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Abstract  

The present study applies the multivariate generalized autoregressive conditional 

heteroscedasticity (MGARCH) with spatial effects approach for the analysis of the time-varying 

conditional correlations and contagion effects among global real estate markets. A distinguishing 

feature of the proposed model is that it can simultaneously capture the spatial interactions and the 

dynamic conditional correlations compared with the traditional MGARCH models. Results reveal 

that the estimated dynamic conditional correlations have exhibited significant increases during the 

global financial crisis from 2007 to 2009, thereby suggesting contagion effects among global 

real estate markets. The analysis further indicates that the returns of the regional real estate 

markets that are in close geographic and economic proximities exhibit strong co-movement. 

In addition, evidence of significantly positive leverage effects in global real estate markets is 

also determined. The findings have significant implications on global portfolio diversification 

opportunities and risk management practices. 

Keywords: Time-varying correlation; MGARCH; Spatial effects; Contagion effects; Real 

estate markets 

1. Introduction 

The analysis of the linkages between the volatilities and co-volatilities of the global 

financial markets, especially the global real estate markets, is a critical issue on global 

portfolio diversification opportunities and risk management practices. Estimations of 

correlations between the asset returns are relevant for predicting time-varying beta 

coefficients in capital asset pricing model, obtaining an optimal estimation of hedge ratio, and 

forecasting the Value-at-Risk of a portfolio strategy. Thus, studies on the estimation of 

time-varying correlations across financial assets, mostly by modeling the time-series structure 

of financial asset returns and volatilities, have increased [1–5]. Notably, a popular approach to 

the modeling of multivariate asset volatility dynamics is the conditional variance–covariance 

matrix estimation method. Over the past three decades, various parameterizations of the 
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conditional variance–covariance matrix have been developed in the multivariate generalized 

autoregressive conditional heteroscedasticity (MGARCH) model applied in the literature. 

One of the most popular models for the estimation of multivariate asset correlation 

dynamics is that of Engle [6], who proposed a dynamic conditional correlation GARCH 

(DCC–GARCH) model in which the conditional correlation matrix is time varying. Similarly, 

Tse and Tsui [7] formulated the conditional correlation matrix as a weighted average of the 

past correlations. The basic specification of the DCC–GARCH modeling approach includes 

two aspects. One aspect is the univariate variance process, and another aspect is the 

time-varying correlation process. Several recent extensions of the DCC–GARCH model 

developed by Engle [6] have been developed to provide more flexibility to the modeling of 

the second aspect, i.e., the time-varying correlation process [6]. Several recent typical 

examples are the corrected DCC model by Aielli [8], the non-scalar DCC model by Bauwens, 

Grigoryeva, and Ortega [9], the volatility threshold DCC model by Kasch and Caporin [10], 

and the asymmetric DCC model by Tamakoshi and Hamori [11]. For recent reviews of 

MGARCH models, see Ref. [12] and for other applications of such models, see Refs. [13–15].  

These MGARCH models provide a useful tool for understanding how financial volatilities 

move together over time and across markets. However, a regional financial market can be 

characterized by locality and segregation on the basis of the fixed location of countries. 

Financial applications typically consider the correlations between the pairs of returns of 

financial indices observed in different countries, without including the spatial effects in the 

model adopted. Thus, a natural extension is to incorporate the spatial effects in the appropriate 

MGARCH models. However, two kinds of problems must be solved before we can achieve 

the idea of such extension. One problem is on dimensionality and the other is the choice of an 

appropriate MGARCH model that is able to include spatial effects. If we directly incorporate 

the spatial effects into the MGARCH models, providing feasible estimates of the models 

would be difficult because they contain numerous unknown parameters and require the 

conditional covariance matrix to be positive definite [12]. To solve the dimensionality 

problem, Otranto [16] proposed a clustering algorithm to detect groups of homogeneous time 

series in terms of one extensively used DCC model. Following this line of thought, a natural 

choice of appropriate MGARCH models is the family of the DCC models. Moreover, as 

stressed by Ref. [17], the most appropriate DCC model spefication that can include spatial 

effects is the DCC model developed by Tse and Tsui [7]. Therefore, the starting point of this 

article is the contribution of Otranto, Mucciardi, and Bertuccelli [17], which introduced 

spatial effects to the analysis of dynamic conditional correlation models, and thus to the 
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estimation and measurement of contagion effects. However, we take a step further in several 

aspects. 

First, we considered a compound spatial weight matrix, which is a combination of the 

geographic distance and economic distance spatial weight matrices used by Case, Rosen, and 

Hines [18] and Zhu, Füss, and Rottke [19] to effectively demonstrate the effects of geographic 

and economic indicators on the global real estate markets. Our main motivation for studying 

spatial effects is that a country’s real estate market is prone to be affected by its nearby 

countries not only because of geographical proximity but also because of economic and 

financial similarities [19–22]. In terms of the specification of the geographic distance spatial 

weight matrix, we regarded all spatial units as the neighbor of each other and made use of a 

Gaussian kernel function form because we believe that the interactions between nearer 

neighbors are larger than that of those between farther neighbors. Moreover, we employed the 

Mahalanobis distance to construct the economic distance spatial weight matrix using relevant 

economic indicators, such as per-capita gross domestic products (GDP), population, national 

unemployment rates, and imports and exports of the country.1 We also believe that regions 

with similar economic development conditions will exhibit strong co-movement because the 

Mahalanobis distance considers the correlations of economic indicators. Notably, the kernel 

bandwidth is the key controlling parameter and can be specified either by a fixed bandwidth 

or by an adaptive bandwidth [19]. In contrast to Ref. [19], we chose an adaptive bandwidth 

rather than a fixed bandwidth. The optimal adaptive bandwidth is determined by the 

maximum log-likelihood function value and the significance of the regression coefficients 

(see Section 2.3 for details). 

Second, another important contribution of the study is on the methodological side. We 

started by generalizing the model of Ref. [17] with the introduction of an augmented ARMA 

(1, 1)–GJR–GARCH (1, 1) model specification. With this specification, we can ascertain 

whether leverage effects, i.e., asymmetric responses to positive and negative shocks, exist 

among global real estate markets and assess how the recent global financial crisis (GFC) from 

2007 to 2009 influences the estimated dynamic correlations across global real estate markets. 

The motivation for the analysis of the influence of GFC is that the outbreak of GFC from 

2007 to 2009 once again showed that global financial markets, particularly the global real 

                                                              
1 Mahalanobis distance is defined as a dissimilarity measure between two random column vectors x and y of the same 

distribution with the covariance matrix V:       1,
T

d x y x y V x y   , where the superscript T denotes the matrix transpose 

and the matrix 1V  represents the inverse of the matrix V. This dissimilarity measure is extensively used in cluster analysis and 

other classification techniques (see e.g., Ref. [19]). 
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estate markets, are more interconnected among cities, states, regions, and countries [22–24]. 

In fact, an increasing amount of recent studies on the spread of financial crises have identified 

significant increases in the dynamic conditional correlations among stock markets (Refs. [23, 

25–26]), real estate markets (Refs. [27–28]), currency markets (Ref. [11]), and even real 

economy sectors (Ref. [29]). One representative example is Tamakoshi and Hamori [11], who 

showed that significant increases in cross-market correlations tend to occur particularly 

during crisis. We attempted to examine the existence of such increased correlations among 

global real estate markets by modeling the estimated DCC using an ARMA (1, 

1)–GJR–GARCH (1, 1) model with dummy variables in the variance process. Specifically, we 

employed a crisis dummy to identify how the GFC from 2007 to 2009 affected the estimated 

dynamic conditional correlations. 

We also presented a portfolio in-sample analysis that shows the potential benefits deriving 

from our proposed approach compared with the traditional MGARCH models. The two 

adopted portfolios are minimum-variance and hedged portfolios, which include two assets. 

Our empirical results highlighted the role of time-varying correlations and the importance of 

the GFC from 2007 to 2009 on portfolio performances. The motivation for comparing the 

alternative models in terms of portfolio-management performance criteria rather than 

statistical criteria lies in the fact that global portfolio diversifications are becoming 

increasingly important due to the rapid development in increasing integration among global 

financial markets (Refs. [30–31]). These results hold important implications for global 

portfolio managers. For instance, if the correlations of the global real estate markets are 

driven not only by geographic proximities but also by economic similarities, then formulating 

asset allocation strategies by considering only the geographic adjacency factors regardless of 

the economic similarity factors will lead to biases in investment decision making. 

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the 

proposed MGARCH model with spatial effects, describe the maximum likelihood estimation 

procedures, and discuss the specification rule of the spatial weight matrix. Section 3 describes 

the data and discusses the empirical results. Section 4 compares the performance of the 

alternative models in the asset allocation framework. Conclusions are presented in Section 5. 

2. Empirical methods 

2.1. Model specifications 

We use a MGARCH model with spatial effects to assess the time-varying correlations 

among global real estate markets. Let ,i ty  denote the return on asset i at time t. We consider 
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the volatilities and correlations for N assets with their returns collected in the N-dimensional 

vector 1, 2, ,( , , , )t t t N ty y y y    for 1, 2, ,t T  . We assume that the return vector ty  is 

described by the stochastic vector process as follows: 

,t t ty       (1) 

where ( )t t    is an N×1 vector, which is parameterized by a vector   and represents 

the conditional mean of ty , i.e., 1 1( )t t t tE y I    , ( )E    denotes a conditional expectation 

operator, 1tI   is the information set at time t-1, and 1, 2, ,( , , , )t t t N t       is an N×1 vector 

of unpredictable residuals. 

Assuming the predictable conditional mean and volatility of ty , Eq. (1) is rewritten as 

follows: 

1 2

1 1

,

( ), ( ) 0, ( ) .
t t t t

t t t t t t N

y H z

E y I E z Var z I


  

 

  
  (2) 

where tH  is an N × N positive definite matrix representing the conditional 

variance–covariance matrix of ty  ,the matrix 1 2
tH  is the Cholesky factorization of the 

matrix tH , ( )Var   is a variance operator, tz  is a vector of independent, identically 

distributed, and standardized residuals, and NI  is an identity matrix of order N. 

To refine the specification of the conditional mean vector t , we assume that the 

conditional mean process is modeled separately for each real estate index return to allow us to 

estimate each autoregressive moving average (ARMA) model independently as follows: 

1 1

,
p q

t i t i j t j t
i j

y a y b   
 

        (3) 

where   is an N×1 vector of the unknown parameters, ia  and jb , are diagonal matrices 

containing unknown parameters. We fitted the best of the univariate ARMA (p, 

q)–GJR–GARCH (1, 1) models to each real estate index return series based on the Bayesian 

information criterion (BIC)F.2 

As for the variance–covariance matrix process tH , two popular methods can be applied, 

namely, modeling the conditional variance–covariance matrix tH  directly (e.g., the vector 

error correction [VEC]–GARCH model of Ref. [32]) and modeling the conditional correlation 

                                                              
2 For the sake of brevity and based on the BIC, we adopted the augmented ARMA (1, 1)–GJR–GARCH (1, 1) model to fit 

each national property index return series. 
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matrix indirectly using a correlation matrix (e.g., DCC–GARCH models). In this study, we 

adopted the latter method and assume that the multivariate conditional variance–covariance 

matrix tH  is specified as follows: 

( ) ,t t t t t tH E D R D       (4) 

where ( )t tD D   is an N×N diagonal matrix of the time-varying volatilities ,i t , 

parameterized by a vector  , ( )t tR R   is the conditional correlation matrix, 

parameterized by a vector  . To examine the effect of the recent GFC from 2007 to 2009 on 

conditional volatilities, the element in tD  is assumed to follow the augmented conditional 

variance equation given as follows:  

2 2 2 2
, 0 1 , 1 , , 1 2 , 1 , 1,2, , ,i t i i i t i i t i t i i t i tI Crisis i N                   (5) 

where , 1i tI   if , 1 0i t   , and , 0i tI   otherwise; 0 1 2( , , , , )i i i i i i       is the unknown 

coefficient vector; the dummy variable tCrisis  is included into the variance equation from 

August 9, 2007 to November 4, 2009. , 1 0i t    represents bad news or negative shocks, 

whereas , 1 0i t    represents good news or positive shocks. Thus, the effects of these two 

factors on conditional variance 2
,i t  are different. Particularly, the effect of good news on 

conditional variance 2
,i t  is 1i , while the influence of bad news on conditional variance 

2
,i t  is 1i i  . Therefore, the significantly positive sign of i  suggests that leverage effects 

exist in real estate markets. The coefficients must satisfy the following constraints to ensure 

positive and stable conditional variances: 

0 1 20, 0, 0i i i      and 1
1 22 0,i i i      (6) 

By obtaining the conditional standard deviations from Eq. (5), we can model the correlation 

of returns ty , which is the same as the correlation of the residuals tz . The evolution of the 

multivariate dynamic conditional correlation model is provided as follows: 

  1 1 11 ,t t t tR R R W                  (7) 

where W is a spatial weight matrix, which is fixed subjectively using several criteria and will 

be discussed in detail in the following section; the   symbol represents element-by-element 

product multiplication; 1t  is a square positive definite matrix; and , ,    are unknown 

scalar parameters. The positive definiteness of tR  is ensured by the following conditions: 

0, 0, 0      and 1,        (8) 
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Equation (7) is an extension of DCC model developed by Tse and Tsui [7], which 

incorporates spatial effects into the DCC structure. We can obtain the initial model introduced 

by Ref. [7] if 0  . However, a minor distinction between the two models lies in the fact that 

the correlation matrix R can be estimated by the sample correlation of the standardized 

residuals in the original specification of Ref. [7] under the hypothesis that the expected value 

of tR  and t  is R, while in our model such assumption on the correlation matrix R is 

impossible because the expected value of 1( )tW   is not R. Specifically, the correlation 

matrix R in Eq. (7) is a positive definite matrix with ( 1) 2N N   unknown parameters. 

Moreover, we suggested adopting the following parameterized specification of the correlation 

matrix R to avoid the dimensionality problem due to a larger N. 

,R cc      (9) 

where 1 2( , , , )Nc c c c    is a vector of unknown parameters with 0 1ic   for each i, and 

  is a diagonal matrix with the elements on the diagonal equal to 2(1 )ic . Such a 

specification provides an invertible matrix with its diagonal elements equal to 1 and the 

off-diagonal elements between –1 and 1. Therefore, the correlation matrix R is an N×N 

correlation matrix containing N unknown parameters. 

Denoting  ,t ij t   and following Ref. [7], the specification for the elements in the 

matrix 1t  is as follows: 

, ,

, ,
1

, 1

2 2

1 1

, 1 ,

i t m j t m

M

i t m j t m
m

ij t
M M

m m

z z
i j N

z z



 

 




 

   
  
  
  



 
  (10) 

where ,i tz  is the standardized residuals for each i and M is a positive integer. To guarantee 

that the matrix t  is the positive definite, a necessary condition is M N . 

2.2. Model estimation method 

The estimation of parameters is usually done in two steps by quasi-maximum likelihood, 

assuming that the innovations tz  are Gaussian. We split the joint log-likelihood function of 

the proposed model into two parts and maximized it sequentially following the lines of Refs. 

[6–7]. Assuming the conditional normality of the innovations tz , the joint log-likelihood 

function of the model has the following form: 
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   

     

1

1

1 1 1

1

1
, , log 2 log

2

1
log 2 log ,

2

T

t t t t
t

T

t t t t t t t t t t
t

L N H H

N D R D y D R D y

     

  





  



     

        




  (11) 

where 1 1( , , , , , , )p qa a b b     stands for the coefficient vector in Eq. 

(3), 1 2( , , , )N      represents the set of all unknown parameters to be estimated in Eq. (5), 

( , , )    , N is the number of dependent variables, and T is the number of observations. 

Let  1
t t t tz D y    be the standardized residual vector. Equation (13) can be rewritten 

as follows: 

   

   

2 1

1

1
, , log 2 log log

2

, , , ,

T

t t t t t
t

v c

L N D R z R z

L L

   

    





      

 


  (12) 

where the volatility part is as follows: 

    2

1

1
, log 2 log ,

2

T

v t t t
t

L N D z z  


        (13) 

and the conditional correlation part is as follows: 

  1

1

1
, , log .

2

T

c t t t t t t
t

L R z R z z z   



         (14) 

First, we estimate the parameters of the conditional mean and volatility processes, i.e., 

parameters in Eq. (13), where the estimates of ( , )   are given as follows: 

,

ˆ ˆ( , ) arg max ( , ).vL
 

       (15) 

Once ̂  and ̂  are obtained, the unknown parameters of the conditional correlation 

process, i.e., parameters in Eq. (14), are estimated as follows: 

ˆ ˆˆ arg max ( , , ).cL


       (16) 

2.3. Specifications of spatial weight matrices 

2.3.1. Compound spatial weight matrix definition 

In spatial econometrics, the spatial weight matrix is a core element that will reflect the 

possible relations between spatial locations. Thus, modeling the spatial volatility spillovers 

between the markets need to correctly specify first the spatial weight matrix. Generally, a 

spatial weight matrix can be defined as a spatial correlation function of geographic, economic, 

or social distances between cross-sectional units [18, 22]. Given that one aims of the current 
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study is to choose the most appropriate spatial weight matrix that can correctly capture the 

spatial interaction patterns among real estate markets, a spatial weight matrix, which can 

reflect the geographic relations and economic linkages between the markets, will be a 

reasonable choice. Therefore, we follow Refs. [18–19] and use the following compound 

spatial weight matrix, which is a combination of the geographic and economic distance spatial 

weight matrices. 

(1 ) , 0 1,G EW aW a W a       (17) 

where GW  represents the geographic distance spatial weight matrix, EW  denotes the 

economic distance spatial weight matrix, and a is the proportion of the geographic weight in 

the compound spatial weight matrix. 

With respect to the geographic distance spatial weight matrix, the longer distance the two 

markets hold, the more interaction cost, such as travel time, will be. Thus, when 

constructing GW , we regard all spatial locations as the neighbor of each other but consider the 

interactions between nearer neighbors to be larger than that between farther neighbors. As 

such, we used a Gaussian kernel function form, as follows: 

 2
exp 0.5 ,

1 ,

G
ij GG

ij

d d i j
w

i j

      
 

  (18) 

where G
ijw  represents the geographic weight between country i and country j, G

ijd  is the 

straight-line distance between country i and country j, and parameter Gd  refers to the kernel 

bandwidth and reflects the strength of diffusion between two countries. The kernel bandwidth 

is the key controlling parameter and can be specified either by a fixed bandwidth or by an 

adaptive bandwidth [33]. In our empirical illustration, we chose an optimal adaptive 

bandwidth, which is determined by the maximum log-likelihood function value and the 

significance of the regression coefficients (see Subsection 2.3.2 for details).  

In addition, we supported the view that the strong spatial dependencies exist among those 

countries with more similar economic development conditions. Thus, following Ref. [19], we 

adopted the Mahalanobis distance to construct our economic distance spatial weight matrix 

using the macro-economic relevant indicators, such as per-capita GDP, population, national 

unemployment rates, and imports and exports of the given country. In particular, the element 

in the economic distance spatial weight matrix EW  is defined as follows: 
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 2
exp ,

1 ,

E
ij EE

ij

d d i j
w

i j

      
 

  (19) 

where parameter Ed  is the kernel bandwidth, whose definition is similar to that of 

parameter Gd ; 1( ) ( )E
ij i j i jd E E V E E    measures the Mahalanobis distance between 

two countries; iE   and jE  represent the economic indicator vector for 

countries ( 1, 2, , )i i N  , and ( 1, 2, , )j j N  , respectively; V denotes the sample 

variance–covariance matrix; and the matrix 1V   is the inverse of the matrix V. 

The economic relevant indicators adopted in this study consist of per-capita GDP, 

population, national unemployment rates, and imports and exports of the countries. However, 

in contrast with the work in Ref. [19], these variables are the median values covering the 

period from 2002 to 2014. Table 1 provides the descriptive statistics of these variables. The 

data were taken from the Chinese stock market and accounting research (CSMAR) financial 

database. This database is compiled by Shenzhen GTA Information Technology Company 

Limited; it is a famous economic database containing most of the historical and recent trading 

data for listed Chinese firms. 

Table 1 
Descriptive statistics of the variables from 2002 to 2014. 

Variable Mean Median Std. deviation Minimum Maximum 

Economic distance variables     

Per-capita GDP(in $) 377.809  402.769  176.690  10.090  880.293  

Populations (in millions) 59.302  33.250  74.707  4.110  318.860  

Unemployment rates (in %) 7.440  6.300  5.012  2.600  27.200  

Imports (in $ billions) 431.743  357.417  362.083  29.723  1620.532  

Exports (in $ billions ) 474.866  359.000  475.559  29.267  2412.547  

Geographic distance variables     

Distances (in miles) 4813.1  5405 2946.8  108  10552  

Notes: The data of the economic distance variables were taken from CSMAR, the data of the geographic distance variables 

were extracted from timeanddate.com (http://www.timeanddate.com). 

2.3.2. Estimations of the optimal kernel bandwidth parameters 

To estimate the optimal kernel bandwidth parameters Gd  and Ed  and the proportion 

parameter a, we adopt the following iterative process. 

Denoting ( , , )G Ea d d  , the compound spatial weight matrix W is parameterized by 

vector  . Then, we substitute W in Eq. (17) into Eq. (7), and we obtain the following 

equation: 
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   1 1 11 (1 ) ,t t t G E tR R R aW a W                      (20) 

Notably, matrix tR  is parameterized by vectors   and  . Next, we substitute the 

matrix tR  in Eq. (20) into Eq. (12), and the Eq. (12) can be rewritten as follows: 

   

   

2 1

1

1
, , , log 2 log log

2

, , , , ,

T

t t t t t
t

v c

L N D R z R z

L L

    

     





      

 

  


  (21) 

where the volatility part  ,vL    has been described in Eq. (13) and the conditional 

correlation part  , , ,cL      has the following form: 

  1

1

1
, , , log .

2

T

c t t t t t t
t

L R z R z z z    



           (22) 

Therefore, following the lines of Section 2.2, we first obtain the estimates ˆ ˆ( , )   by 

maximizing the log-likelihood function value  ,vL    in Eq. (13). Once ˆ ˆ( , )   are 

obtained, the unknown parameters  ,   in Eq. (22) are estimated as follows: 

,

ˆ ˆ ˆˆ( , ) arg max ( , , , ).cL
 

                                                   (23) 

To obtain the estimations of all the unknown parameters, we first translate the constrained 

maximization problem in Eqs. (15) and (23) into the unconstrained minimization problem. 

Subsequently, we use the “fminunc” function from the Matlab optimization toolbox. This 

function finds an unconstrained minimum of a scalar function of several variables. 

3. Empirical illustration 

3.1. Data description 

Our data comprise daily prices of real estate index securities in 15 countries for four 

geographical regions (i.e., Asia Pacific, Europe, Africa, and Latin America) denominated in 

dollars. The data extracted from the Global Property Research (GPR) database 

(http://www.globalpropertyresearch.com) covers the period from January 3, 2002 to May 31, 

2016, thereby leading to a sample size of 3,709 observations. In particular, the data used for 

empirical analysis are the historical data of 15 country indices from the GPR 250 index 

database. The GPR 250 index is a market-weighted total return index that is composed of the 

250 most liquid listed property companies in the country concerned and effectively represents 

of the global real estate market. Thus, the GPR database is a sound choice for investigating 

the time-varying correlations across real estate markets from an international perspective. 
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Another motivation for collecting data from the database is that it has not been excessively 

used and may avoid a substantial risk of data-snooping due to the same datasets [28]. 

The study covers the following 15 national property markets: Australia (AUS), Belgium 

(BEL), Canada (CAN), France (FRA), Germany (GER), Hong Kong (HKG), Japan (JPN), 

Netherlands (NED), Philippines (PHI), Singapore (SIN), South Africa (RSA), Sweden (SWE), 

Switzerland (SWZ), the United Kingdom (GBR), and the United States (US). In this study, we 

chose these country indices for research because only such indices have a complete sample set 

in the GPR 250 index during the sample period from 2002 to 2016.  

For each property index, the continuously compounded return is estimated 

as 1100 [ln ln ]t t tr p p    , where tp  is the closing price on day t. Following, for instance, 

Ref. [34], we use two-day rolling-average returns in our analysis. Two-day average returns are 

mindfully utilized that the markets around the world are not open at the same periods. 

Table 2 presents the country indices investigated in the current study along with descriptive 

statistics on the two-day rolling average property index returns. We divided the countries into 

four different regions, namely, Asia Pacific, Europe, Africa, and Latin America, which helps 

in reflecting the vast differences in property markets that are located in different regions/areas. 

Table 2 clearly demonstrates that all the real estate markets exhibit an average positive return. 

As shown by the Jarque–Bera tests, all the property index return series exhibit non-normal 

characteristics. The characteristics of left skewed and fat tails are also exhibited for all (but 

four) the property index return series. In addition, the Ljung–Box test shows that all the 

property index return series exhibit volatility clustering. 

Table 2 
Descriptive statistic on two-day rolling average property index returns. 
Region/country Mean Std. dev. Minimum Maximum Skewness Kurtosis Jarque–Bera LB (20) 

Asia Pacific     

AUS 0.039 1.183 -10.160 8.690 -0.621 10.700 9400.78*** 1089.16***

HKG 0.036 1.121 -5.983 5.390 0.021 5.616 1058.07*** 1041.84***

JPN 0.045 1.316 -9.189 7.904 0.184 6.456 1866.79*** 903.07*** 

PHI 0.057 1.465 -7.983 7.529 0.026 5.085 672.46*** 977.01*** 

SIN 0.045 1.084 -6.225 6.650 -0.001 6.963 2426.70*** 1034.22***

Europe         

BEL 0.038 0.869 -5.495 5.316 -0.160 6.659 2084.55*** 961.67*** 

FRA 0.064 1.151 -5.767 5.317 -0.320 5.786 1263.10*** 1020.33***

GER 0.014 1.285 -9.435 6.522 -0.577 7.745 3685.50*** 1216.48***

NED 0.042 1.087 -6.263 5.348 -0.579 6.447 2042.74*** 1192.47***

SWE 0.071 1.293 -7.114 6.549 -0.392 6.645 2147.64*** 1072.21***

SWZ 0.049 0.753 -4.658 6.766 0.207 8.043 3956.73*** 973.88*** 
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GBR 0.031 1.217 -8.266 7.438 -0.382 8.535 4825.08*** 1095.81***

Africa         

RSA 0.066 1.198  -14.383 5.946 -0.886 11.784 12408.60*** 1139.65***

Latin America     

CAN 0.050 0.929 -9.777 5.452 -1.075 12.971 16079.26*** 1366.43***

US 0.036 1.241 -11.561 10.069 -0.585 16.998 30492.77*** 794.96*** 

Notes: The table presents descriptive statistics for the fifteen property indices’ returns during the sample period (January 3, 

2002–May 31, 2016). LB (20) refers to Ljung–Box statistic with up to 20-day lags. The signs ***, **, and * denote 

significant coefficients at 1%, 5%, and 10% levels, respectively. 

3.2. Estimation results 

We first fitted the best of the univariate ARMA (p, q)–GJR–GARCH (1, 1) models to each 

series of the property index returns. Based on the BIC value, we found that the augmented 

ARMA (1, 1)–GJR–GARCH (1, 1) is most appropriate to fit the data set. 

Table 3 presents the estimation results of the mean and the augmented variance equations, 

i.e., the estimation results of the Eqs. (3) and (5) of the DCC’s two-step estimation procedure. 

In Table 3,  1  and 2  represent the ARCH and GARCH effects, while   represents the 

leverage effects. For all of the 15 property markets, the coefficients of the GARCH 

components ( 1  and 2 ) are statistically significant and standard ( 1 2 1   ) in terms of 

magnitude. Coefficient   is statistically significant for all property markets, indicating the 

evidence of leverage effects in the real estate markets. The existence of leverage effects 

suggests that in real estate markets, investors react more strongly to bad news than to good 

news. Moreover, the p-values of the Ljung–Box statistics, LB (20) is much larger than 1% for 

all 15 property markets, thereby suggesting no autocorrelation up to order 20 for standardized 

residuals of each series. 

In addition, to examine the effects of GFC from 2007 to 2009 on the conditional variances, 

we used the dating method suggested by Refs. [11, 20] and specified the phase of GFC from 

August 9, 2007 to November 4, 2009. The reason for tracing the beginning of GFC to August 

9, 2007 is that the BNP Paribas, a major global investment bank, suspended its funds affected 

by the US’s subprime mortgage liabilities on August 9, 2007. We identified November 4, 

2009 as the major breakpoint for the end of GFC considering that the outbreak of the 

European sovereign debt crisis (ESDC) began on November 5, 2009, triggered by the Greek 

debt problem, and thus our post-crisis sample can partially reflect the influences of ESDC on 

the parameter estimation results. The results indicate that all of the coefficients   weights on 

the recent GFC are positive and statistically significant at 1% level, thereby suggesting that 

the conditional variances increase significantly during the GFC period. 
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Table 3 
Estimation results from the augmented ARMA (1, 1)–GJR–GARCH (1, 1) model.  

Region 
Mean  Equations Variance Equations R2 LL LB(20)

  1a  1b  0  1  2         

Asia Pacific      

AUS 0.070*** 

(0.019) 

0.020 

(0.018)

0.988*** 

(0.003) 

0.008***

(0.002)

0.016* 

(0.009)

0.920***

(0.009)

0.033***

(0.010)

0.082*** 

(0.014)

0.514 -3650 0.142 

HKG 0.043* 

(0.024) 

0.075***

(0.017)

0.998*** 

(0.001) 

0.006***

(0.001)

0.030***

(0.006)

0.931***

(0.007)

0.015**

(0.006)

0.049*** 

(0.009)

0.527 -3705 0.336 

JPN 0.025 

(0.021) 

0.042**

(0.020)

0.994*** 

(0.002) 

0.011***

(0.003)

0.059***

(0.009)

0.909***

(0.010)

0.017**

(0.009)

0.037*** 

(0.012)

0.505 -4517 0.971 

PHI 0.074*** 

(0.028) 

0.009 

(0.018)

0.990*** 

(0.002) 

0.048***

(0.014)

0.047***

(0.013)

0.881***

(0.025)

0.024* 

(0.013)

0.050*** 

(0.016)

0.500 -5231 0.108 

SIN 0.054*** 

(0.016) 

0.049**

(0.020)

0.996*** 

(0.001) 

0.005***

(0.001)

0.041***

(0.010)

0.919***

(0.012)

0.010* 

(0.006)

0.058*** 

(0.012)

0.515 -3499 0.330 

Europe       

BEL 0.058*** 

(0.017) 

-0.032*

(0.018)

0.956*** 

(0.006) 

0.008***

(0.002)

0.029***

(0.010)

0.910***

(0.013)

0.011**

(0.004)

0.068*** 

(0.013)

0.468 -3088 0.801 

FRA 0.088*** 

(0.018) 

0.025 

(0.017)

0.965*** 

(0.004) 

0.012***

(0.002)

0.023***

(0.008)

0.915***

(0.011)

0.021***

(0.008)

0.072*** 

(0.012)

0.495 -4005 0.665 

GER 0.051*** 

(0.020) 

0.062***

(0.019)

0.989*** 

(0.003) 

0.007***

(0.001)

0.041***

(0.008)

0.929***

(0.008)

0.025***

(0.008)

0.031*** 

(0.010)

0.532 -4101 0.331 

NED 0.070*** 

(0.019) 

0.066***

(0.016)

0.972*** 

(0.004) 

0.007***

(0.001)

0.019**

(0.009)

0.917***

(0.010)

0.017***

(0.006)

0.082*** 

(0.013)

0.518 -3554 0.392 

SWE 0.106*** 

(0.018) 

0.032* 

(0.017)

0.990*** 

(0.002) 

0.010***

(0.002)

0.024***

(0.008)

0.917***

(0.009)

0.031***

(0.010)

0.074*** 

(0.012)

0.514 -4174 0.171 

SWZ 0.070*** 

(0.013) 

-0.030*

(0.017)

0.991*** 

(0.002) 

0.009***

(0.002)

0.027***

(0.007)

0.907***

(0.016)

0.016***

(0.005)

0.049*** 

(0.014)

0.491 -2685 0.154 

GBR 0.060*** 

(0.019) 

0.049***

(0.018)

0.982*** 

(0.003) 

0.010***

(0.002)

0.031***

(0.009)

0.908***

(0.011)

0.038***

(0.013)

0.070*** 

(0.014)

0.513 -3799 0.551 

Africa            

RSA 0.083*** 

(0.023) 

0.082***

(0.018)

0.975*** 

(0.004) 

0.020***

(0.004)

0.029***

(0.009)

0.896***

(0.015)

0.010**

(0.006)

0.080*** 

(0.015)

0.531 -4179 0.380 

America            

CAN 0.055*** 

(0.012) 

0.096***

(0.030)

0.999*** 

(0.001) 

0.005***

(0.001)

0.044**

(0.011)

0.892***

(0.012)

0.010**

(0.004)

0.091*** 

(0.016)

0.565 -2689 0.316 

US 0.045*** 

(0.015) 

-0.003 

(0.019)

1.000*** 

(0.000) 

0.009***

(0.001)

0.071***

(0.014)

0.855***

(0.013)

0.059***

(0.017)

0.097*** 

(0.019)

0.433 -3348 0.921 

Notes: The numbers in the parentheses are robust standard error and the signs ***, **, and * denote significant coefficients at 

1%, 5%, and 10% levels, respectively. 2R  is the goodness-of-fit. LL is the log value of maximized likelihood, and LB (20) 

refers to Ljung–Box statistic with up to 20-day lags for standardized residuals. 

Once the estimates of the unknown parameters in the augmented ARMA (p, 

q)–GJR–GARCH (1, 1) model are obtained, we can estimate the time-varying conditional 

volatilities of each country’s property index return. The time-varying conditional volatilities 

of the property index return for Japan, the United Kingdom, South Africa, and the US are 

illustrated in Fig. 1, where the three periods of crisis are added to visualize the regional 
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conditional volatility differences during the GFC.3 As shown in Fig. 1, the conditional 

variances of each country’s property index return increase markedly during the GFC period, 

thereby suggesting the existence of contagion effects among global real estate markets. These 

findings are consistent with the results represented in Table 3. 

 

Fig. 1. Time-varying conditional volatilities of global real estate markets. 

Table 4 presents the estimation results of the time-varying conditional correlations based on 

different model specifications. Specification 1 introduces a non-spatial model, which does not 

contain spatial weight matrix, i.e., the coefficient 0   in Eq. (7). In Specifications 2 and 3, 

we allow for the incorporation of the geographic and economic distance spatial weight 

matrices into the proposed DCC–GARCH model, respectively. The three specifications are 

our benchmark models. Specification 4 is the estimation results of our proposed model using 

the compound spatial weight matrix specification form in Eq. (17). 

As shown in Table 4, all the coefficients are statistically significant at 1% level. In 

particular, a significant coefficient   indicates the existence of the autoregressive 

component of the conditional correlation. The coefficients   are significant in the 

Specifications 2, 3, and 4 that show that the spatial effects exist among global real estate 

markets. In terms of fitting, the log-likelihood value of Specification 4 is the largest, which 

suggests that our proposed model seems to be the best one for capturing the time-varying 

conditional correlations among global real estate markets.   

                                                              
3 Notably, we chose Japan, the United Kingdom, South Africa, and the US to represent the regions of Asia Pacific, Europe, 

Africa, and Latin America, respectively. The trends of the conditional volatilities for the other 11 countries’ property index 

returns are almost the same as the results in Fig. 1; we then do not report these results in this study. These results are 

available from the authors upon request. 
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Table 4 
Estimation results of the time-varying conditional correlations based on different model specifications. 
Parameter Specification 1 Specification 2 Specification 3 Specification 4 

 P.E. S.E. P.E. S.E. P.E. S.E. P.E. S.E. 

  0.961*** 0.001 0.939*** 0.003 0.960*** 0.001 0.938*** 0.003 

  0.018*** 0.001 0.006*** 0.001 0.016*** 0.001 0.006*** 0.001 
  ─ ─ 0.026*** 0.002 0.004*** 0.001 0.028*** 0.002 

G  ─ ─ 3048.49*** 131.30 ─ ─ 3057.78*** 133.55 

E  ─ ─ ─ ─ 2.589*** 0.527 1.872*** 0.485 

a ─ ─ ─ ─ ─ ─ 0.934*** 0.034 

c1 0.525*** 0.020 0.876*** 0.022 0.545*** 0.021 0.886*** 0.024 

c2 0.410*** 0.025 0.628*** 0.021 0.444*** 0.027 0.640*** 0.022 

c3  0.280*** 0.026 0.467*** 0.025 0.315*** 0.028 0.480*** 0.026 

c4 0.177*** 0.026 0.307*** 0.026 0.203*** 0.028 0.316*** 0.027 

c5 0.471*** 0.022 0.736*** 0.018 0.498*** 0.023 0.744*** 0.019 

c6 0.759*** 0.011 0.758*** 0.011 0.763*** 0.012 0.763*** 0.012 

c7 0.886*** 0.007 0.889*** 0.007 0.900*** 0.009 0.898*** 0.010 

c8 0.723*** 0.012 0.729*** 0.013 0.805*** 0.018 0.759*** 0.021 

c9 0.884*** 0.007 0.882*** 0.007 0.901*** 0.009 0.893*** 0.011 

c10 0.756*** 0.011 0.795*** 0.012 0.784*** 0.014 0.810*** 0.016 

c11 0.635*** 0.015 0.655*** 0.015 0.690*** 0.018 0.678*** 0.020 

c12 0.744*** 0.012 0.766*** 0.012 0.765*** 0.013 0.777*** 0.014 

c13 0.480*** 0.021 0.772*** 0.022 0.542*** 0.023 0.793*** 0.026 

c14 0.534*** 0.020 0.758*** 0.019 0.547*** 0.020 0.766*** 0.021 

c15 0.374*** 0.024 0.479*** 0.024 0.417*** 0.027 0.493*** 0.026 

LL 11438  11906  11460  11910  

Notes: P.E. stands for parameter estimates. S.E. stands for standard errors. LL is the log value of maximized likelihood. The 

signs ***, **, and * denote significant coefficients at 1%, 5%, and 10% levels, respectively. 

Table 5 provides the average conditional correlation results derived from the space–time 

model in Specification 4 in Table 4. As shown in Table 5, the countries with the highest 

conditional correlation coefficient in the time span considered are between the France and the 

Netherlands (on an average of 0.784), whereas the one with the lowest conditional correlation 

coefficient in the time span considered are between the Philippines and the US (on an average 

of 0.070). The conditional correlation coefficient is on an average larger than 0.6 for eight 

pairs of countries. One of the interesting findings is that all of these eight pairs of countries 

are located in Europe. This finding indicates that co-movements or contagion effects among 

European countries’ property markets are stronger than those countries’ property markets 

located in other regions. 

 
Table 5 
Average conditional correlations derived from the spatial GARCH model in Specification 4. 
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 HKG JPN PHI SIN BEL FRA GER NED SWE SWZ GBR RSA CAN USA 

AUS 0.335 0.259 0.178 0.420 0.342 0.397 0.332 0.397 0.363 0.302 0.348 0.361 0.344 0.211

HKG  0.284 0.208 0.465 0.246 0.292 0.249 0.292 0.279 0.217 0.264 0.254 0.242 0.154

JPN   0.157 0.261 0.192 0.220 0.189 0.221 0.206 0.174 0.197 0.189 0.184 0.110

PHI    0.211 0.120 0.141 0.118 0.138 0.132 0.106 0.125 0.130 0.117 0.070

SIN     0.297 0.346 0.295 0.348 0.324 0.261 0.309 0.322 0.286 0.181

BEL      0.661 0.553 0.687 0.579 0.528 0.547 0.336 0.382 0.209

FRA       0.635 0.784 0.655 0.564 0.671 0.397 0.436 0.255

GER        0.643 0.568 0.498 0.548 0.339 0.369 0.248

NED         0.666 0.577 0.654 0.390 0.439 0.256

SWE          0.518 0.578 0.352 0.401 0.238

SWZ           0.472 0.309 0.328 0.179

GBR            0.343 0.395 0.237

RSA             0.310 0.197

CAN              0.360

Once the estimates of the unknown parameters are obtained, we can estimate the 

time-varying conditional correlations for each pair of countries. The time-varying regional 

conditional correlations with the US are illustrated in Fig. 2, where the three periods of crisis 

are added to visualize regional differences in the property market correlations during the GFC. 

As shown in Fig. 2, the time path of the DCC series fluctuates over the entire sample period 

for all pairs, thereby suggesting that the assumption of constant correlations may be 

inappropriate. As shown in Fig. 2, the overall conditional correlations between Latin America 

and the US seem to be the largest one, whereas the smallest one is the one between the Asia 

Pacific and the US. These findings are consistent with the results presented in Table 5. 

 

 
Fig. 2. Time-varying regional conditional correlations with the US market. The solid lines illustrate the dynamic conditional 

correlations (average value for the regions) between the US and the 14 other countries. 



18 
 

4. Portfolio in-sample estimation 

To compare among the alternative models proposed in our study, these models should be 

compared in terms of portfolio-management performance criteria than that of the statistical 

criteria. Therefore, we showed the implications of the estimation results of our proposed 

model in Table 4 on portfolio optimization. Specifically, we considered minimum-variance 

and hedged portfolios made up of two assets. First, the properties of the estimated conditional 

correlations are used to compute the time-varying conditional covariance structure between 

the global property index returns. Then, we evaluated the in-sample performance of the 

minimum-variance and the hedged portfolios based on the estimated value of conditional 

covariance.  

In practice, an investor’s objective is often aimed at minimizing the risk of his two asset 

portfolios while keeping the same expected returns. Therefore, the optimal portfolio return r 

of the two assets ( , )i j  is often a linear combination of each asset as follows: 

, , ,(1 ) ,p t t i t t j tr w r w r                                                    (24) 
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where the time-varying weights tw  stand for the optimal proportion of each asset in a 

portfolio based on the forecast of the time-varying variance-covariance matrix tH . 

In addition, the optimal hedges considered in this study are constructed by minimizing the 

variance of the portfolio return. Following the lines of Ref. [34], we used the same approach 

for each pair of assets by holding one and shorting another to obtain a hedged portfolio with 

an optimal minimum variance as follows: 

, , , , ,p t i t i j t j tr r r= − , where ( ), ,

, , 2
,

,
.

i t j t

i j t
j t

Cov r r



=   (25) 

We adopted an in-sample evaluation framework to evaluate the portfolios’ efficiency and a 

hedged portfolio is efficient only if the variance of portfolio return is smallest. The proposed 

hedged portfolios are constituted to all possible combinations of pairs of the fifteen property 

market indexes, i.e., a total of 105 portfolios. The performance of the minimum-variance and 

the optimal hedge ratio procedures are examined in the full estimation, the pre-crisis, the 

in-crisis, and the post-crisis periods by computing the covariance matrices with four different 

model specifications in Table 4. The full sample covers the period from January 3, 2002 to 

May 31, 2016 (3,709 observations). The pre-crisis period captures the period from January 3, 
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2002 until August 8, 2007 (1,444 observations). The in-crisis period lasts from August 9, 2007 

to November 4, 2009 (571 observations). The post-crisis period varies from November 5, 

2009 through May 31, 2016 (1,694 observations). 

The estimation results of the optimized portfolios (minimum-variance and hedged 

portfolios) are reported in Table 6. The accounted annualized volatility is 11.56% for the 

property index returns over the entire estimation period, and the respective volatilities are 

9.51%, 19.56%, and 10.41% over the pre-crisis, in-crisis and post-crisis periods, respectively. 

Apparently, all the portfolios have decreased the overall variance. The estimation results further 

demonstrate that the differences between the portfolio variances using different specifications are 

small. This observation indicates that our proposed model performs well in terms of constructing 

portfolio strategy when compared with the alternative models. The findings also suggest that the 

geographic adjacencies and the similarities in the economic development conditions can affect 

the effectiveness of the portfolio strategy. However, the geographic adjacencies are more 

important than that of the similarities in economic development conditions. 

In addition, to dynamically show how the optimal portfolio variances and the corresponding 

portfolio weights vary with time, we plot Figs. 3 and 4, respectively.4 Notably, the results 

presented in Fig. 4 are similar to those in Fig. 3, except that the former focuses on a 

minimum-variance portfolio. Figures 3 and 4 demonstrate that the optimal portfolio variances 

(minimum-variance and hedged portfolios) and optimal portfolio weights are time-varying. 

Optimal portfolio variances increase markedly during the GFC period, thereby indicating that the 

GFC indeed increases the portfolio investment risk.  

Table 6 
Averaged annualized standard deviations of the optimized portfolios. 
Portfolio annualized std. Specification 1 Specification 2 Specification 3 Specification 4 

Full estimation period     

Min. var. 0.0877 (0.7015)  0.0880 (0.7032) 0.0878 (0.7016) 0.0880 (0.7032) 

Hedge 0.0899 (0.8103) 0.0899 (0.8047) 0.0899 (0.8096) 0.0899 (0.8047) 

Pre-crisis period     

Min. var. 0.0703 (0.6972) 0.0708 (0.7021) 0.0703 (0.6975) 0.0708 (0.7022) 

Hedge 0.0742 (0.8296) 0.0739 (0.8173) 0.0742 (0.8284) 0.0739 (0.8172) 

In-crisis period     

Min. var. 0.1499 (0.7131) 0.1499 (0.7129) 0.1499 (0.7132) 0.1499 (0.7128) 

Hedge 0.1522 (0.8006) 0.1523 (0.7990) 0.1522 (0.8002) 0.1524 (0.7990) 

Post-crisis period     

Min. var. 0.0799 (0.7008) 0.0799 (0.7008) 0.0799 (0.7008) 0.0799 (0.7007) 

Hedge 0.0807 (0.7990) 0.0808 (0.7971) 0.0807 (0.7987) 0.0808 (0.7972) 

                                                              
4  The dynamics of the optimal portfolio variances and the corresponding portfolio weights under the other three 

specifications (Specifications 1, 2 and 3) are almost the same as the results in Figs. 3 and 4; we then do not report them in this 

paper. These results are available from the authors upon request. 
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Notes: The portfolios are constituted of all possible combinations of pairs of the property indices’ returns accounting to total 

amount of 105 portfolios for each period. The averaged optimal weights of the portfolios, which have lower variance in the 

combined pair-wise asset allocations, are reported in the parenthesis. 

 

Fig. 3. Dynamics of standard deviation and weight of optimal minimum-variance portfolio under Specification 4. 

 

 

Fig. 4. Dynamics of standard deviation and weight of optimal hedged portfolio under Specification 4. 

5. Conclusions 

In this study, we have employed the MGARCH with spatial effects approach to examine the daily 

returns of 15 national property market indices from January 3, 2002 to May 31, 2016, taking into 

account the structural breaks of each time series linked to the recent GFC from 2007 to 2009. A 

distinguishing feature of the proposed model is that it can simultaneously capture the spatial 

interactions and the dynamic conditional correlations compared with the traditional MGARCH 

models, like DCC–GARCH models. The main findings are presented as follows. 
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First, this study investigates whether leverage effects exist among global real estate markets and 

examines the effects of the recent GFC from 2007 to 2009 on the estimated dynamic conditional 

correlations. The analysis of the issues has been conducted in the context of an extended DCC model, 

which contains spatial effects, using an augmented ARMA (1, 1)–GJR–GARCH (1, 1) 

specification in the first stage. In terms of the leverage effects, the significant positive 

coefficient of leverage effects indicates that the leverage effects exist in global real estate 

markets. The existence of leverage effects suggests that in real estate markets, investors react 

more strongly to bad news than to good news. The estimated dynamic conditional correlations 

have exhibited significant increases during the GFC from 2007 to 2009, thereby suggesting 

contagion effects exist among global real estate markets. 

Second, the results reveal that the estimated conditional correlations across global real estate 

markets are time varying, and the US property market has a lead-lag effect, which is in accordance 

with the findings of Refs. [23, 25]. The estimated average dynamic conditional correlation results 

indicate that in global real estate markets, co-movements across markets appear among regions 

with geographic adjacencies, like those between the France and the Netherlands, or with 

similar economic development conditions, like those between the United Kingdom and the 

Australia. However, strong forms of the co-movement occur among countries/regions, which 

are located close to one another. For example, the co-movements among European countries’ 

property markets are stronger than that of countries’ property markets located in other regions. 

Third, we further evaluated the performance of our proposed model by adopting a two-asset 

portfolio allocation framework. The portfolios’ efficiency is estimated in-sample and achieving the 

smallest variance of portfolio return is the only criterion for success or for achieving an efficient 

portfolio. The estimation results demonstrate that the differences between the portfolio variances using 

different specifications are small. This result suggests that the geographic adjacencies and the 

similarities in economic development conditions can affect the effectiveness of the portfolio 

strategy because our compound spatial weight matrix is a combination of the geographic and 

economic distance spatial weight matrices. 

Therefore, the consideration of spatial effects in the DCC model can increase the fitting of the 

data and the performance of the model in portfolio allocation. We believe that these results 

provide important implications on global portfolio diversification opportunities and risk 

management practices. 
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Highlights 

 We present a novel multivariate GARCH with spatial effects model. 

 We examine spatial effects on time-varying correlations in real estate markets. 

 We analyze both the geographic relations and economic linkages on correlations. 

 We demonstrate the efficiency of our proposed model in portfolio allocation. 

 


