsx(k) in (4)–(6) all converge to the least-squares solution(ATA)−1ATb

at a fast exponential rate, or are linearly convergent. When� = 1, the iteration in (6) givesx(1) = (ATA)−1ATb.
So (6) is also called the least-squares iterative algorithm.

The iterative algorithms in (4) and (6) are also suitable for solving non-square systems and are very useful for
finding the iterative solutions of general matrix equations to be studied later; the convergence factors� in (5) and (6)
do not rely on the matrixA and is easy to choose, although the algorithms in (5) and (6) require computing matrix
inversion only at the first step.
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3. Coupled Sylvester matrix equations

In this section, we study least squares iterative algorithms to solve the coupled Sylvester matrix equation

AX + YB = C, DX + YE = F. (7)

Here,A, D ∈ Rm×m,B,E ∈ Rn×n andC, F ∈ Rm×n are given constant matrices,X, Y ∈ Rm×n are the unknown
matrices to be solved.

First, let us introduce some notation. The notationIn is the identity matrix ofn× n. For two matricesM andN,
M ⊗N is their Kronecker product. For twom× n matricesX andYwith

X = [x1, x2, . . . , xn] ∈ Rm×n,

col[X] is anmn-dimensional vector formed by columns ofX

col[X] =



x1
x2
...

xn


 ∈ R(mn) and col[X, Y ] =

[
col[X]
col[Y ]

]
∈ R(2mn).

The following result is well-known.

Lemma 3. Eq. (7)has a unique solution if and only if the matrix

S2 :=
[
In ⊗ A BT ⊗ Im
In ⊗D ET ⊗ Im

]
∈ R(2mn)×(2mn)

is non-singular; in this case, the unique solution is given by

col[X, Y ] = S−1
2 col[C,F ], (8)

and the corresponding homogeneousmatrix equationAX+YB=0, DX+YE=0has a unique solution:X=Y=0.

In order to derive the iterative solution to (7), we need to introduce the intermediate matricesb1 andb2 as follows:

b1 :=
[
C − YB

F − YE

]
, (9)

b2 := [C − AX, F −DX]. (10)

Then from (7), we obtain two fictitious subsystems

S1 : G1X = b1, S2 : YH 1 = b2.

Here,G1 :=
[
A
D

]
andH1 := [B, E].

LetX(k) andY (k) be the iterative solutions ofXandY. Referring to Lemma 2, it is not difficult to get the iterative
solutions toS1 andS2 as follows:

X(k)=X(k − 1)+ �(GT
1G1)

−1
[
A

D

]T {
b1 −

[
A

D

]
X(k − 1)

}
, (11)

Y (k)= Y (k − 1)+ �{b2 − Y (k − 1)[B, E]}[B, E]T(H1H
T
1 )

−1. (12)
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Substituting (9) into (11) and (10) into (12) gives

X(k)=X(k − 1)+ �(GT
1G1)

−1
[
A

D

]T {[
C − YB

F − YE

]
−

[
A

D

]
X(k − 1)

}

=X(k − 1)+ �(GT
1G1)

−1
[
A

D

]T [
C − YB − AX(k − 1)
F − YE −DX(k − 1)

]
, (13)

Y (k)=Y (k − 1)+ �{[C − AX, F −DX] − Y (k − 1)[B, E]}[B, E]T(H1H
T
1 )

−1

= Y (k − 1)+ �[C − AX − Y (k − 1)B, F −DX − Y (k − 1)E][B, E]T(H1H
T
1 )

−1. (14)

Here, a difficulty arises in that the expressions on the right-hand sides of (13) and (14) contain theunknownparameter
matrixYandX, respectively, so it is impossible to realize the algorithm in (13) and (14). Our solution is based on the
hierarchical identification principle: the unknown variablesY in (13) andX in (14) are replaced by their estimates
Y (k−1) andX(k−1). Thus, we obtain the least-squares iterative solutionsX(k) andY (k) of the coupled Sylvester
equation in (7)

X(k)=X(k − 1)+ �(GT
1G1)

−1
[
A

D

]T [
C − AX(k − 1)− Y (k − 1)B
F −DX(k − 1)− Y (k − 1)E

]
, (15)

Y (k)= Y (k − 1)+ �[C − AX(k − 1)− Y (k − 1)B, F −DX(k − 1)− Y (k − 1)E][B, E]T(H1H
T
1 )

−1,

(16)

� = 1

m+ n
or � = 1

�max[G1(G
T
1G1)

−1GT
1 ] + �max[HT

1 (H1H
T
1 )

−1H1]
. (17)

The least-squares iterativealgorithm in (15)–(17) requirescomputing thematrix inversions(GT
1G1)

−1 and(H1H
T
1 )

−1

only once at the first step. To initialize the algorithm, we takeX(0) = Y (0) = 0 or some small real matrix, e.g.,
X(0)= Y (0)= 10−61m×n with 1m×n being anm× n matrix whose elements are 1.

Theorem 1. If the coupled Sylvester equation in(7)has a unique solution X andY, then the iterative solutionX(k)
andY (k) given by the algorithm in(15)–(17)converges to X andY for any finite initial valuesX(0) andY (0), i.e.,

lim
k→∞ X(k)=X, and lim

k→∞Y (k)= Y.

Proof. Define two error matrices

X̃(k)=X(k)−X, Ỹ (k)= Y (k)− Y.

By using (7) and (15)–(16), it is not difficult to get

X̃(k)= X̃(k − 1)+ �(GT
1G1)

−1
[
A

D

]T [−AX̃(k − 1)− Ỹ (k − 1)B
−DX̃(k − 1)− Ỹ (k − 1)E

]
, (18)

Ỹ (k)= Ỹ (k − 1)+ �[−AX̃(k − 1)− Ỹ (k − 1)B −DX̃(k − 1)− Ỹ (k − 1)E][B, E]T(H1H
T
1 )

−1. (19)

Taking the norm in (18) and using the formula

‖G1[X + (GT
1G1)

−1Y ]‖2 = tr{[X + (GT
1G1)

−1Y ]T(GT
1G1)[X + (GT

1G1)
−1Y ]}

= tr[XT(GT
1G1)X + 2XTY + Y T(GT

1G1)
−1Y ]

= ‖G1X‖2 + 2tr[XTY ] + ‖(GT
1G1)

−1/2Y‖2,
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give

‖G1X̃(k)‖2 = tr[X̃T(k)GT
1G1X̃(k)]

= ‖G1X̃(k − 1)‖2 + 2� tr

{
X̃T(k − 1)

[
A

D

]T [−AX̃(k − 1)− Ỹ (k − 1)B
−DX̃(k − 1)− Ỹ (k − 1)E

]}

+ �2
∥∥∥∥(GT

1G1)
−1/2GT

1

[−AX̃(k − 1)− Ỹ (k − 1)B
−DX̃(k − 1)− Ỹ (k − 1)E

]∥∥∥∥
2

�‖G1X̃(k − 1)‖2 − 2� tr{[AX̃(k − 1)]T[AX̃(k − 1)+ Ỹ (k − 1)B]
+ [DX̃(k − 1)]T[DX̃(k − 1)+ Ỹ (k − 1)E]}
+ �2m[‖AX̃(k − 1)+ Ỹ (k − 1)B‖2 + ‖DX̃(k − 1)+ Ỹ (k − 1)E‖2]. (20)

Similarly, we have

‖Ỹ (k)H1‖2 = tr[Ỹ (k)H1H
T
1 Ỹ

T(k)]
= ‖Ỹ (k−1)H1‖2+2� tr{[−AX̃(k−1)−Ỹ (k−1)B,−DX̃(k−1)−Ỹ (k−1)E][B, E]TỸ T(k−1)}

+ �2‖[−AX̃(k − 1)− Ỹ (k − 1)B,−DX̃(k − 1)− Ỹ (k − 1)E]HT
1 (H1H

T
1 )

−1/2‖2

�‖Ỹ (k − 1)H1‖2 − 2� tr{[Ỹ (k − 1)B]T[AX̃(k − 1)+ Ỹ (k − 1)B]
+ [Ỹ (k − 1)E]T[DX̃(k − 1)+ Ỹ (k − 1)E]}
+ �2n[‖AX̃(k − 1)+ Ỹ (k − 1)B‖2 + ‖DX̃(k − 1)+ Ỹ (k − 1)E‖2]. (21)

Defining a non-negative definite function

W(k)= ‖G1X̃(k)‖2 + ‖Ỹ (k)H1‖2,

and using (20) and (21), we have

W(k)�W(k − 1)− 2�[‖AX̃(k − 1)+ Ỹ (k − 1)B‖2 + ‖DX̃(k − 1)+ Ỹ (k − 1)E‖2]
+ �2(m+ n)[‖AX̃(k − 1)+ Ỹ (k − 1)B‖2 + ‖DX̃(k − 1)+ Ỹ (k − 1)E‖2]

�W(k − 1)− �[2 − �(m+ n)][‖AX̃(k − 1)+ Ỹ (k − 1)B‖2 + ‖DX̃(k − 1)+ Ỹ (k − 1)E‖2]

�W(0)− �[2 − �(m+ n)]
k−1∑
i=0

[‖AX̃(i)+ Ỹ (i)B‖2 + ‖DX̃(i)+ Ỹ (i)E‖2].

If the convergence factor is chosen to satisfy

0<�<
2

m+ n
,

then
∞∑
k=1

[‖AX̃(k)+ Ỹ (k)B‖2 + ‖DX̃(k)+ Ỹ (k)E‖2]<∞.

It follows that ask → ∞,

‖AX̃(k)+ Ỹ (k)B‖2 + ‖DX̃(k)+ Ỹ (k)E‖2 = 0,

or

AX̃(k)+ Ỹ (k)B = 0, DX̃(k)+ Ỹ (k)E = 0.

According to Lemma 3, we havẽX(k) → 0 andỸ (k) → 0 ask → ∞. Thus Theorem 1 is proven.�
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The convergence factor in (17) may not be the best and may be conservative. In fact, there exists a best� such
that the fast convergence rate ofX(k) toX andY (k) toYcan be obtained—see the example to be studied later.

4. General coupled matrix equations

In this section, we will extend the iterative method to solve more general coupled matrix equations of the form

A11X1B11 + A12X2B12 + · · · + A1pXpB1p = C1,

A21X1B21 + A22X2B22 + · · · + A2pXpB2p = C2,

· · ·
Ap1X1Bp1 + Ap2X2Bp2 + · · · + AppXpBpp = Cp. (22)

Here,Aij ∈ Rm×m, Bij ∈ Rn×n andCi ∈ Rm×n are given constant matrices,Xi ∈ Rm×n are the unknown matrix
to be solved.

The general coupled matrix equations (22) include the following matrix equations as the special cases: (i) the
discrete-time Sylvester equation:AXBT +X=C [18,19]; (ii) the discrete-time Lyapunov equation:AXAT −X=C

[18,19]; (iii) the generalized Sylvester (Lyapunov) equation:AXB + CXD = F [7]; (iv) the coupled Sylvester
equations as discussed in the preceding section[7,20]; and (v) the general coupled Lyapunov matrix equations
associated with linear jump parameter systems[4].

In order to more succinctly express the least-squares iterative algorithm to be presented later, we introduce the
block-matrix inner product—the star (∗) product for short, denoted by notation∗, which differs from Hadamard
(inner) product[9,11,17,38]and general matrix multiplication. Let

X =



X1
X2
...

Xp


 ∈ R(mp)×n, Y =



Y1
Y2
...

Yp


 ∈ R(np)×m, Ai =



A1i
A2i
...

Api


 ∈ R(mp)×m,

Bi = [B1i , B2i , . . . , Bpi] ∈ Rn×(np), SA = [Aij ], SB = [Bij ], SBT = [BT
ij ],

Sp = [BT
ij ⊗ Aij ], i, j = 1,2, . . . , p.

Then the block-matrix star product is defined as

X ∗ Y=



X1
X2
...

Xp


 ∗



Y1
Y2
...

Yp


 =



X1Y1
X2Y2
...

XpYp


 , SA ∗X =



A11X1 A12X2 · · · A1pXp

A21X1 A22X2 · · · A2pXp

...
...

...

Ap1X1 Ap2X2 · · · AppXp


 ,

X ∗ SB=



X1B11 X1B12 · · · X1B1p
X2B21 X2B22 · · · X2B2p
...

...
...

XpBp1 XpBp2 · · · XpBpp


 , SA ∗ SB =



A11B11 A12B12 · · · A1pB1p
A21B21 A22B22 · · · A2pB2p

...
...

...

Ap1Bp1 Ap2Bp2 · · · AppBpp


 .

In the above definitions, we assume that the dimensions of multiplier matrix and multiplicand matrix are compatible.
The block-matrix star Kronecker product, denoted by notation�, is defined by

SBT�SA = Sp.

Taking into account the dimension compatibility, the star product is superior to matrix multiplication. Note that
AB ∗ C = A(B ∗ C) �= (AB) ∗ C.
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Let Inp×n = [In, In, . . . , In]T ∈ R(np)×n. Then the star product has the following properties:

• IT
np×nX ∗ Y = [X1, X2, . . . , Xp]Y =

p∑
i=1

XiYi.

• tr



XT
i



A1i
A2i
...

Api




T 

C̃1
C̃2
...

C̃p


 ∗



BT

1i
BT

2i
...

BT
pi







= tr






A1iXiB1i
A2iXiB2i

...

ApiXiBpi




T 

C̃1
C̃2
...

C̃p






.

•

∥∥∥∥∥∥∥∥∥
(AT

i Ai)
−1/2



A1i
A2i
...

Api




T 

C̃1
C̃2
...

C̃p


 ∗



BT

1i
BT

2i
...

BT
pi


 (BiB

T
i )

−1/2

∥∥∥∥∥∥∥∥∥

2

�mn

∥∥∥∥∥∥∥∥



C̃1
C̃2
...

C̃p




∥∥∥∥∥∥∥∥

2

.

For the Hadamard (◦) product, we haveX ◦ Y = Y ◦ X, butX ◦ SA is not defined. For the star product, since
the multiplier matrix and multiplicand matrix are not necessarily of the same size, in general,A ∗ B �= B ∗ A,
A ∗ B ∗ C = (A ∗ B) ∗ C �= A ∗ (B ∗ C).

Lemma 4. Eq. (22)has a unique solution if and only if the matrixSp ∈ R(mnp)×(mnp) is nonsingular; in this case,
the solution is

col[X1, X2, . . . , Xp] = S−1
p col[C1, C2, . . . , Cp];

and ifCi = 0 (i = 1, 2, . . . , p), then the matrix equation in(22)has unique solutionsXi = 0 (i = 1, 2, . . . , p).

In order to derive the iterative algorithm for solving the general coupled matrix equation in (22), we first consider
the coupled Sylvester equation in (7) to a more general form

AXIB + IAYB = C, DXIE + IDYE = F,

whose iterative solution can be expressed as

X(k)=X(k − 1)+ �(GT
1G1)

−1
[
A

D

]T {[
C − AX(k − 1)IB − IAY (k − 1)B
F −DX(k − 1)IE − IDY (k − 1)E

]
∗ [IB, IE]T

}
, (23)

Y (k)= Y (k − 1)+ �
[
IA
ID

]T {[
C − AX(k − 1)IE − IDY (k − 1)B
F −DX(k − 1)IE − IDY (k − 1)E

]
∗ [B,E]T

}
(H1H

T
1 )

−1. (24)

If IA, IB, ID andIE are identitymatrices of appropriate dimensions, then the algorithm in (23) and (24) is equivalent
to the one in (15) and (16).

LetXi(k)be theestimatesor iterative solutionsofXi .Wepresent the least squares iterativealgorithmof computing
the solutionsXi(k) (i = 1,2, . . . , p) of the matrix equations (22) as follows:

Xi(k)=Xi(k − 1)+ �(AT
i Ai)

−1



A1i
A2i
...

Api




T


C1 − ∑p

j=1A1jXj (k − 1)B1j

C2 − ∑p
j=1A2jXj (k − 1)B2j

...

Cp − ∑p
j=1ApjXj (k − 1)Bpj


 ∗



BT

1i
BT

2i
...

BT
pi


 (BiB

T
i )

−1, (25)
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� = 1

mnp
or � = 1∑p

i=1 �max[Ai(AT
i Ai)

−1AT
i ]�max[BT

i (BiB
T
i )

−1Bi]
. (26)

Since (25) and (26) are established based on the least-squares iterative idea of Lemma 2, the algorithm in (25) and
(26) is known as the least-squares iterative algorithm. In this algorithm, we only require computing the inversion
of them×m andn× n matrices instead of themnp ×mnp matrix, e.g., in Lemma 4.

Theorem 2. If the coupled matrix equation in(22) has unique solutionsXi, i = 1,2, . . . , p, then the iterative
solutionsXi(k) given by the algorithm in(25)–(26)converge to the solutionsXi for any finite initial valuesXi(0),
i.e.,

lim
k→∞ Xi(k)=Xi, i = 1,2, . . . , p.

Proof. Define the estimation error matrix

X̃i(k)=Xi(k)−Xi.

Let 

C̃1(k)

C̃2(k)
...

C̃p(k)


 =




∑p
j=1A1j X̃j (k − 1)B1j∑p
j=1A2j X̃j (k − 1)B2j

...∑p
j=1Apj X̃j (k − 1)Bpj


 .

By using (22) and (25), it is not difficult to get

X̃i(k)= X̃i(k − 1)− �(AT
i Ai)

−1



A1i
A2i
...

Api




T 

C̃1(k)

C̃2(k)
...

C̃p(k)


 ∗



BT

1i
BT

2i
...

BT
pi


 (BiB

T
i )

−1.

Defining a non-negative definite function

Vi(k)= ‖AiX̃(k)Bi‖2,

using the above equation, the star product properties and formula

tr{[X + (AT
i Ai)

−1Y (BiB
T
i )

−1]T(AT
i Ai)[X + (AT

i Ai)
−1Y (BiB

T
i )

−1](BiBT
i )}

= tr[XT(AT
i Ai)X(BiB

T
i )+ 2XTY + (BiB

T
i )

−1Y T(AT
i Ai)

−1Y ]
= ‖AiXBi‖2 + 2tr[XTY ] + tr[(BiBT

i )
−1Y T(AT

i Ai)
−1Y ]

�‖AiXBi‖2 + 2tr[XTY ] + ‖(AT
i Ai)

−1/2Y (BiB
T
i )

−1/2‖2,

we have

Vi(k)= tr[X̃T(k)(AT
i Ai)X̃(k)(BiB

T
i )]

�Vi(k − 1)− 2� tr






A1i X̃i(k − 1)B1i
A2i X̃i(k − 1)B2i
...

ApiX̃i(k − 1)Bpi




T 

C̃1(k)

C̃2(k)
...

C̃p(k)







+ �2mn

∥∥∥∥∥∥∥∥



C̃1(k)

C̃2(k)
...

C̃p(k)




∥∥∥∥∥∥∥∥

2

. (27)
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Summing fori from 1 top yields

V (k) :=
p∑
i=1

Vi(k)

�V (k − 1)− 2�

∥∥∥∥∥∥∥∥



C̃1(k)

C̃2(k)
...

C̃p(k)




∥∥∥∥∥∥∥∥

2

+ �2mnp

∥∥∥∥∥∥∥∥



C̃1(k)

C̃2(k)
...

C̃p(k)




∥∥∥∥∥∥∥∥

2

= V (k − 1)− �(2 − �mnp)
p∑
i=1

‖C̃i(k)‖2

= V (k − 1)− �(2 − �mnp)
k∑
l=1

p∑
i=1

‖C̃i(l)‖2.

If the convergence factor� is chosen to satisfy

0<�<
2

mnp
,

then
∞∑
k=1

p∑
i=1

‖C̃i(k)‖2<∞.

It follows that ask → ∞,

p∑
i=1

‖C̃i(k)‖2 =
p∑
j=1

‖Aij X̃j (k − 1)Bij‖2 = 0,

or
p∑
j=1

Aij X̃j (k − 1)Bij = 0, i = 1,2, . . . , p.

According to Lemma 4, we prove Theorem 2.�

From the proofs of Theorems 1 and 2, we can see that the iterative solutions in (15)–(17) and (25)–(26) are
linearly convergent.

Let

X(k)=



X1(k)

X2(k)
...

Xp(k)


 ∈ R(mp)×n, C =



C1
C2
...

Cp


 ∈ R(mp)×n,

DA = diag[(AT
1A1), (A

T
2A2), . . . , (A

T
pAp)], DB = diag[(B1B

T
1 ), (B2B

T
2 ), . . . , (BpB

T
p)].

Then (22) can simply be expressed as

SA ∗X ∗ SBInp×n = C.
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By using the star product properties, (25) can be written as the following more compact form:

X(k)=X(k − 1)+ �D−1
A ST

A



C1 − ∑p

j=1A1jXj (k − 1)B1j

C2 − ∑p
j=1A2jXj (k − 1)B2j

...

Cp − ∑p
j=1ApjXj (k − 1)Bpj


 ∗ SBTD

−1
B

=X(k − 1)+ �D−1
A ST

A[C − SA ∗X(k − 1) ∗ SBInp×n] ∗ SBTD
−1
B .

Referring to Lemma 1, we also establish the gradient iterative algorithm for the solution of the general coupled
matrix equation (22) as follows:

X(k)=X(k − 1)+ �ST
A



C1 − ∑p

j=1A1jXj (k − 1)B1j

C2 − ∑p
j=1A2jXj (k − 1)B2j

...

Cp − ∑p
j=1ApjXj (k − 1)Bpj


 ∗ SBT

=X(k − 1)+ �ST
A[C − SA ∗X(k − 1) ∗ SBInp×n] ∗ SBT ,

� = 1∑p
i=1

∑p
j=1 ‖AijBij‖2

or � = 1∑p
i=1

∑p
j=1 �max[AijAT

ij ]�max[BijBT
ij ]
.

5. Example

In this section, we give an example to illustrate the performance of the proposed algorithms.
Suppose that the coupled matrix equations areAX + YB = C, DX + YE = F with

A=
[

2.00 1.00
−1.00 2.00

]
, B =

[
1.00 −0.20
0.20 1.00

]
, D =

[−2.00 −0.50
0.50 2.00

]
,

E =
[−1.00 −3.00

2.00 −4.00

]
, C =

[
13.20 10.60
0.60 8.40

]
, F =

[−9.50 −18.00
16.00 3.50

]
.

Then the solutions ofX andY from (8) are

X =
[
x11 x12
x21 x22

]
=

[
4.00 3.00
3.00 4.00

]
, Y =

[
y11 y12
y21 y22

]
=

[
2.00 1.00

−2.00 3.00

]
.

TakingX(0)= Y (0)= 10−612×2, we apply the algorithm in (15) and (16) to computeX(k) andY (k). The iterative
solutionsX(k) andY (k) is shown inTable 1, where

� =
√

‖X(k)−X‖2 + ‖Y (k)− Y‖2

‖X‖2 + ‖Y‖2

is the relative error. The errors� with different convergence factors are shown inFig. 1. FromTable 1andFig. 1,
it is clear that� are becoming smaller and smaller and goes to zero ask increases. This indicates that the proposed
algorithm is effective.

The effect of changing the convergence factor� is illustrated inFig. 1. We see that the larger the convergence
factor� is, the faster the convergence the algorithm (or, the smaller the estimation error). However, if� is too large,
the algorithm may diverge. How to choose a best convergence factor is still a project to be studied.
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Table 1
The iterative solutions (� = 1/1.10)

k x11 x12 x21 x22 y11 y12 y21 y22 � (%)

5 3.61430 2.99005 2.94096 3.69706 3.32282 0.38948−2.97539 3.27086 22.33259974
10 3.58609 3.05453 2.90272 3.87639 2.34456 0.78180−2.21107 3.09466 7.84857813
15 3.82227 3.06025 2.95326 3.97523 2.21169 0.83128−2.10876 3.07171 4.34305171
20 3.89469 3.05144 2.97031 3.99632 2.10743 0.90351−2.04993 3.04066 2.41409661
25 3.94038 3.03387 2.98259 4.00113 2.06247 0.93997−2.02722 3.02519 1.42914360
30 3.96448 3.02170 2.98944 4.00170 2.03639 0.96383−2.01531 3.01515 0.85256301
35 3.97879 3.01341 2.99364 4.00132 2.02173 0.97803−2.00897 3.00919 0.51331998
40 3.98723 3.00821 2.99615 4.00089 2.01304 0.98670−2.00533 3.00556 0.30979089
45 3.99229 3.00500 2.99767 4.00056 2.00787 0.99195−2.00320 3.00337 0.18728213
50 3.99534 3.00303 2.99859 4.00035 2.00475 0.99512−2.00193 3.00204 0.11329119
55 3.99718 3.00184 2.99915 4.00021 2.00287 0.99705−2.00117 3.00123 0.06855766
60 3.99829 3.00111 2.99948 4.00013 2.00174 0.99821−2.00071 3.00075 0.04149393

Solution 4.00000 3.00000 3.00000 4.00000 2.00000 1.00000−2.00000 3.00000
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δ

µ = 1/10.0
µ = 1/4.00
µ = 1/2.00
µ = 1/1.10
µ = 1/0.99

Fig. 1. The relative errors� of Example 1 versusk (dots)� = 1
m+n = 1

4 ,� = 1
�max[G1(G

T
1G1)

−1GT
1 ]+�max[HT

1 (H1H
T
1 )

−1H1] = 1
2.

6. Conclusions

A family of iterative methods for linear systems is presented and a least-squares iterative solution to coupled
matrix equations are studied by using the hierarchical identification principle and the star product. The analysis
indicates that the algorithms proposed can achieve a good convergence property for any initial values. How to use the
conjugate gradient method to solve the coupled matrix equation requires further research. Although the algorithms
are presented for linear coupled matrix equations, the idea adopted can be easily extended to study iterative solutions
of more complex matrix equations and nonlinear matrix equations, e.g., the Riccati equation.
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