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Abstract This paper deals with a general type of linear matrix equation prob-
lem. It presents new iterative algorithms to solve the matrix equations of the form
AiXBi = Fi . These algorithms are based on the incremental subgradient and the par-
allel subgradient methods. The convergence region of these algorithms are larger than
other existing iterative algorithms. Finally, some experimental results are presented
to show the efficiency of the proposed algorithms.

Keywords Linear matrix equations · Cyclic iterative algorithm · Simultaneous
iterative algorithm

1 Introduction

Linear matrix equations (include Lyapunov equation, Sylvester equation, Riccati
equation etc.,) often occur in areas of computational mathematics, image process-
ing and control and system theory and so on. Iterative methods to solve these matrix
equations is one of the active topics in the computational mathematics, and a large
number of papers have raised various methods for solving such matrix equations.
For a complete review on iterative methods for large linear matrix equations, see [1].
Recently, Ding and Chen [2–4] presented a few efficient gradient based and least
squares based iterative algorithms for solving generalized Sylvester AXB+CXD =
F (including the Sylvester equation AX + XB = F ) and coupled Sylvester equa-
tions. The basic idea of these approaches is based on a hierarchical identification
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principle [5–8], which regards the unknown matrix as the system parameter matrix
to be identified, and then construct a recursive formula to approximate the unknown
solution. Some recent works can be found in [9–14] and references therein.

In this paper, we will consider the following linear systems of matrix equations:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A1XB1 = F1
A2XB2 = F2

...

ANXBN = FN,

(1.1)

where Ai ∈ Rpi×m, Bi ∈ Rn×qi , Fi ∈ Rpi×qi , i = 1, 2, · · · , N , N is a positive
interger and X ∈ Rm×n is the unknown matrix to be solved. As a matter of fact, the
matrix equations (1.1) includes several important matrix equations as a special case.
In particular, when N = 1, then (1.1) reduces to the linear matrix equation:

AXB = F, (1.2)

where A ∈ Rp×m, B ∈ Rn×q , F ∈ Rp×q and X ∈ Rm×n. Huang et al. [21]
introduced an iterative method to solve the linear matrix equation (1.2) over skew-
symmetric matrix X. Liang et al. [22] constructed an iterative algorithm to solve (1.2)
over generalized centro-symmetric matrix X. Peng [23] presented two iterative meth-
ods to solve the matrix equation (1.2) over symmetric, symmetric R-symmetric and
(R, S)-symmetric matrix X. By extending the well-known Jacobi and Gauss-Seidel
iterations for Ax = b, Ding et al. [8] proposed a gradient based and a least-squares
based iterative algorithms for the solution of (1.2) and the generalized Sylvester
equations.

In the other hand, the matrix equation (1.2) also represents as an image deblurring
problem under the assumption of the point spread function (PSF) is separable, and
arbitrary boundary condition (see [15]). Where A and B represent blurring matrix, X
is the original image and F is the recorded values of the noisy blurred image. If the
matrix A and B are nonsingular, then the solution of (1.2) can be represented as

X = A−1FB−1.

However, since the observed image F is always be recorded by randomize noise,
then the above native solution is not good for a real deblurring problem. Some well-
known methods have been used to overcome this, such as, the truncated singular
value decomposition (TSVD) and the Tikhonov regularization methods. We are ded-
icated to use the gradient projection algorithm (GPA, for short) to solve the matrix
equation (1.2). It is equivalent to solve the following optimization problem:

min
X∈C ‖AXB − F‖F , (1.3)

where ‖ · ‖F denotes the Frobenious norm, and C is a closed convex set. Such as the
box

C1 = {X ∈ Rn×p : L ≤ X ≤ U}
and also

C2 = {X ∈ Rn×p : ‖X‖F ≤ δ},
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where L and U are given matrices and δ > 0 is a given scalar. If the set C is the set of
symmetric matrices or skew-symmetric etc., then (1.3) reduces to the problem which
was considered in Huang et al. [21], Liang et al. [22] and Peng [23], respectively.

If N = 2, then (1.1) reduces to the following:
{
A1XB1 = F1
A2XB2 = F2.

(1.4)

Wang [24] studied the matrix equations (1.4) over an arbitrary regular ring with iden-
tity and derived the necessary and sufficient conditions for the existence and the
expression of the general solution to the system. Sheng and Chen [25] presented
an iterative algorithm to solve (1.4) and also obtained the least norm solution and
the optimal approximation solution. Cai and Chen [26] proposed an iterative algo-
rithm to solve the matrix equations (1.4) over bisymmetric matrices. By choosing a
special kind of initial matrix, they also obtained the unique optimal approximation
solution. Dehghan and Hajarian [27] proposed some iterative algorithms to compute
a generalized centro-symmetric solution of the linear matrix equations (1.4).

To solve the linear matrix equations (1.1), Ding et al. [16] developed a gradient
algorithm and a least squares algorithm to solve the matrix equations (1.1) by using
a block matrix inner product. First, the gradient iterative sequence X(k) is given as
follows:

X(k) = X(k − 1)+ μGT
N

⎛

⎜
⎜
⎜
⎝

F1 − A1X(k − 1)B1
F2 − A2X(k − 1)B2

...

FN − ANX(k − 1)BN

⎞

⎟
⎟
⎟
⎠

� HT
N , , (1.5)

where 0 < μ < 2
ρ
(
GNGT

N

)
ρ
(
HT
NHN

) , GN =

⎛

⎜
⎜
⎜
⎝

A1
A2
...

AN

⎞

⎟
⎟
⎟
⎠

and HN = (
B1 B2 · · · BN

)
.

Second, they introduced the least squares based iterative algorithm:

X(k) = X(k−1)+μ
(
GT

NGN

)−1
GT

N

⎛

⎜
⎜
⎜
⎝

F1 −A1X(k − 1)B1
F2 −A2X(k − 1)B2

...

FN −ANX(k − 1)BN

⎞

⎟
⎟
⎟
⎠
�HT

N

(
HNH

T
N

)−1
,

(1.6)
where 0 < μ < 2.

In the numerical experiments, Ding et al. [16] found that the upper bound of the
iterative parameter μ in (1.5) was not the best but was relatively conservative. They
tried larger μ and found the iterative sequence also convergent, this should not be
possible because it exceeded the convergence region of the algorithm (1.5). This
discovery led to our interested in this research.

The purpose of this paper is to introduce new iterative algorithms to solve the
matrix equations (1.1). We provide two types of algorithms, one is cyclic and the
other is simultaneous, which are based on the incremental subgradient (see e.g.,
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[17, 18]) and parallel subgradient methods (see e.g., [19, 20]), respectively. The key
characteristic of our algorithm is that: (i) for the cyclic iterative algorithm, we only
use one of the matrix equation in each iteration, while the simultaneous iterative
algorithm is easier to implement in a distributed framework; (ii) both of these algo-
rithms have the same range of parameters which are bigger in comparison with other
iterative algorithms.

The paper will be organized as follows. In Section 2, we introduce our notations
and provide some preliminary results. In Section 3, we propose a gradient projec-
tion iterative algorithm to solve the constrained matrix equations (1.3). In Section 4,
we propose a cyclic iterative algorithm to solve the matrix equations (1.1) and we
prove the convergence of this algorithm. In Section 5, we give a simultaneous itera-
tive algorithm and prove its convergence. In Section 6, we give numerical examples
to demonstrate the convergence results. Lastly, we make conclusion and give some
recommendation for future work.

2 Preliminaries

In this section, we collect some important definitions and prove some useful lemmas
which will be used in the following section.

We denote by R the set of real numbers. Let Rm×n be the set of all m × n

real matrices, Rm = Rm×1. Denoted by the superscripts T be the transpose. For
matrices A = (a1, a2, · · · , an) ∈ Rm×n, B ∈ Rm×n, ai ∈ Rm, ‖A‖ denotes the
usual 2-norm, unless otherwise stated. ρ(A) and tr(A) represent its spectral radius
and trace, respectively. Symbol vec(·) represents the vec operator, i.e., vec(A) =
(
aT1 , a

T
2 , · · · , aTn

)T
; A ⊗ B stands for the Kronecker product of matrices A and B;

Moreover, 〈A,B〉 = tr(BT A) is defined as the inner product of the two matrices,
which generates the Frobenius norm, i.e., ‖A‖F = √〈A,A〉 = √

tr(AT A). Addi-
tionally, the 2-norm and Frobenius norm of A satisfy: ‖A‖ ≤ ‖A‖F ≤ √

n‖A‖. We
introduce the block-matrix inner product, i.e., the star (�) product for short. Let

X :=

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xp

⎞

⎟
⎟
⎟
⎠

∈ R(mp)×n, Y :=

⎛

⎜
⎜
⎜
⎝

Y1
Y2
...

Yp

⎞

⎟
⎟
⎟
⎠

∈ R(np)×m,

where Xi, Y
T
i ∈ Rm×n, i = 1, 2, · · · , p. Then the block matrix star product � is

defined as

X � Y =

⎛

⎜
⎜
⎜
⎝

X1
X2
...

Xp

⎞

⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎝

Y1
Y2
...

Yp

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

X1Y1
X2Y2
...

XpYp

⎞

⎟
⎟
⎟
⎠

The following two lemmas were obtained in [8].
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Lemma 2.1 ([8]) For the matrix equation (1.2), if A is a full column-rank matrix and
B is a full row-rank matrix (p ≥ m, n ≤ q), then the iterative solution X(k) given
by the following gradient based iterative algorithm converges to the exact solution X

(i.e., limk→∞ X(k) = X) for any initial values X(0):

X(k) = X(k − 1)+ μAT [F −AX(k − 1)B]BT , k ≥ 0,

where 0 < μ < 2
ρ(AAT )ρ(BT B)

.

Lemma 2.2 ([8]) If the conditions of Lemma 2.1 hold, then the least squares based
iterative algorithm:

X(k) = X(k − 1)+ μ(AT A)−1AT [F −AX(k − 1)B]BT (BBT )−1, 0 < μ < 2.

yields limk→∞X(k) = X.

Define

S :=

⎛

⎜
⎜
⎜
⎜
⎝

BT
1 ⊗ A1

BT
2 ⊗ A2

...

BT
N ⊗ Ap

⎞

⎟
⎟
⎟
⎟
⎠

∈ R(
∑N

i=1 piqi)×(mn), F = vec[F1, F2, · · · , FN ]

The unique solution of matrix equations (1.1) is guaranteed by the following
lemma.

Lemma 2.3 ([8, 16]) Matrix equations (1.1) has a unique solution if and only if
rank{S, F } = rank(S) = mn; in this case, the unique solution is given by

vec[x] = [ST S]−1ST F, (2.1)

and the corresponding homogeneous matrix equations AiXBi = 0, i = 1, 2, · · · , N
has a unique solution: X = 0.

Lemma 2.4 Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
respectively. Then

(i) ‖x − y‖2 = ‖x‖2 − 2〈x, y〉 + ‖y‖2.

(ii) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2, ∀x, y ∈
H and∀t ∈ [0, 1].

The lemma above is well-known. We extend (ii) of Lemma 2.4 to more general.

Lemma 2.5 Let H be a Hilbert space, then for all x1, x2, · · · , xn ∈ H ,
∥
∥
∥
∥
∥

n∑

i=1

λixi

∥
∥
∥
∥
∥

2

=
n∑

i=1

λi‖xi‖2 −
n∑

i =j

λiλj‖xi − xj‖2, n ≥ 2, (2.2)

where λi ∈ [0, 1], for all i = 1, 2, · · · , n with
∑n

i=1 λi = 1.
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The method of mathematical induction is applied to prove the above lemma.

Proof It is obvious that the equality (2.2) is satisfied when n = 2. Assume for n = k,
k ≥ 2, the equality (2.2) is true, we will prove is still correct for n = k + 1. In fact,
we have

∥
∥
∥
∥
∥

k+1∑

i=1

λixi

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

k∑

i=1

λixi + λk+1xk+1

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

k∑

i=1

λixi +
(

1 −
k∑

i=1

λi

)

xk+1

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

k∑

i=1

λi

(∑k
i=1 λixi

∑k
i=1 λi

)

+
(

1 −
k∑

i=1

λi

)

xk+1

∥
∥
∥
∥
∥

2

=
k∑

i=1

λi

∥
∥
∥
∥
∥

∑k
i=1 λixi

∑k
i=1 λi

∥
∥
∥
∥
∥

2

+
(

1 −
k∑

i=1

λi

)

‖xk+1‖2

−
k∑

i=1

λi

(

1 −
k∑

i=1

λi

)∥
∥
∥
∥
∥
xk+1 −

∑k
i=1 λixi

∑k
i=1 λi

∥
∥
∥
∥
∥

2

=
k∑

i=1

∥
∥
∥
∥
∥

λ1
∑k

i=1 λi
x1 + λ2

∑k
i=1 λi

x2 + · · · + λk
∑k

i=1 λi
xk

∥
∥
∥
∥
∥
+ λk+1‖xk+1‖2

−
k∑

i=1

λi

(

1 −
k∑

i=1

λi

)∥
∥
∥
∥
∥

λ1
∑k

i=1 λi
(xk+1 − x1)+ · · · + λk

∑k
i=1 λi

(xk+1 − xk)

∥
∥
∥
∥
∥

2

=
k∑

i=1

λi

⎛

⎝
λ1

∑k
i=1 λi

‖x1‖2+· · ·+ λk
∑k

i=1 λi
‖xk‖2−

k∑

i =j

λi
∑k

i=1 λi

λj
∑k

i=1 λi
‖xi−xj‖2

⎞

⎠

+ λk+1‖xk+1‖2−λk+1

k∑

i=1

λi

(
λ1

∑k
i=1 λi

‖xk+1−x1‖2 + · · · + λk
∑k

i=1 λi
‖xk+1−xk‖2

−
k∑

i =j

λi
∑k

i=1 λi

λj
∑k

i=1 λi
‖xi − xj‖2

)

= λ1‖x1‖2 + · · · + λk‖xk‖2 + λk+1‖xk+1‖2

− λ1λk+1‖xk+1 − x1‖2 − · · · − λk+1λk‖xk+1 − xk‖2

−
(

k∑

i=1

λi −
k∑

i=1

λiλk+1

)
k∑

i =j

λi
∑k

i=1 λi

λj
∑k

i=1 λi
‖xi − xj‖2

= λ1‖x1‖2 + · · · + λk‖xk‖2 + λk+1‖xk+1‖2

− λ1λk+1‖xk+1 − x1‖2 − · · · − λk+1λk‖xk+1 − xk‖2 −
k∑

i =j

λiλj‖xi − xj‖2.

(2.3)

This completes the proof.
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Consider the following constrained convex optimization problem:

min
x∈C f (x), (2.4)

where C is a closed and convex subset of a Hilbert space H , and f : C → R is a real
valued convex function. If f is Fréchet differentiable, then the gradient projection
algorithm is defined by

{
x0 ∈ C,

xn+1 = PC(xn − αn∇f (xn)), n ≥ 0,
(2.5)

where {αn} are positive real numbers, PC is the metric projection from H onto C. In
fact, the gradient projection algorithm could be seen as a special case of the forward-
backward splitting algorithm [32, 33].

The following convergence theorem of gradient projection algorithm can be found
in [34] and [30].

Theorem 2.1 Assume that the minimization problem (2.4) is consistent and the gra-
dient ∇f satisfies the Lipschitz condition, i.e., ‖∇f (x)−∇f (y)‖ ≤ L‖x−y‖, where
L is the Lipschitz constant. Let the sequence of parameters {αn} satisfy the condition:
0 < lim infn→∞ αn ≤ lim supn→∞ αn < 2

L
. Then the sequence {xn} generated by the

gradient projection algorithm (2.5) or (2.6) converges weakly to a minimizer of (2.4).

Remark 2.1 For the the case of unconstrained minimization problem (2.4), i.e.,
C = Rn, the iterative algorithm reduces to the gradient algorithm without projection
operator which is given by the following:

{
x0 ∈ Rn,

xn+1 = xn − αn∇f (xn), n ≥ 0,
(2.6)

Then the convergence result of Theorem 2.1 still remains true but to the unconstrained
minimization problem.

The following definition of Fejér-monotone sequence is central in the study of var-
ious iterative methods. For some other important properties can be found in Chapter
5 of [31].

Definition 2.1 Let C be a nonempty closed convex subset of H and {xn} is a
sequence in H . The sequence {xn} is called Fejér-monotone with respect to C, if

‖xn+1 − z‖ ≤ ‖xn − z‖, n ≥ 0, z ∈ C.

3 Gradient projection algorithm

In this section, we analysis the gradient projection algorithm to solve the constrained
matrix equation (1.3). The convergence of gradient projection algorithm comply with
Theorem 2.1.
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Theorem 3.1 Assume that the problem (1.3) is consistent (i.e., (1.3) is solv-
able). For any initial matrix X0 ∈ C, a sequence {xn} be generated by the
following:

Xn+1 = PC(Xn − αn∇f (Xn)), n ≥ 0, (3.1)

where the sequences {αn} satisfying the condition: 0 < lim infn→∞ αn ≤
lim supn→∞ αn < 2

ρ(AT A)ρ(BBT )
. Then the sequence {Xn} converges to a minimizer

of (1.3).

Proof It is sufficient to prove that the gradient of f (X) is Lipschitz with Lips-
chitz constant L = ρ(AT A)ρ(BBT ). In fact, since f (X) = 1

2‖AXB − F‖2
F =

1
2 tr(AXB − F)T (AXB − F), then ∇f (X) = AT (AXB − F)BT . For any matrices
X, Y ∈ Rn×n, we have

‖∇f (X) − ∇f (Y )‖ = ‖AT (AXB − F)BT − AT (AYB − F)BT ‖
≤ ‖AT A‖‖BBT ‖‖X − Y‖
= ρ(AT A)ρ(BBT )‖X − Y‖
= L‖X − Y‖.

Therefore ∇f is a Lipschitz function and the Lipschitz constant L =
ρ(AT A)ρ(BBT ). By Theorem 2.1, we can conclude the proof.

4 Cyclic iterative method

We define the following objective function

minF(X), (4.1)

where F(X) = 1
2

∑N
i=1 ‖AiXBi − Fi‖2

F . To find a solution of the matrix equa-
tions (1.1) is equivalent to solve the above minimization problem. In other words, if
min{F(X)} = 0, then the matrix equations (1.1) is solved naturally. It is easy to ver-
ify that F(X) is convex, and the gradient of F(X) is ∇F(X) = ∑N

i=1 A
T
i (AiXBi −

Fi)B
T
i . Then we can define the gradient iterative algorithm with constant stepsizes

as follows:

X(k + 1) = X(k)− μ∇F(X(k)), k ≥ 0, (4.2)

where 0 < μ < 2
L

, L = ∑N
i=1 ρ

(
AiA

T
i

)
ρ

(
BT
i Bi

)
. With the help of Theorem

2.1, we know that the sequence {X(k)} converges to the solution of matrix equations
(1.1). We will propose new iterative algorithms to solve the matrix equations (1.1) as
well as the convergence region of these algorithms which are larger than the iterative
algorithms (4.2) and (1.5).
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Let us introduce our first iterative algorithm.

Algorithm 1 Cyclic gradient iterative algorithm

For any initial matrix X(0), compute

X(k) = X(k − 1)+ μAT[k]
(
F[k] − A[k]X(k − 1)B[k]

)
BT[k], k ≥ 0, (4.3)

where [k] = (k mod N) which takes value in {1, 2, · · · , N}, and μ ∈
(

0, 2
L

)
, where

L = max
{
ρ

(
AiA

T
i

)
ρ

(
BT
i Bi

)
, i = 1, 2, · · · , N}

.

The following result discuss the convergence of the algorithm above.

Theorem 4.1 If the matrix equations (1.1) is consistent and has a unique solution
X, then the iterative sequences {X(k)} generated by the Algorithm 1 converges to X,
i.e., limk→∞X(k) = X; or the error X(k)−X converges to zero for any initial value
X(0) as k → ∞.

Proof To facilitate proof of theorem, we define the error matrix X̃(k) := X(k)−X.
By using (4.3), we get

X̃(k) = X(k)−X

= X(k − 1)−X + μAT[k]
(
F[k] −A[k]X(k − 1)B[k]

)
BT[k]

= X̃(k − 1)− μAT[k]
(
A[k]X̃(k − 1)B[k]

)
BT[k]. (4.4)

With the help of Lemma 2.4 (i) and the formula tr[AB] = tr[BA] and tr[AT ] =
tr[A], it follows that

∥
∥X̃(k)

∥
∥2 =

∥
∥
∥X̃(k − 1)− μAT[k]

(
A[k]X̃(k − 1)B[k]

)
BT[k]

∥
∥
∥

2

=∥
∥X̃(k − 1)

∥
∥2 − 2μtr

(
X̃T (k − 1)AT[k]

(
A[k]X̃(k − 1)B[k]

)
BT[k]

)

+ μ2
∥
∥
∥A

T[k](A[k]X̃(k − 1)B[k])BT[k]
∥
∥
∥

2

=∥
∥X̃(k−1)

∥
∥2−2μ

∥
∥A[k]X̃(k−1)B[k]

∥
∥2
F
+μ2

∥
∥
∥A

T[k](A[k]X̃(k−1)B[k])BT[k]
∥
∥
∥

2

≤∥
∥X̃(k − 1)

∥
∥2 − 2μ

∥
∥A[k]X̃(k − 1)B[k]

∥
∥2 + μ2ρ

(
A[k]AT[k]

)

× ρ
(
BT[k]B[k]

) ∥
∥A[k]X̃(k − 1)B[k]

∥
∥2

=∥
∥X̃(k−1)

∥
∥2−μ

(
2−μρ

(
A[k]AT[k]

)
ρ

(
BT[k]B[k]

)) ∥
∥A[k]X̃(k−1)B[k]

∥
∥2

.

(4.5)

Since 0 < μ < 2
L

, it follows from (4.5) that
∥
∥X̃(k)

∥
∥2 ≤ ∥

∥X̃(k − 1)
∥
∥2

,
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i.e., ‖X(k)−X‖2 ≤ ‖X(k − 1)−X‖2, which means that {X(k)} is Fejér-monotone
sequence.

On the other hand, from (4.5), we obtain

∞∑

k=1

∥
∥A[k]X̃(k − 1)B[k]

∥
∥2

< +∞.

Therefore,

lim
k→∞

∥
∥A[k]X̃(k − 1)B[k]

∥
∥ = 0. (4.6)

With the aid of (4.4) and (4.6), it is found that

∥
∥X̃(k)− X̃(k − 1)

∥
∥2 = μ

∥
∥
∥AT[k]

(
A[k]X̃(k − 1)B[k]

)
BT[k]

∥
∥
∥

2

≤ μρ
(
A[k]AT[k]

)
ρ

(
BT[k]B[k]

) ∥
∥A[k]X̃(k − 1)B[k]

∥
∥2

→ 0 as k → ∞.

Then, for any i ∈ {1, 2, · · · , N}, we get

∥
∥X̃(k + i − 1)− X̃(k − 1)

∥
∥

≤ ∥
∥X̃(k + i − 1)− X̃(k + i − 2)

∥
∥ + · · · + ∥

∥X̃(k)− X̃(k − 1)
∥
∥

→ 0 as k → ∞. (4.7)

Combine the results of (4.6) and (4.7), we have

∥
∥A[k+i]X̃(k − 1)B[k+1]

∥
∥

≤ ∥
∥A[k+i]X̃(k−1)B[k+i] −A[k+i]X̃(k + i−1)B[k+i]

∥
∥ + ∥

∥Ak+i X̃(k + i−1)B[k+i]
∥
∥

= ∥
∥A[k+i]

(
X̃(k + i − 1)− X̃(k − 1)

)
B[k+i]

∥
∥ + ∥

∥A[k+i]X̃(k + i − 1)B[k+i]
∥
∥

→ 0 as k → ∞.

Therefor, for each l ∈ {1, 2, · · · , N}, there exists i ∈ {1, 2, · · · , N} such that l =
(k + i) mod N ,

lim
k→∞

∥
∥AlX̃(k − 1)Bl

∥
∥ = lim

k→∞
∥
∥A[k+i]X̃(k − 1)B[k+i]

∥
∥ = 0.

According to Lemma 2.3, we have X̃(k) → 0 as k → ∞, that is X(k) → X as
k → ∞. This completes the proof.

Using Lemma 2.2, in addition, if Ai is a non-square pi × m full column-rank
matrix and Bi is a non-square n × qi full row-rank matrix, the least squares based
iterative algorithm can be given as follows:
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Algorithm 2 The least squares based cyclic gradient iterative algorithm

For any initial matrix X(0), compute

X(k) = X(k − 1)+ μ
(
AT[k]A[k]

)−1
AT[k]

(
F[k] − A[k]X(k − 1)B[k]

)
BT[k]

(
B[k]BT[k]

)−1
, k ≥ 0,

(4.8)
where [k] = (k mod N) which takes value in {1, 2, · · · , N} and 0 < μ < 2.

Theorem 4.2 If the matrix equations (1.1) have a unique solution X, then the itera-
tive solution X(k) generated by the Algorithm 2 converges to X, i.e., limk→∞X(k) =
X.

The proof can be obtained by using a similar way to that above, and is therefore
omitted here.

5 Simultaneous iterative method

In the previous section, we have proposed an cyclic iterative algorithm to solve the
matrix equations (1.1) and the proof of convergence of the algorithm is also given. In
this section, we will continue to develop some iterative algorithms to solve the matrix
equations (1.1). Let’s introduce a simultaneous iterative algorithm to solve (1.1).

Algorithm 3 Simultaneous gradient iterative algorithm

For any initial matrix X(0). Given the current iterative X(k − 1), compute

X1(k) = X(k − 1)+ μAT
1 (F1 − A1X(k − 1)B1)B

T
1

X2(k) = X(k − 1)+ μAT
2 (F2 − A2X(k − 1)B2)B

T
2

...

XN(k) = X(k − 1)+ μAT
N(FN −ANX(k − 1)BN)B

T
N . (5.1)

The iterate matrix X(k) is added as

X(k) =
N∑

i=1

wiXi(k), k ≥ 0,

where wi ∈ [0, 1] for all i = 1, 2, · · · , N with
∑N

i=1 wi = 1 and μ ∈
(

0, 2
L

)
, where

L = max
{
ρ

(
AiA

T
i

)
ρ

(
BT
i Bi

)
, i = 1, 2, · · · , N}

.

Theorem 5.1 If the matrix equations (1.1) is consistent and has a unique solution
X, then the iterative sequences {X(k)} generated by the Algorithm 3 converges to X,
i.e., limk→∞X(k) = X; or the error X(k)−X converges to zero for any initial value
X(0).
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Proof For the clarify of proof, we define the error matrices

X̃i(k) = Xi(k)−X, i = 1, 2, · · · , N.

X̃(k) = X(k)−X.

By using (5.1), it is easy to get

X̃1(k) = X(k − 1)−X + μAT
1 (F1 −A1X(k − 1)B1)B

T
1

= X̃(k − 1)− μAT
1

(
A1X̃(k − 1)B1

)
BT

1 .

Similarly, we have

X̃i(k) = X̃(k − 1)− μAT
i

(
AiX̃(k − 1)Bi

)
BT
i , i = 2, · · · , N.

Using Lemma 2.4 (i) and the formula tr[AB] = tr[BA] and tr[AT ] = tr[A], we
have

∥
∥X̃i(k)

∥
∥2 =

∥
∥
∥X̃(k − 1)− μAT

i (AiX̃(k − 1)Bi)B
T
i

∥
∥
∥

2

= ∥
∥X̃(k − 1)

∥
∥2 − 2μtr

(
X̃T (k − 1)AT

i (AiX̃(k − 1)Bi)B
T
i

)

+ μ2
∥
∥
∥A

T
i (AiX̃(k − 1)Bi)B

T
i

∥
∥
∥

2

≤ ∥
∥X̃(k − 1)

∥
∥2 − 2μ

∥
∥AiX̃(k − 1)Bi

∥
∥2 + μ2ρ

(
AiA

T
i

)

× ρ
(
BT
i Bi

) ∥
∥AiX̃(k − 1)Bi

∥
∥2

, (5.2)

for all i = 1, 2, · · · , N .
By Lemma 2.2 and (5.2), we have

∥
∥X̃(k)

∥
∥2 =

∥
∥
∥
∥
∥

N∑

i=1

wi(Xi(k)−X)

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

N∑

i=1

wiX̃i(k)

∥
∥
∥
∥
∥

2

≤
N∑

i=1

wi

∥
∥X̃i(k)

∥
∥2

≤
∥
∥
∥
∥
∥
X̃(k − 1)

∥
∥
∥
∥
∥

2

− 2μ
N∑

i=1

wi

∥
∥AiX̃(k − 1)Bi

∥
∥2

+ μ2
N∑

i=1

wiρ
(
AiA

T
i

)
ρ

(
BT
i Bi

) ∥
∥AiX̃(k − 1)Bi

∥
∥2

≤ ∥
∥X̃(k−1)

∥
∥2 −

N∑

i=1

μ
(

2−μρ
(
AiA

T
i

)
ρ

(
BT
i Bi

))
wi

∥
∥AiX̃(k−1)Bi

∥
∥2

.

(5.3)

Since 0 < μ < 2
L

, it follows from (5.3) that
∥
∥X̃(k)

∥
∥2 ≤ ∥

∥X̃(k − 1)
∥
∥2

,
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i.e.,

‖X(k)−X‖2 ≤ ‖X(k − 1)−X‖2 ,

which means that {X(k)} is Fejér-monotone sequence. From (5.3), we obtain

∞∑

k=1

∥
∥AiX̃(k − 1)Bi

∥
∥2

< +∞, for all i = 1, 2, · · · , N.

Therefore,

lim
k→∞‖AiX̃(k)Bi‖2 = 0, for all i = 1, 2, · · · , N.

According to Lemma 2.3, we have X̃(k) → 0 as k → ∞. The proof is complete.

Similarly, according to Lemma 2.2, we can obtain the least squares based
simultaneous gradient iterative algorithm:

Algorithm 4 The least squares based simultaneous gradient iterative algorithm

For any initial matrix X(0). Given the current iterative X(k − 1), compute

X1(k) = X(k − 1)+ μ
(
AT

1 A1
)−1

AT
1 (F1 −A1X(k − 1)B1) B

T
1

(
B1B

T
1

)−1

X2(k) = X(k − 1)+ μ
(
AT

2 A2
)−1

AT
2 (F2 −A2X(k − 1)B2) B

T
2

(
B2B

T
2

)−1

...

XN(k) = X(k − 1)+ μ
(
AT
NAN

)−1
AT
N(FN − ANX(k − 1)BN)B

T
N

(
BNB

T
N

)−1
.

(5.4)

The iterate matrix X(k) is added as

X(k) =
N∑

i=1

wiXi(k), k ≥ 0,

where wi ∈ [0, 1] for all i = 1, 2, · · · , N with
∑N

i=1 wi = 1 and 0 < μ < 2.

Remark 5.1 There is no difficult to present the Algorithm 1 and the Algorithm 4.1
with variable stepsizes if ask

0 < lim inf
k→∞ μk ≤ lim sup

k→∞
μk <

2

L
,

where L = max
{
ρ

(
AiA

T
i

)
ρ

(
BT
i Bi

)
, i = 1, 2, · · · , N}

. For the convenience of
numerical calculation, we choose it as constant.



392 Numer Algor (2014) 66:379–397

6 Numerical examples

In this section, we give some examples to support the theoretical results obtained
before. All experiments are performed using MATLAB (R2009a) on a Dell Optiplex
780 with an Intel Core2 Quad CPU with 4GB of RAM.

First, we use the gradient projection algorithm to solve the image deblurring
problem (1.2).

Example 6.1 We consider the image deblurring model (1.2), and the image deblur-
ring problem is taken from Challenge 2 of [15]. The data is also taken from the the
web-site of the book [15].

Since the gradient projection algorithm has the semi-convergence, we stop the
iterations before convergence to get a clear deblurred image. The reconstructed image
is shown on Fig. 1.

On the first row of Fig. 1, the left is the blurred and noisy image, the middle
reconstructed image using the Tikhonov regularization and the right restored image
is obtained by (TSVD). On the second row, the left of the reconstructed image is
obtained by the (GPA) without constraint set. The middle is obtained by using non-
negative constraint set of (GPA), and the right reconstructed image is obtained by
adding a bounded interval [0, 1] as a constraint of (GPA).

An advantage of the gradient projection algorithm is that it can add the prior
constraint to the algorithm. We tried to choose the domain C by (i) The pixels
of the image should be nonnegative; A zero matrix is chosen as the lower bound
matrix, i.e., C = {X ∈ Rn×p : X ≥ 0}; (ii) Considering the blurred image G,

the blurred image Tikhonov regularization TSVD

GPA with non constraint GPA with nonnegative constraint GPA with [0,1] constraint

Fig. 1 Comparison of TSVD, Tikhonov regularization and Gradient projection algorithm for image
deblurring
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which the maximum pixel value is less than 1, then we assume the constraint set
C = {X ∈ Rn×p : 0 ≤ X ≤ 1}, where 1 represents matrix elements that are all equal
to 1. We can observe that the reconstructed image obtained by (GPA) with [0, 1]
constraint shows a better performance on the image background than other proposed
methods.

The following test example is taken from [16] for ease of comparison.

Example 6.2 Consider the following coupled matrix equations:
{
A1XB1 = F1
A2XB2 = F2.

(6.1)

with

A1 =
(

1 −0.5
0.5 1

)

, A2 =
⎛

⎝
1 1
−2 1
1 1.1

⎞

⎠ ,

B1 =
⎛

⎝
1 3 0.8 2
1 1 −3 1.2

−1.1 −2.1 5 1

⎞

⎠ , B2 =
⎛

⎝
1 2.6 0.8

2.5 −1.1 1
1 −1.5 2

⎞

⎠ ,

F1 =
(−8.175 −13.925 23.5 −4.63

3.925 13.675 11.25 12.01

)

, F2 =
⎛

⎝
4.35 13.57 8.3
15.75 8.02 −1.3
5.165 14.742 8.81

⎞

⎠ .

Then the solution X from (2.1) is

X =
(

1 −3 2.7
5 1.3 −0.1

)

.

We define the upper bound of the iterative parameter μ by μup . Then we have

(1.5) of [16] Algorithm 1

μup 0.0061 0.0236

It is obvious that the convergence region of our Algorithm 1 is larger than the
algorithm (1.5) of [16].

Define the relative error δ := ‖X(k) −X‖/‖X‖. Taking the initial value X(0) =
1e − 6 ∗ eye(2, 3). Then we apply the Algorithms 1 and 3 to compute X(k), respec-
tively. Meanwhile, the weighted parameters w1 and w2 are set to be 0.5 in Algorithm
3. The iterative solutions X(k) are shown in Figs. 2 and 3.

In Example 6.2, we have demonstrated that the convergence region of our iterative
algorithms are larger than iterative algorithm (1.5) of [16]. In the next example, we
will apply our iterative algorithms to solve some large matrix equations which usually
occurred in real world applications. The obtained results is depicted in Fig. 4. The
residual vector is defined by

rk =
2∑

i=1

‖AiX(k)Bi − Fi‖F .
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Fig. 2 The relative errors δ versus k of the Algorithm 1

Example 6.3 Consider the matrix equations (6.1) which have been appeared in
Example 6.2, where Ai and Bi , i = 1, 2 are 256 × 256 matrices and generated in
MATLAB as follows:

A1 = (round((5 + 2 ∗ randn(256, 256)). ∗ 100))/100,

B1 = (round((2 + 2 ∗ randn(256, 256)). ∗ 100))/100,

A2 = (round((6 + randn(256, 256)). ∗ 100))/100,

B2 = (round((4 + randn(256, 256)). ∗ 100))/100,

F1 = unif rnd(−4e4, 5e4, 256),

F2 = unif rnd(−2e4, 4e4, 256).
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Fig. 3 The relative errors δ versus k of the Algorithm 3
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Fig. 4 Comparison of convergence curves

It is time consume to solve these matrix equations by Lemma 2.3 directly since it
involved the matrix inverse. So the best way is to choose an iterative method. It can
be seen from Fig. 4 that when the three algorithms choose the largest converge factor
μ itself, the Algorithm 1 converges the fastest. The Algorithm 3 and Algorithm (1.5)
of [16] perform nearly the same.

7 Conclusion

Solving the linear matrix equations is an active area of research. In this paper, we
have proposed two efficient iterative algorithms for solving the matrix equations
(1.1). According to Theorems 4.1 and 5.1, the convergence region of the Algorithms
1 and 3 are larger than the algorithm (1.5) of [16]. Thus we explain their exper-
imental results. Furthermore, how to make use of our proposed methods to solve
the linear matrix equations (1.1) over symmetric, Skew-symmetric, bisymmetric and
generalized centro-symmetric matrices is the work undertaken.
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18. Nedić, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable optimization.
SIAM J. Optimiz. 12, 109–138 (2001)

19. Dos Santos, L.T.: A parallel subgradient projections method for the convex feasibility problem. J.
Comput. Appl. Math. 18(3), 307–320 (1987)

20. Combettes, P.L., Puh, H.: Iterations of parallel convex projections in Hilbert spaces. Numer. Funct.
Anal. Optimiz. 15, 225–243 (1994)

21. Huang, G.X., Yin, F., Guo, K.: An iterative method for the skew-symmetric solution and the optimal
approximate solution of the matrix equation AXB = C. J. Comput. Appl. Math. 212, 231–244 (2008)

22. Liang, M.L., You, C.H., Dai, L.F.: An efficient algorithm for the generalized centro-symmetric
solution of matrix equation AXB = C. Numer. Algor. 44, 173–184 (2007)

23. Peng, Z.Y.: New matrix iterative methods for constraint solutions of the matrix equation AXB = C.
J. Comput. Appl. Math. 235(3), 726–735 (2010)

24. Wang, Q.W.: A system of matrix equations and a linear matrix equation over arbitrary regular rings
with identity. Linear Algebra Appl. 384, 43–54 (2004)

25. Sheng, X.P., Chen, G.L.: A finite iterative method for solving a pair of linear matrix equations
(AXB,CXD) = (E, F). Appl. Math. Comput. 189(2), 1350–1358 (2007)

26. Cai, J., Chen, G.L.: An iterative algorithm for the least squares bisymmetric solutions of the matrix
equations A1XB1 = C1, A2XB2 = C2. Math. Comput. Model. 50, 1237–1244 (2009)

27. Dehghan, M., Hajarian, M.: An iterative algorithm for solving a pair of matrix equations AYB =
E,CYD = F over generalized centro-symmetric matrices. Comput. Math. Appl. 56, 3246–3260
(2008)

28. Ruszxzynski, A.: Nonlinear Optimization. Princeton University Press, New Jersey (2006)
29. Polyak, B.T.: Introduction to Optimization. Optimization Softwarse, New York (1987)



Numer Algor (2014) 66:379–397 397

30. Su, M., Xu, H.K.: Remarks on the gradient-projection algorithm. J. Nonlinear Anal. Opt. 1(1), 35–43
(2010)

31. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert spaces.
Springer, New York (2011)

32. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H.,
Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms
for Inverse Problems in Science and Engineering. Springer, New York (2009)

33. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale
Model. Simul. 4, 1168–1200 (2005)

34. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image recon-
struction. Inverse Problems 20, 103–120 (2004)


	Cyclic and simultaneous iterative methods to matrix equations of the form Ai X Bi = Fi
	Abstract
	Introduction
	Preliminaries
	Gradient projection algorithm
	Cyclic iterative method
	Simultaneous iterative method
	Numerical examples
	Conclusion
	Acknowledgments
	References


