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Genome walking is a molecular procedure for the direct identification of

nucleotide sequences from purified genomes. The only requirement is the

availability of a known nucleotide sequence from which to start. Several

genome walking methods have been developed in the last 20 years, with con-

tinuous improvements added to the first basic strategies, including the recent

coupling with next generation sequencing technologies. This review focuses

on the use of genome walking strategies in several aspects of the study of

eukaryotic genomes. In a first part, the analysis of the numerous strategies

available is reported. The technical aspects involved in genome walking are

particularly intriguing, also because they represent the synthesis of the talent,

the fantasy and the intelligence of several scientists. Applications in which

genome walking can be employed are systematically examined in the second

part of the review, showing the large potentiality of this technique, including

not only the simple identification of nucleotide sequences but also the analy-

sis of large collections of mutants obtained from the insertion of DNA of

viral origin, transposons and transfer DNA (T-DNA) constructs. The enor-

mous amount of data obtained indicates that genome walking, with its large

range of applicability, multiplicity of strategies and recent developments, will

continue to have much to offer for the rapid identification of unknown

sequences in several fields of genomic research.

Introduction

Identification of unknown nucleotide sequences flank-

ing already characterized DNA regions can be pursued

by a number of different PCR-based methods com-

monly known as genome walking (GW).

In times of high-throughput DNA sequencing tech-

nologies, when more than 1000 genomes have been

completely sequenced, the development of GW strate-

gies can appear as an out-of-date laboratory activity.

Nevertheless, papers describing applications of GW

methods and improvements of several available strate-

gies continue to be published with a steady positive

trend. Reasons for such constant interest can be found

both in the relatively low difficulty of the different

strategies, which do not require expensive equipment

or highly trained personnel, and in the increasing

possibilities of applying GW methods to eukaryotic

genomes. Furthermore, in some highly sophisticated

applications, GW strategies have recently been com-

bined with pyrosequencing technology allowing the

production of hundreds of thousands of sequences per
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single experiment and opening new application areas

for GW.

Review articles on GW are not numerous. After a

first paper by Hengen dated 1995 [1], where a limited

number of strategies were compared, a complete sur-

vey of the available strategies was published by Hui

et al. [2] more than a decade ago. Recently, two

reviews have been dedicated to the description of GW

strategies and their applications, but limited to micro-

organisms [3,4]. This review is intended to provide the

missing information by describing the application of

GW techniques to eukaryotic genomes. Numerous

reports can be found in which such technology has

been successfully used, avoiding in many cases the

time-consuming process of the construction and

screening of large genomic libraries.

A first section gives a general overview of the avail-

able GW methods, classified according to the basic

strategy adopted. Most of these methods can be easily

executed in any molecular biology laboratory. In addi-

tion, a list of commercial resources (kits and customer

services) is also provided. A second part of the paper

deals with the different applications of GW. Main

areas of interest have been identified and the results

obtained for specific applications are reported. Owing

to the large diffusion of GW methods, this survey can-

not by any means be complete. We have done our best

to show the huge potential of these methods and we

apologize to colleagues whose work has not been

reported.

GW methods and resources

GW methods

GW methods differ in the strategies adopted to obtain

the substrate for a final PCR step, in which a primer

specific for the known sequence (sequence specific pri-

mer) is coupled with a primer dictated by the specific

strategy of walking (walking primer).

In Table 1, the basic GW methods and related

improvements that have been developed are listed.

Methods are classified into three different groups

according to their first (and sometimes conditioning)

step: restriction-based (R-GW) methods, primer-based

(P-GW) methods and extension-based (E-GW) meth-

ods. GW methods using a combination of two of the

basic strategies are catalogued according to the first

step of the procedure. Most of the methods listed in

Table 1 have already been critically reviewed [1–4] and

are not described further in this paper. Only more

recent methods, together with those previously not

reviewed, are examined in this report. These methods

are highlighted in Table 1. Graphical representations

of the strategies at the basis of GW methods are sche-

matically reported in Fig. 1.

R-GW methods require a preliminary digestion of

the genomic DNA by suitable restriction enzymes,

whose sites must be located at a proper distance from

the boundary between known and unknown sequences

(not too far in order to allow subsequent PCR amplifi-

cation; not too close to avoid amplification of short

fragments). Restriction fragments can then be either

self-circularized or ligated to specifically designed

adaptors.

In the first case, the sub-group of the inverted-PCR

(I-PCR) methods, first described by Triglia et al. [5], is

obtained (Table 1). An improvement to this strategy,

named rolling circle I-PCR, has recently been reported

[8]. In this case circularized genomic DNA restriction

molecules are subjected to rolling circle amplification

by using random hexamers and employing the strand-

displacement property of Phi29 polymerase.

In the latter case, a wide range of methods have

been developed starting from the first strategy named

single-specific-primer PCR [9]. These methods are cata-

logued according to Tonooka and Fujishima [3] as

‘cassette PCR’, for the use of double-stranded DNA

linkers to ligate to genomic DNA restriction frag-

ments. We prefer the term ‘cassette PCR’ instead of

‘ligation mediated PCR’, which is sometimes also used

to indicate these methods ([7,21,22,28,44], for exam-

ple), since the term ‘ligation mediated’ has been used

since 1989 to indicate one of the first GW strategies,

here classified among the E-GW methods (Table 1).

Once the cassette has been ligated to genomic DNA

restriction fragments, generating what is commonly

known as the GW library, a PCR amplification of the

region encompassing the boundary between the known

and unknown sequences can be carried out using a

sequence specific primer and a cassette specific primer.

One major concern in the cassette PCR based methods

is the background of non-specific products due to the

cassette specific primer. To overcome this problem a

number of tricks have been devised, such as those

adopted in vectorette PCR [11], capture PCR [13] and

other strategies reported below.

The strategy known as transfer DNA (T-DNA) fin-

gerprinting PCR [20] adopted for GW an amplified

fragment length polymorphism method developed for

studying the number of Agrobacterium tumefaciens

T-DNA insertions in transgenic plants. Amplified frag-

ments corresponding to T-DNA ⁄plant DNA junctions,

identifiable thanks to a labelled T-DNA specific pri-

mer, are eluted from polyacrylamide gel, re-amplified

and sequenced.

Genome walking in eukaryotes C. Leoni et al.
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Table 1. GW strategies. GW methods are catalogued as R-GW, P-GW and E-GW. When available, the specific name of the method as given

by the authors is reported. Otherwise the name of the first author is given. Methods in gray boxes are detailed in the GW methods section.

P and E columns refer to the analysis of prokaryotic and eukaryotic genomes, respectively.

Group Sub-group Name References P E

1 R-GW Inverted PCR Inverted PCR 5 ·
2 Long range inverted PCR 6 ·
3 Bridged inverted PCR 7 ·
4 Rolling circle inverted PCR 8 ·
5 Cassette PCR Single-specific-primer PCR 9 ·
6 Fors et al. 10 ·
7 Vectorette PCR 11 ·
8 Cassette ligation 12 ·
9 Capture PCR 13 ·

10 Splinkerette PCR 14 ·
11 Boomerang DNA amplification 1 ·
12 Suppression PCR GW 15 ·
13 Padegimas and Reichert 16 ·
14 Step-down PCR 17 ·
15 Simplified oligo-cassette 18 ·
16 Cottage et al. 19 ·
17 T-DNA fingerprinting PCR 20 ·
18 T-linker PCR 21 ·
19 Versatile cassette 22 ·
20 Barcoding pyrosequencing 23,24 ·
21 One-base excess adaptor ligation 25 ·
22 Straight walk 26 ·
23 Blocked DLA 27 ·
24

Others

Template-blocking PCR 28 · ·
25 TVL-PCR 29 ·
26 Panhandle PCR 30 ·
27 Supported PCR 31 ·
28 RAGE 32 ·
29 Restriction site extension PCR 33 ·
30 P-GW Targeted gene-walking PCR 34 ·
31 Restriction-site PCR 35 ·
32 Restricted PCR (novel Alu PCR) 36 ·
33 TAIL-PCR 37 ·
34 Uneven PCR 38 ·
35 Semi-random PCR 39 ·
36 Mishra et al. 40 ·
37 UFW PCR 41,42 ·
38 Lariat-dependent nested PCR 43 ·
39 Site finding PCR 44 ·
40 Touchdown PCR-based 45 ·
41 Walser et al. 46 ·
42 Nested PCR-based 47 ·
43 Self-formed adaptor PCR 48 ·
44 Two-step gene walking PCR 49 ·
45 High-genome walking 50 ·
46 SD-PCR 51 ·
47 SHP-PCR 52 ·
48 E-GW EC-PCR LM-PCR 53 ·
49 LAM-PCR 54 ·
50 ET-PCR Long distance genome walking PCR 55 ·
51 Leoni et al. 56,57 ·
52 Others Single-primer amplification 58 ·
53 FLEA-PCR 59 ·

C. Leoni et al. Genome walking in eukaryotes
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Fig. 1. Main GW strategies. R-GW, P-GW and E-GW strategies are schematically illustrated. Gray and white regions correspond to known

and unknown DNA sequences, respectively. Horizontal black arrows correspond to sequence specific primers; gray arrows indicate cassette

specific primers. A wavy gray arrow corresponds to a random (or degenerate) primer. Dotted lines indicate in vitro synthesized ssDNA. The

symbols and indicate restriction sites. White vertical arrows correspond to the penultimate step of the procedure, after which (with the

exception of the pyrosequencing procedure) the obtained product can be subjected to PCR (nested PCR), cloning and sequencing.
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The association of a cassette PCR GW method with

the powerful pyrosequencing technology introduced by

Wang et al. [24] is of great interest since it allows mas-

sive parallel sequencing of thousands and thousands of

amplification fragments. A further improvement to this

method was obtained by the same group, by applica-

tion of a DNA barcoding strategy [23] (Fig. 1). By

using cassette primers with different barcodes, authors

were able to identify more than 160 000 integration

sites for lentiviral and gamma-retroviral vectors in sev-

eral tissue samples from mice. A similar approach was

reported for the analysis of maize transposons by Liu

et al. [27] in the blocked digestion–ligation–amplifica-

tion (blocked DLA) method. The method adopts a sin-

gle-strand adaptor provided with a 3¢-terminus

annealable with 3¢-overhangs of genomic restriction

fragments obtained by NspI (RCATG•Y) digestion.

After the first step, the library fragments are blocked

in 3¢-termini by addition of dideoxynucleotide and

then amplified with sequence specific and adaptor

primers. In the so-called MuClone strategy, DLA is

adapted to the identification of gene sequences flanking

the highly active maize mutator (Mu) transposon, by

using nested gene specific primers ending, downstream

of the CATG NspI sequence, with all the possible three

nucleotide tags starting with a C or T (so to be com-

patible with the complete NspI site). By combining the

MuClone strategy with pyrosequencing technology the

authors obtained about 965 000 reads [60].

Among the latest R-GW strategies, the straight walk

method [26] is characterized by the use of a 3¢-NH2

blocked double-stranded linker, to avoid the fill-in

reaction by the DNA polymerase and preventing

extension of the walking primer in the first PCR cycle.

The ssDNA produced from the sequence specific pri-

mer is then the substrate for the PCR amplification.

More recently, in the template-blocking PCR method

[28] genomic DNA restriction fragments are 3¢-blocked
by addition of a dideoxynucleotide before ligation with

the DNA cassette, ensuring that subsequent PCR can

start only from the specific sequence primer. Taking

advantage of the ligation activity present on the

pCR�4-TOPO� vector (Invitrogen, San Diego, CA,

USA), Orcheski and Davis recently developed the

TOPO� vector-ligation PCR (TVL-PCR) method [29],

an improved strategy derived from the T-linker PCR

[21] which overcomes the addition of a ligase enzyme.

Under the R-GW group, four additional methods

can be catalogued in which genomic DNA restriction

fragments are not directly ligated to the double-strand

DNA cassette. In panhandle PCR [30] a single-strand

oligonucleotide is ligated to allow subsequent PCR

amplification of the unknown region.

The supported PCR method [31] combines restric-

tion digestion of the genomic DNA with linear amplifi-

cation of a sequence specific primer. A biotinylated

DNA fragment is synthesized by elongation of a gene

specific primer using Taq DNA polymerase and bio-

11-dUTP, starting with denatured DNA restriction

fragments. The streptavidin-purified molecule is then

ligated to a double-stranded cassette, allowing the

assembly of a suitable substrate for PCR.

The rapid amplification of genomic ends (RAGE)

method [32] is unique among the R-GW methods since

it does not need a ligation step. In this method, restric-

tion fragments are polyadenylated with terminal trans-

ferase before the final PCR amplification, carried out

in the presence of oligo-dT and sequence specific

primers.

In the restriction site extension PCR [33], a walking

primer ending with a 3¢-sequence corresponding to a

restriction site is annealed to an ssDNA molecule

obtained by elongation of a gene specific primer on

restricted genomic DNA fragments. A quick elonga-

tion (5 s) of the restricted ssDNA allows a suitable

template to be generated for a subsequent PCR

amplification.

P-GW methods are characterized by the use of vari-

ously designed walking primers containing either

degenerate or random sequences. These primers are

coupled to sequence specific primers in a number of

different PCR strategies. In addition to the methods

already described in previous review papers [2–4], some

other strategies have to be mentioned (Table 1).

The restricted PCR method [36] was used for the

identification of human DNA sequences flanked by

highly repetitive elements. The authors improved the

applicability of the Alu element mediated PCR by

introducing in the reaction mix a competitor copy of

the Alu primer, which, owing to the presence of

3¢-deoxyadenosine, cannot be extended by the DNA

polymerase. By finding the most appropriate ratio

between the Alu primer and its competitor, amplifica-

tion of portions of the retinoblastoma susceptibility

gene and of the ribosomal protein SI7 gene have been

obtained.

An improvement of their original universal fast

walking (UFW) method was achieved by Myrick and

Gelbart [41] by introducing an in-gel agarase digestion

for the quantitative recovery of amplicons.

The Shine-Dalgarno PCR (SD-PCR) [51] takes

advantage of the presence of the so-called Shine–Dal-

garno sequences in prokaryotic genomes to identify

sequences upstream of specific genes. The method is

based on the use of hexameric degenerate primers,

based on the Shine–Dalgarno sequences, which are

C. Leoni et al. Genome walking in eukaryotes
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coupled with prokaryotic gene specific primers in the

amplification reaction.

The sequential hybrid primer PCR (SHP-PCR)

method [52] relies on the use of two or three PCR

amplifications carried out on the product of a first

amplification in which a gene specific primer and a

degenerate primer are used. Successive PCR amplifica-

tions are carried out by coupling sequence specific

nested primers and ‘hybrid’ walking primers provided

with 3¢-ends complementary to a target sequence of

the degenerate primer (or to the hybrid primers of the

preceding round) and a 5¢-end which constitutes the

target for the next hybrid primer.

Among the E-GW methods (Table 1) it is possible

to distinguish between methods in which the final PCR

step is carried out on the ligation product between a

DNA cassette and the DNA synthesized by the linear

amplification of a specific primer (extension and cas-

sette PCR, EC-PCR), and methods in which the final

PCR has as substrate the product of a 3¢-tailing reac-

tion performed on an ssDNA (extension and tailing

PCR, ET-PCR) (Fig. 1).

The ligation mediated PCR (LM-PCR) [53] is based

on the primer extension of a specific oligonucleotide

carried out on a chemically nicked DNA. A double-

strand DNA cassette is then ligated to the obtained

blunt-end DNA providing the substrate for the final

PCR. The linear amplification mediated PCR (LAM-

PCR) [54] differs in the strategy used to obtain the

double-strand DNA fragment to ligate with the DNA

cassette. In this case a 5¢-biotinylated specific primer

is extended on the genomic DNA. After capture by

streptavidin beads of the extension product, a second

strand is synthesized by random hexanucleotide prim-

ing. The double-strand DNA obtained is then

digested with a four nucleotide recognizing restriction

enzyme and ligated to a proper DNA cassette. The

ligation product is subjected to a nested PCR amplifi-

cation, whose products are further selected by gel

electrophoresis analysis, eluted, re-amplified and

sequenced.

In the ET-PCR methods the final PCR amplification

adopts a tail-specific walking primer coupled with a

sequence specific primer. The basic idea was settled in

the so-called long distance genome walking PCR [55]

in which sequences of 3–4 kb were obtained starting

from the elongation of primers for the hexamerin and

hairy genes from mosquito and Drosophila, respec-

tively. More recently a slightly different strategy has

been reported by Leoni et al. [56,57] for the simulta-

neous identification of members of the light harvesting

protein Lhcb1 multigene family in the spinach genome.

This strategy, based on the optimization of experimen-

tal conditions for the primer extension reaction, gives

the possibility of obtaining multiple information on

the different members of a multigene family by using a

single, highly conserved, sequence specific primer.

Two other E-GW methods cannot be catalogued as

either EC-PCR or ET-PCR strategies. The single-primer

amplification [58] introduces an E-GW method based

on the capture of a biotinylated ssDNA molecule

obtained by extension of a sequence specific primer, and

its successive PCR amplification with a nested primer.

The same nested primer must first misprime and extend

on the ssDNA, allowing the formation of double-strand

DNA substrate, amplifiable with a single primer. The

amplification fragments obtained are screened by south-

ern hybridization before sequencing.

The flanking sequence exponential anchored PCR

(FLEA-PCR) method [59] is based on the use of a

walking primer, provided with a known 5¢-flanking
sequence and a six nucleotide degenerate 3¢-terminus,

to couple with the sequence specific primer in the final

PCR amplification of the ssDNA.

GW kits and customer services

As an alternative to the use of in-house assembled GW

methods, a number of commercial kits are available

from several companies (Table 2). The most used are

the Genome Walker Kit (Clontech, Mountain View,

CA, USA) and the Vectorette Genomic System (Sigma,

St. Louis, MO, USA). These methods rely on the fre-

quently employed suppression PCR GW and vectorette

GW methods, respectively (Table 1). The DNA Walk-

ing SpeedUp Kit (Seegene, Seoul, Korea) is based on an

E-GW strategy in which short oligomers are used in

combination with sequence specific primers, under opti-

mal conditions, in a series of nested PCRs (typically

three). The final product can be either directly

sequenced or cloned. The TOPO Walker Kit (Invitro-

gen) is based on the TVL-PCR strategy (Table 1).

Additionally, two companies offer a customer GW

service. The APA Walking Service (BIO S&T, Mon-

treal, Quebec, Canada) is based on the extension of a

biotinylated specific primer and its capture on strepta-

vidin paramagnetic beads. The immobilized ssDNA is

then ligated to a so-called universal walking primer,

forming the substrate for a successive PCR. The Gen-

ome Walking Service (Evrogen, Moscow, Russia) is

based on the suppression PCR GW (Table 1).

GW patents

The development of so many GW methods gave rise

to the application of numerous patents, claiming either

Genome walking in eukaryotes C. Leoni et al.
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a methodological innovation of the process or the

application of a GW strategy for the resolution of a

specific problem. We thought it useful to collect them

in this review (Table S1). Patent retrieval was per-

formed by using the Orbit (http://www.orbit.com) plat-

form (Questel, Paris), a web resource specialized in

intellectual property. The search was executed by

browsing the FAMPAT database (Comprehensive

Worldwide Patent Family Database, Questel, Paris,

France), which covers patents from more than 90

national offices, grouped in invention-based families.

Patents were collected using the name of GW methods

(Table 1) and subdivided into processes or applications

(Table S1). Information on single patents can be

retrieved by their patent number from the Esp@cenet

portal (http://www.espacenet.com).

GW applications

GW finds application in topics where the immediate

acquisition of genomic nucleotide sequences is neces-

sary. They can be schematically catalogued in the two

main areas of insertional mutagenesis, in which the inte-

gration of DNA of viral origin, transposons and T-

DNA is studied, and de novo sequencing, in which sev-

eral aspects of genes and genome sequencing can be con-

sidered (Fig. 2). Within these areas more specific sub-

areas can be identified which have been indicated as spe-

cific molecular objectives in the third column of Fig. 2.

Furthermore, molecular objectives can be associated

with different applications (fourth column of Fig. 2). In

the following sections specific applications of GW are

reported in accordance with the scheme of Fig. 2.

Insertional mutagenesis

The genomes of both prokaryotes and eukaryotes are

often the site of insertion of viral DNA and transpos-

able elements. These natural events have been used as

tools for genetic studies in medicine and biotechnolo-

gies. In order to report about the contribution and

development of GW techniques in the field of inser-

tional mutagenesis we divided the subject according to

the molecular objective of the investigation, i.e. identi-

fication of the insertion sites of DNA of viral origin,

transposons or T-DNA.

Table 2. Commercial resources for GW. Names of GW methods are as in Table 1. DW-ACP, DNA walking-annealing control primer.

Kit name Customer service GW technique Company (website)

Genome WalkerTM Kit Suppression PCR GW Clontech (http://www.clontech.com)

VectoretteTM Genomic

Systems

Vectorette Sigma Aldrich (http://www.sigmaaldrich.com)

TOPOTM Walker Kit TVL-PCR Invitrogen (http://www.invitrogen.com)

DNA Walking SeedUp

PremixTM Kit

DW-ACP Seegene (http://www.seegene.co.kr)

Genome Walking

Service

Suppression PCR GW Evrogen (http://www.evrogen.com)

APAgene GOLD

Genome Walking Kit

APA walking

service

Bio-Primer

extension ⁄ ligation

UWP on ssDNA

Bio S&T (http://www.biost.com)

Area of interest Molecular 
objectives

Applications

Methylation

Genome 
walking

De novo
sequencing

Nucleotide
Modification/mutation

Transposons
Insertional 
mutagenesis

Virus integration

Gene marking

Gene therapy

Retrovirus studies

Genetic studies

Transgenic plants
T-DNA

Regulatory  regions

Cytoplasmic male
sterility

Gene identification

Multigene families

Metagenomics 

BAC/YAC termini

Fig. 2. Classification of GW applications.

The scheme summarizes the development

of the section GW applications.
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Virus integration

A large number of investigations employing GW strat-

egies have been developed to identify and characterize

the insertion sites of retroviral cDNAs or retrovirus

derived vectors in the human genome, furnishing pre-

cious data for understanding the mechanisms of retro-

viral replication and viral pathogenesis, and also

contributing to designing safer retrovirus derived vec-

tors. In this section, the description of the use of GW

in the characterization of retroviral vectors in the

human genome precedes the discussion about the anal-

ysis of the integration of retroviral cDNA.

Gene marking protocols were the first examples in

the early 1990s of clinical gene transfer by retroviral

vectors [61]. Gene marking studies have benefited con-

siderably from GW techniques. The first analysis by

GW of a retroviral-mediated gene marking of bone

marrow cells used for autologous transplantion in

patients with neuroblastoma was reported by Rill et al.

[62]. By I-PCR it was possible to detect neuroblasts

containing the marker gene in relapsing patients, estab-

lishing that malignant cells had been reintroduced in

treated patients. The contribution of gene marking to

cell and gene therapy has recently been reviewed by

Tey and Brenner [63], who also described the advan-

tage in this field of LAM-PCR and FLEA-PCR GW

techniques (Table 1) (see the section on Critical evalua-

tions of GW methods).

‘Gene marking’ efforts preceded the use of retroviral

derived vectors in gene therapy as delivery vehicles of

therapeutic genes. Unfortunately their use in gene ther-

apy is not without serious drawbacks. Indeed, even if

retroviral vectors are depleted of most of their genes in

order to prevent dangerous infections, insertional

mutagenesis can disrupt important genes, such as those

involved in the control of cell growth and division,

leading to cancer onset. Additionally, introduced viral

promoters and enhancer can activate transcription of

proto-oncogenes [64,65]. For these reasons, analysis of

integration sites in the host genomes has to be consid-

ered as an essential step in gene therapy protocols.

Emblematic was the case of patients with a form of

severe combined immunodeficiency caused by a defect

in a gene of the X chromosome, who first received a

retrovirus derived vector engineered with the correct

human gene [66]. Unfortunately, after 3 years, two

patients developed a leukemia-like condition owing to

the insertion of the retroviral vector in proximity to

the LMO-2 (LIM domain only 2) proto-oncogene, as

demonstrated by LAM-PCR GW analysis [66].

The first extensive GW studies for the detection of

integration sites of retrovirus derived vectors in mam-

malian chromosomes, which have been highly

exploited by researchers interested in gene therapy,

were those by Schmidt et al. [54,67]. In the first report

the authors introduced a modification of the cassette

PCR method by Fors et al. (Table 1) by using a bioti-

nylated primer for the capture on streptavidin beads of

the product of the extension reaction. By this approach

they were able to identify the integration sites of retro-

virus derived vectors both in transduced HeLa cells

and in a murine transplant model. The second GW

strategy is the already described LAM PCR (Table 1).

By this approach, authors could analyze in two pri-

mate models the contribution of marked primitive cells

to hematopoiesis.

A significant improvement in the analysis of integra-

tion sites of virus derived vectors has been obtained by

applying to GW the powerful barcoding linked DNA

pyrosequencing technique. This has been clearly illus-

trated in the report by Wang et al. [23] (see above)

who were able to analyze more than 160 000 integra-

tion sites of gamma-retroviral and lentiviral vectors in

mice.

As analysis of the use of retroviral vectors pro-

ceeded, a number of studies have also been dedicated

to the integration of retroviruses in the human gen-

ome, since integration of proviral cDNA into chromo-

somes can influence subsequent latency or active

transcription of viral genes. The first analysis focused

on the integration of HIV, or HIV vectors [68], murine

leukaemia virus (MLV) and avian sarcoma-leukosis

virus (ASLV) [69,70]. All these studies employed the

Genome Walker Kit (Clontech) for the identification

of insertion sites. Results showed that gene sequences

act as preferential integration sites of HIV cDNA, with

a weak bias in favor of active genes. Interestingly, no

favored integration sites could be detected in the anal-

ysis of control naked DNA, suggesting an influence of

DNA interacting proteins (either histones or transcrip-

tion factors) in the integration process. As for the inte-

gration of MLV and ASLV, it has been observed that,

while MLV strongly favors integration near to tran-

scription start regions with a weak preference for

active genes, ASLV shows the weakest bias toward

integration in active genes and has no preference for

transcription start regions.

Also for the analysis of retrovirus integration Wang

et al. [24] combined GW with pyrosequencing technol-

ogy, being able to identify 40 569 unique HIV integra-

tion sites. Ontology analysis of HIV hosting genes

revealed preferential integration in a group of house-

keeping genes involved in metabolism, cell cycle and

RNA metabolism. A detailed description of the

pyrosequencing GW method applied to the detection

Genome walking in eukaryotes C. Leoni et al.
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of HIV integration sites in the human genome has

recently been published [71].

Retroviruses have also been employed for ‘gene

trapping’ approaches (see Transposons below for a

more detailed description of gene trapping). Hansen

et al. [72] developed an automated I-PCR procedure

for a large-scale gene trapping analysis of mouse

embryonic stem cells, in which all the steps were per-

formed in 384-well plates. In such a way more than

10 000 mutated genes could be identified.

Transposons

Transposon insertional mutagenesis is a basic tool for

addressing gene function through analysis of mutant

phenotypes and identification of mutated genes in

eukaryotic genomes [73–83]. Together with the classical

‘transposon tagging’ approach, other strategies based

on insertional mutagenesis have been devised for the

identification of genes that do not produce easily

observable phenotypes when knocked-out. In the

‘activation tagging’ method [84], strong activating

sequences, such as the cauliflower mosaic virus

(CaMV) 35S enhancer, are inserted into transposon

sequences. Tagged genes can consequently be overex-

pressed resulting in gain-of-function phenotypes. In

‘gene trapping’ and ‘enhancer trapping’, transposon

constructs containing a reporter gene that can respond

to cis-acting transcriptional signals at the site of inser-

tion are employed. The host gene is identified by

observing the reporter gene expression pattern and

sequencing of tagged sites. Different trapping systems

have been reviewed by Springer [85].

In such a complex scenario, GW has contributed

significantly to the analysis of transposition events,

providing valuable data for reverse genetic analysis.

The first applications of GW for the identification of

transposon integration sites in eukaryotes can be found

in the review by Hui et al. [2]. In the following years,

additional research was performed in which GW was

employed not only for the identification of knocked-

out genes but also for the characterization of specific

transposons. To facilitate the description of the appli-

cations of GW to the study of transposable elements,

this section has been divided into the subsections

Plants, Invertebrates, Vertebrates and Yeast.

Plants

Gene inactivation by transposon insertion has been

employed for functional genomics in several plant spe-

cies. It is worth mentioning that also the T-DNA of

the Ti-plasmid of A. tumefaciens has been used for this

purpose. Although T-DNA mediated insertional muta-

genesis is discussed separately in this review, a clear

distinction between reports dealing with insertion anal-

ysis for transposons or T-DNA is not always possible

since in numerous applications T-DNA also served as

the launch-pad for transposons engineered in it [86].

Analysis of transposon tagging and characterization of

insertion sites for specific transposons in plants are

reported in Table 3.

Among the analyses reported in Table 3, of particu-

lar interest is the I-PCR based strategy for the identifi-

cation of mutated genes in the case of high copy

number transposable elements, which combines I-PCR

with differential screening of amplification products

[100]. An alternative strategy for identification of

tagged genes in the case of high copy number trans-

posable elements is the transposon display method,

based on a cassette GW strategy [101]. In this

approach, a dTph1 specific primer is coupled with a

cassette specific primer to amplify all the possible

insertion sites. Amplified fragments are then analyzed

through a high resolution polyacrylamide gel system.

Large-scale analyses of insertion sites have been per-

formed by high-throughput modification of GW strate-

gies. By means of the thermal asymmetric inter-laced

PCR (TAIL-PCR) and suppression PCR GW methods

more than 42 000 insertion sites of the Tos17 retro-

transposon in the rice genome were analyzed [107]. An

automated TAIL-PCR approach was developed [96]

for analysis of the collection of insertional mutants of

Ac ⁄Ds and Ac transposons in two cultivars of rice.

The DLA GW strategy associated with pyrosequencing

allowed the identification of about 965 000 sequences

flanking the highly active maize mutator (Mu) transpo-

son [60]. These analyses allowed the development of

specific insertional mutant databases. In the case of

Arabidopsis thaliana the ATIDB database (http://atid-

b.org) was established [110], which also contains informa-

tion for T-DNA mutants. For rice, the OryGenesDB

database (http://orygenesdb.cirad.fr/) was developed

[111].

Invertebrates

Among invertebrates, Drosophila melanogaster has been

the model organism on which the widest range of studies

on transposon-based functional genomes has been

developed. Insertional mutagenesis analysis can also be

found for other insects and other invertebrate metazoa,

such as the insects Tribolium castaneum and the worm

Caenorhabditis elegans. An overview of the application

of GW analysis for transposon characterization among

these organisms, allowing us to appreciate the

achievements reached in GW development, is reported

in Table 4 and below.
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With regard to D. melanogaster, the main tool of

transposon insertional mutagenesis studies has been

the P-element, employed in several strategies of gene

tagging, enhancer trapping and gene trapping. I-PCR

was first used as an alternative to the so-called ‘site-

selected mutagenesis’ procedure for the selection of

transformed lines [112]. By the same approach, large

studies have been carried out allowing the analysis of

P-element integration sites [113]. They showed that the

insertion of P-elements is not a random process. Most

of the insertions occur within a few hundred bases of

the transcription start site of a gene. Databases of

Drosophila insertional mutants are available at the

Berkeley Drosophila Genome Project [130] and at the

FlyBase Consortium [131]. A specific I-PCR protocol

is available at http://www.fruitfly.org/about/methods/

inverse.pcr.html.

A wide array of studies using the enhancer trap

strategy, known as the GAL4 enhancer trap for the

employment of the yeast transcriptional activator

GAL4 [132], have also been carried out for Drosophila.

In this strategy P-elements are used as vectors for

specific genes engineered downstream of a yeast

upstream activation sequence (UAS). A comprehensive

overview on the GAL4 ⁄UAS enhancer trap system in

Drosophila can be found in the special issue of Genesis

[133]. I-PCR and more recently splinkerette PCR [115]

have been used as GW procedures for the identifica-

tion of GAL4 enhancer trap insertions. Vectorette

PCR has been proposed as a GW method for investi-

gating trapped genes directly from their mRNAs [134].

For the red flour beetle T. castaneum a large collection

of piggyBac mutants has been produced recently by

applying three different GW methods: I-PCR, restric-

tion site PCR and vectorette PCR [121].

The UFW GW method has been used to study the

diffusion and evolution of transposable elements in

Darwinulidae, a family of non-marine ostracods (Crus-

tacea), allowing two novel families of non long termi-

nal repeat retrotransposons (Syrinx and Daphne) in

Darwinula stevensoni to be characterized [124].

For insertional mutagenesis in C. elegans a first

study adopted the vectorette PCR as the GW strategy

to obtain a map of the Tc1 transposon in the genome

of a mutator strain [125]. The same approach has been

further developed by coupling electrophoresis analysis

of vectorette amplified fragment wild-type and mutant

lines (transposon display). Co-segregating bands are

excised from gel and further analyzed by nucleotide

sequencing [126].

Table 3. Transposon analysis in plant genomes by GW approaches. Transposons are listed in alphabetical order. Names of GW approaches

and kits are as in Tables 1 and 2 respectively.

Transposon Plant GW approach ⁄ kit Note References

Ac ⁄ Ds Transgenic tobacco I-PCR T-DNA launch-pad 74

A. thaliana 87

Tomato Enhancer trappinga 88

Maize a 89

Lotus japonicus T-DNA launch-pad 90

A. thaliana Activation tagging 91

TAIL-PCR Enhancer trapping 92

Gene trapping 93–95

Rice High-throughput 96

Gene trapping 97

Barley Gene trapping 98

Transgenic tobacco cells LM-PCR 99

dTph1 Petunia hybrida I-PCR See text 100

Cassette PCR 101

En A. thaliana I-PCR 102,103

TAIL-PCR 103

En ⁄ Spm-like Zingeria biebersteiniana DNA Walking SpeedUp kit 104

Antirrhinum majus Genome Walker kit 105

Mu Maize DLA GW High-throughput 60

Spm I-PCR 74

Tos17 Rice a 106

TAIL-PCR High-throughput 107

Suppression PCR

Ty-1 Apple Site finding PCR 108

Genome Walker kit 109

aAnalysis of transposon distribution.
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The distributions of different transposon families

(ITm, hAT, piggyBac, helitron, foldback) have been

analyzed in several rotifer species by using the UFW

method [129]. In these cases telomeric regions were

found to be particularly rich in transposable elements,

whereas gene-rich regions were transposon-free.

Vertebrates

Transposon-mediated insertional mutagenesis, origi-

nally developed for plants and invertebrates, has also

been widely applied to vertebrates thanks to the identi-

fication of both reconstructed and naturally occurring

active vertebrate transposon systems. Several GW

methods have been employed for the development and

characterization of such systems (Table 5).

Recent review papers on insertional mutagenesis strat-

egies in vertebrates, where the application of GW meth-

ods is reported, are those by Izsvák et al. [144]

and Hackett et al. [145] for the analysis of the

Sleeping Beauty transposon in human cells, Yergeau and

Mead [73] on the use of transposable elements in Xeno-

pus, Clark et al. [146] dealing with the transposons in pig,

and Friedel and Soriano [83] for gene trap mutagenesis

in mouse. A specific database, containing insertion

sequences obtained by I-PCR for the piggyBac transpo-

son system in mice cells, was recently established [147].

Yeast

Transposon mutagenesis has also been applied to yeast

(Saccharomyces cerevisiae). Transposition events of the

yeast transposon Ty1 have been analyzed by I-PCR,

showing that insertions of this element occur only rarely

(about 3%) in ORF regions [148]. For yeast genome-

wide transposon mutagenesis, a more efficient shuttle

mutagenesis strategy was developed [149] in which a

library of yeast genomic DNA, mutagenized with a bac-

terial transposon, is first produced in Escherichia coli;

mutant alleles are subsequently transferred into yeast for

functional analysis. Kumar and Snyder [150] reported a

detailed protocol for shuttle mutagenesis, in which vec-

torette PCR was the chosen GW strategy for the identifi-

cation of insertion sites into the yeast genome. Reports

on the use of either vectorette PCR [151] or I-PCR [152]

for the analysis of insertional mutants obtained by

screening shuttle libraries have been published recently.

T-DNA

The T-DNA of A. tumefaciens Ti-vector is a mobile

element widely used either for ‘plant transformation’

with heterologous genes or for insertional mutagenesis

analysis of plant genomes. In any case establishing the

fate of the engineered T-DNA in the host genome

stands as one of the classical GW applications. In the

following discussion the two different topics will be

treated separately.

T-DNA for gene transfer

Before field trials of genetically modified crops it is of

primary importance both to identify T-DNA insertion

Table 4. Transposon analysis in invertebrate genomes by GW approaches. Organisms are listed according to an ascending taxonomic order,

from Insecta (D. melanogaster, Orseolia oryzae, T. castaneum, Bombyx mori), back to Crustacea (D. stevensoni), Chelicerata (Metaseiu-

lus occidentalis) and Pseudocoelomata (C. elegans, Rotifera sp.). Names of GW approaches are as in Table 1.

Organism Transposon GW approach ⁄ kit Note Reference

D. melanogaster P-element I-PCR See text 112,113

Vectorette PCR See text 114

Splinkerette PCR See text 115

piggyBac I-PCR 116,117

P-element ⁄ piggyBac Splinkerette PCR a 115

Orseolia oryzae Mariner I-PCR 118

T. castaneum Woot Restriction site PCR 119

piggyBac Restriction site PCR, I-PCR,

vectorette-PCR

120,121

Bombyx mori piggyBac I-PCR a 122

D. stevensoni Syrinx UFW 124

Daphne

Metaseiulus occidentalis Mariner I-PCR 123

C. elegans Tc1 Vectorette PCR 125

Tc3 Vectorette PCR See text 126

Mos1 I-PCR 127,128

Rotifer sp. ITm, hAT, piggyBac,

helitron, foldback

UFW 129

aEnhancer trapping analysis.
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sites in the host genome and to select transformed

plants carrying a single T-DNA copy (necessary for

avoiding possible transgene silencing processes acti-

vated by multiple T-DNA insertions [153]). Hence, it is

not surprising that in a number of cases GW

approaches were used to simply determine the number

of T-DNA integration sites, without sequencing analy-

sis. Spertini et al. [154] analyzed the complexity of the

T-DNA integration pattern in transgenic Arabidopsis

plants by simply analyzing the PCR pattern obtained

by applying the suppression PCR GW method.

Analogously, a T-DNA fingerprinting method for

discrimination between multi-copy transgenic lines and

single-copy transformants was developed on the basis

of amplified length polymorphism of fragments encom-

passing the T-DNA ⁄plant genome junctions [155].

Table 6 reports studies in which GW strategies have

been employed for the identification of the integration

site of the recombinant T-DNA in transgenic plants.

Devic et al. [156] published the first paper on the

sequence identification of T-DNA insertion sites in

Arabidopsis transgenic plants by adoption of Siebert’s

suppression PCR GW method. The same approach

was subsequently used by different authors (Table 6).

Analysis of integration sites of T-DNA in banana

plants was carried out by using a modified version of

the original subtractive PCR GW protocol [165]. In

the new version, the adaptor cassette is characterized

by an unphosphorylated 5¢-end of the short strand, in

order to favor its release during the first PCR denatur-

ation step, thereby ensuring that only the longer adap-

tor strand remains ligated and avoiding unspecific

amplifications.

The T-linker PCR method was used to compare bio-

listic and T-DNA transformation procedures in plants

(rice and Arabidopsis). As expected, in the first case

several gene copies were found integrated in the host

genome, while in the T-DNA transformed plants GW

analysis showed that a limited number of insertions

(about 60%) seems guided by vector borders [21].

T-DNA for insertional mutagenesis

Several reports are also available on the use of

T-DNA for genome-wide insertional mutagenesis with

either gene tagging or gene trapping strategies. For

these topics extended GW analyses have been done for

Table 5. Transposon analysis in vertebrate genomes by GW approaches. Transposons are listed in alphabetical order. Names of GW meth-

ods and kits are as in Tables 1 and 2 respectively.

Transposon Organism GW approach ⁄ kit Note References

Frog Prince HeLa cells Splinkerette PCR 139

Minos HeLa cells Vectorette PCR 140

NfCR1 Lungfish GenomeWalker kit 141

piggyBac Mouse cells I-PCR Gene trapping 80

Sleeping Beauty HeLa cells Splinkerette PCR 142

Mouse embryonic stem cells I-PCR 143

Tol2 Mouse embryonic stem cells I-PCR 135

Zebrafish I-PCR Gene trapping 136

TAIL-PCR Enhancer trapping 137

X. tropicalis GenomeWalker kit 138

DNA Walking SpeedUp

Table 6. Analysis of T-DNA transgenes in plant genomes by GW

approaches. The names of the GW approaches are as in Table 1.

GW approach ⁄ kit Plant Note References

Suppression PCR Arabidopsis 156

Potato 19,157,158

Tobacco 19

Shallot 159

Maize 160,161

Barley 162

Grapefruit 163

Cotton 164

Subtractive PCR Banana See text 165

T-DNA

fingerprinting PCR

Soybean 20

Arabidopsis 166

Maize 167

Canola 168

I-PCR Tomato 169

Maize 170

T-linker PCR Rice See text 21

Arabidopsis

TAIL-PCRa Maize 171

APAgene GOLD Potato See text 158

DNA Walking

SpeedUp

Potato See text 158

Universal

vectorette

Potato See text 158

aAdditional examples can be found in the original paper describing

the strategy [37].

Genome walking in eukaryotes C. Leoni et al.

3964 FEBS Journal 278 (2011) 3953–3977 Journal compilation ª 2011 FEBS. No claim to original Italian government works



the Arabidopsis and rice genomes, which are discussed

separately below.

Large-scale analysis of T-DNA insertions in the Ara-

bidopsis genome has been achieved by different groups

who developed high-throughput versions of the original

suppression PCR GW method [172–177]. Sequencing

results are available at various databases (http://genop-

lante-info.infobiogen.fr [178], http://www.gabi-kat.de/

[177] and http://signal.salk.edu/cgi-bin/tdnaexpress [176]).

The TAIL-PCR strategy was also used for sequenc-

ing T-DNA insertions by various groups [179–182]. In

particular, Sessions et al. [182] developed a high-

throughput TAIL-PCR GW strategy for the analysis

of about 100 000 T-DNA transformants of Arabidopsis

plants. In this case, T-DNA insertion sites showed a

higher presence in promoter regions (44%) than in

transcribed regions (30%) and intergenic regions

(26%). A library of the identified sites was developed

and made available for external users (http://

www.tmri.org.) [182]. Analysis of T-DNA insertion

sites has also been carried out by applying both long

inverted PCR and long tail PCR GW methods [183],

resulting in fragments longer than 6 kb.

Large-scale T-DNA insertional mutagenesis has been

applied to rice. Analysis of thousands of insertion sites

has been achieved by both I-PCR [184] and suppres-

sion PCR GW strategies [185,186]. More recently a

large-scale analysis of T-DNA insertions was per-

formed by TAIL-PCR in about 63 000 transgenic

plants. In all cases, inserts were found to be distributed

all over the 12 chromosomes. Information on T-DNA

transformed rice lines has been collected in the SHIP

(Shangai T-DNA Insertion Population) collection and

can be found at http://ship.plantsignal.cn [187].

The Arabidopsis genome has also been (and still is) a

major field of application of several gene trapping

T-DNA analyses. The first report about the production

and analysis of a collection of Arabidopsis enhancer trap

lines dates back to 1999 [188]. In this case TAIL-PCR

and I-PCR were used to analyze flanking sequences of

inflorescence related mutants. Similar protocols are still

currently used [189–191]. A detailed protocol for pro-

moter trapping and analysis of T-DNA flanking regions

by TAIL-PCR can be found in the method paper by

Blanvillain and Gallois [192]. Suppression PCR has been

used for screening a gene trap T-DNA ⁄ uidA collection

of about 10 000 transgenic Arabidopsis lines developed

for the detection of GUS activity during seed germina-

tion [193]. Further applications of GW methods to gene

trapping in Arabidopsis can be found in the review paper

by Radhamony et al. [194].

In rice the first T-DNA gene trapping studies

adopted TAIL-PCR for the analysis of constructs con-

taining Ac ⁄Ds transposable element and the uidA

reporter gene [195,196]. Since then the numerous gene

trapping studies in rice have been mostly accompanied

by this sequencing procedure. A comprehensive

description of gene trapping achievements in rice,

including also the use of GW techniques, can be found

in the paper by An et al. [197].

Analysis of large T-DNA gene trapping collections

in rice have been carried out by I-PCR [198], high-

throughput adaptation of the suppression PCR GW

method [186] or, more recently, TAIL-PCR [199,200].

In these cases also specific databases have been devel-

oped: OTL (Oryza Tag Line) database (http://urgi.ver-

sailles.inra.fr/OryzaTagLine/) [201], TRIM (Taiwan

Rice Insertion Mutants) database (http://trim.sini-

ca.edu.tw) [202] and RMD (Rice Mutant Database)

(http://rmd.ncpgr.cn) [203].

TAIL-PCR has also been chosen as the GW method

for the analysis of gene trapping in barley [98] and

banana genomes [204].

De novo sequencing

A basic application of GW is the identification of

nucleotide sequences in the course of the characteriza-

tion of genes and genomes. This can be aimed either

at the characterization of unknown sequences or at

the identification of nucleotide modifications and

mutations.

Identification of unknown sequences

Browsing the literature in this area, it can be seen that

most efforts have been devoted to the identification of

‘regulatory regions’, while a minor number of reports

deal with the use of GW in ‘gene identification’,

‘sequencing of BAC and YAC clones’, ‘cytoplasmic

male sterility’ (large modifications occurring in plant

nuclear ⁄mitochondrial genomes, which are at the basis

of the cytoplasmic male sterility phenotypic trait) and

‘multigene families’. Table 7 summarizes studies con-

ducted by GW for the analysis of regulatory regions,

while the other applications have been reported in

Table 8. Additionally, it is worth mentioning the appli-

cation of GW to metagenomics analysis, even if this

topic is outside the scope of this review. Related infor-

mation is available in the review paper by Singh et al.

[205].

Siebert et al. [15] developed the well-known suppres-

sion PCR GW method to walk upstream of the 5¢-end
coding regions of the human TPA (tissue-type plasmin-

ogen activator) and transferrin genes for a valuable

distance (4.5 and 6 kb, respectively). This technique is

C. Leoni et al. Genome walking in eukaryotes
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one of the most used GW methods, finding application

in several different cases.

Padegimas and Reichert [16] succeeded in isolating

promoter regions from three different maize peroxidase

genes, improving the splinkerette strategy with the

introduction of 3¢-blocked adaptors and removal of

unligated genomic DNA by ExoIII digestion.

The identification of regulatory regions of multigene

families can be pursued by different approaches. Leoni

et al. [56] adopted an ET-GW strategy (Table 1) in

which highly conserved regions of a multigene family

were chosen to design common primers to be used as

gene specific primers. In this way it has been possible

to simultaneously identify regulatory elements of the

spinach multigene family coding for isoforms of the

light harvesting protein Lhcb1. Additionally, novel

gene members of the same family could be detected by

this approach. In a second case, the TVL-PCR GW

method, applied to identify the regulatory regions of

strawberry SUPERMAN-like genes [29], has been used

for the identification of multiple members of a gene

family using degenerate primers based on conserved

sequences as priming sites. It must be noted also that

the Universal GW kit (Clontech) has been employed

for the analysis of a sugarcane BAC clone containing

multiple copies of the sugarcane DIRIGENT gene

[206].

Analysis of nucleotide modifications and

mutations

The application of GW to the analysis of nucleotide

modifications and mutations is essentially based on

the LM-PCR strategy due to Mueller and Wold [53].

Indeed, although originally presented as a footprint-

ing technique, LM-PCR has also been successfully

regarded as a GW technique. Pfeifer et al. [241]

illustrated its application for both genome sequencing

and methylation analysis of the human X-linked

phosphoglycerate kinase (PGK-1) gene. An automated

version of the LM-PCR usable for GW analysis of

DNA methylation, DNA damage and protein-DNA

footprints has also been developed [242]. More

recently the method was further improved (see also

[67]) and widely used for mapping DNA damage in

carcinogenesis etiology [243,244]. LM-PCR applica-

tions for the analysis of mitochondrial DNA damage

due to chemicals or ageing have also been reported

[245,246].

Critical evaluations of GW methods

The issue about which GW method better fits the spe-

cific experimental conditions is not easy to deal with

exhaustively because of the numerous methods available

Table 7. Regulatory regions identified in eukaryotes by GW approaches. Since more than 200 papers can be found in the literature dealing

with this topic, mostly reporting the use of commercially available kits, here only papers which describe the development of a specific GW

method are reported. Analyses are reported in chronological order. Names of GW methods are as in Table 1.

Gene Organism GW approach ⁄ kit Note References

Po Shark Cassette PCR 10

TPA Man Suppression PCR 15

Transferrin

At23 Arabidopsis RAGE-GW 32

PR-10 Parsley

Peroxidase Maize Modified splinkerette See text 16

Sucrose phosphate synthase Banana Single primer amplification 58

Actin Sugarcane

S15 ribosomal protein Dunaliella tertiolecta

Several cDNAs Brassica juncea Mishra et al. 40

Pennisetum glaucum

Gibberellin 20-oxidase Rice T-linker PCR 21

Squalene synthase Ganoderma lucidum Self-formed adaptor PCR 48

Ascorbate peroxidaseHsp70 Hsp10 P. glaucum High-throughput genome walking 50

Gst Salicornia brachiata

Lhcb1 family Spinach Leoni et al. 56,57

LRDEF Lily Straight walk 26

OgGSTZ2 Rice

SuRB Tobacco

PGK1 Pichia ciferrii Template blocking PCR 28

SUPERMAN-like Strawberry TVL-PCR 29
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and the multiplicity of variables in the different assays.

Nevertheless some general comments can be made.

The first issue to consider is whether a single

sequencing (as in the case of the study of a single gene)

or multiple sequencing data (as in the case of large

insertional mutagenesis analysis) are necessary. In the

first case it can be assumed that most of the methods

give satisfactory results. This is clearly shown in the

case of the identification of gene regulatory regions

(Table 7), where at least 12 different methods have

been employed. In contrast, in the identification of

multiple sequences only a limited number of methods

have been successfully used (I-PCR, vectorette,

splinkerette, suppression, TAIL-PCR), which can

therefore be considered as first choice in planning GW

experiments.

In any case, some differences clearly exist among the

GW strategies, and at least three parameters can be

considered for their critical evaluation: specificity, sen-

sitivity and efficiency. As for specificity, it can gener-

Table 8. Genes identified in eukaryotes by GW approaches. Most of the data were obtained by using the Universal GW kit (Clontech) or

other common GW approaches described in the text. Voices are listed in alphabetical order for main taxonomic groups. Applications are as

in Fig. 2.

Species Gene Application References

Animals

Drosophila melanogaster Sup 4 BAC ⁄ YAC termini 207

Homo sapiens FLEB14-14 BAC ⁄ YAC termini 208

Scyb11 BAC ⁄ YAC termini 209

HPRT Gene sequencing 210

LRP1B Gene sequencing 211

ELF3 Gene sequencing 212

Dystrophin Gene sequencing 213

Macropus eugenii LTB, TNF and LTA BAC ⁄ YAC termini 214

Schistosoma mansoni SmHox1 SmHox4 and SmHox4 BAC ⁄ YAC termini 215

Salmo salar Hox genes BAC ⁄ YAC termini 216

Pogona vitticeps Z and W chromosome fragment Gene sequencing 217

Fungi

Latimeria menadoensis Hox Gene sequencing 218

Penicillium pinophilum Endo-b-1.4-glucanase gene 5 Gene sequencing 219

Phoma betae Aphidicolan-16b-ol synthase Gene sequencing 220

Phomopsis amygdali PbGGs, ACS, PbP450-1, PbP450-2, PbTP, PbTF Gene sequencing 220

PaDC1 and PaDC2 Gene sequencing 221

Diterpene hydrocarbon phomopsene Gene sequencing 222

Pucciniomycotina RHA1, RHA2 and RHA3 Gene sequencing 223

Plants

Allium cepa Orf725 CMS 224

Capsicum annuum Rf flanking region CMS 225

Cicer arientinum Pi-ta-2 and xa5 Gene sequencing 226

Coffea arabica; C. canephora ManS1 and GMGT1 Gene sequencing 227

Malus domestica Mal D3 genes Gene sequencing 228

MdAGP1, MdAGP2 and MdAGP3 genes Gene sequencing 229

Oryza sativa Slender glume BAC ⁄ YAC termini 230

OsPE Gene sequencing 231

Spinacia oleracea Lhcb1 Multigene family 56

Sugar beet Restorer-of-fertility BAC ⁄ YAC termini ⁄ CMS 232

Sugarcane DIRIGENT Multigene family 206

Taxus media Geranyl geranyl diphosphate Gene sequencing 233

Triticum aestivum L LMW-GS genes BAC ⁄ YAC termini 234

BAC ⁄ YAC termini 235

Protozoa

Cryptobia salmositica Adenosylmethionone synthetase Gene sequencing 236

Cathepsin L-like cysteine proteinase Gene sequencing 237

MSP-1 Gene sequencing 238

Neospora caninum NcSAG4 Gene sequencing 239

NcBSR4 Gene sequencing 240
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ally be assumed that it mostly relies on the specificity

of the gene specific primer used in the GW approach.

I-PCR which adopts two specific primers should there-

fore be considered as the most specific method. Never-

theless, all the other methods that use a gene specific

primer coupled with an adaptor ⁄ tail specific walking

primer can be regarded as highly specific as well.

Methods adopting random ⁄degenerate primers, con-

versely, may show lower specificity. A precautionary

note must be added for cassette PCR methods that do

not take countermeasures to prevent the synthesis of

non-specific PCR products deriving from the walking

primer. The blocked DLA GW method properly

addresses this point, showing that blocking the adaptor

extension in the first cycle of the final PCR amplifica-

tion can increase specificity of PCR products from

44% to 100% [27].

Blocked DLA was also compared with splinkerette

PCR for sensitivity. The higher sensitivity of the first

method is clearly demonstrated by the relative intensity

of the electrophoretic bands of amplification products.

In the course of a screening experiment for the identifi-

cation of P-elements in Drosophila, Eggert et al. [114]

combined in several ratios flies carrying or not a

defined transposon. They showed that vectorette PCR

can be more sensitive than I-PCR in the identification

of transgenic P-elements, allowing detection of a spe-

cific insertion in a ratio of 1 : 6000–10 000.

It must noted, however, that some technical

improvements have undoubtedly improved the general

sensitivity of GW methods. This is the case of intro-

ducing biotinylation of adaptors and primers. Nielsen

et al. [247] showed the possibility that, when adopting

solid-phase purification of biotinylated fragments, GW

can reach a very high sensitivity, able to detect about

two copies of a target sequence in a DNA background

of 25 ng.

Recently three commercial kits [APAgene GOLD

Genome Walking Kit (BIO S&T), DNA Walking

SpeedUp Kit II (Seegene) and Universal Vectorette Sys-

tem (Sigma)] and the suppression PCR GW method (as

modified by Spertini et al. [154]) were compared for the

identification of T-DNA flanking regions in transgenic

potato. In this analysis, the two methods based on the

extension of gene specific primers and PCR amplifica-

tion with degenerated primers (APAgene� and DNA

Walking SpeedUp� II) showed higher success rates

than the two cassette PCR methods, which identified a

lower number of flanking regions [158].

As for efficiency, some strategies have to be men-

tioned for the reported capacity to read more than 3 kb

for single walk, as in the case of LD-GW PCR [55], sup-

pression PCR [15], long I-PCR and TAIL-PCR [183].

A last issue to consider for the choice of a GW

method is the possibility of its scale-up for

high-throughput analysis, if needed. This has been

demonstrated to be possible for suppression PCR

[107,172–177], TAIL-PCR [96,107,182,199], I-PCR

[72,88], high-throughput GW [248], LM-PCR [242],

straight walk high-throughput [26] and restriction site

extension PCR [33].

Conclusions and perspectives

GW encompasses an array of easy-to-use strategies for

the identification of genome nucleotide sequences, use-

ful for both insertional mutagenesis analysis and

de novo sequencing. In the first case it has largely con-

tributed to advances in reverse genetic analysis, and to

the development of databases of mutants of many

eukaryotic genomes. In the second case, GW is partic-

ularly advantageous for the identification of specific

sequences in cases where whole genome sequencing

projects have not been undertaken. It is noteworthy to

observe that most of the different GW strategies

or improvements have been developed in the course of

de novo sequencing approaches (see Identification of

unknown sequences, for example).

The extreme flexibility of GW strategies makes its

application possible in every standardly equipped

research laboratory. In addition, the possibility of

merging GW strategies to next generation sequencing

approaches will undoubtedly extend the future applica-

tion of this by now basic technique of molecular biol-

ogy.
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