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We present a numerical code for fluid–structure interactions to solve the problem of
waterhammer in pipes with thin walls. The pipe is modeled by planar beams theory
of Bernoulli–Euler in longitudinal and transverse vibrations. This code is the coupling of
the finite element method combined with the Newmark algorithm for movement of the
pipe wall, and, for the fluid, the method of characteristics. Unlike the classical theory,
this code illustrates the side effects of fluid–structure interaction affecting parameters of
waterhammer in elastic and viscoelastic pipe.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On présente un code numérique d’interactions fluide–structure pour résoudre le problème
de coup de bélier en conduites à paroi mince. La conduite est modélisée par la théorie des
poutres planes de Bernoulli–Euler en vibrations longitudinale et transversale. Ce code est
le couplage de la méthode des éléments finis associée à l’algorithme de Newmark pour le
mouvement de la paroi de la conduite et, pour le fluide, à la méthode des caractéristiques.
Contrairement à la théorie classique, ce code permet d’illustrer les effets secondaires
d’interaction fluide–structure affectant les paramètres de coup de bélier dans les cas de
conduite élastique et viscoélastique.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The classic study of the phenomena of waterhammer in pipes is usually conducted in one-dimensional flow and the
conduit is supposed to be deformed instantly as if it consists of a stacking of rings without mass [1–3]. A less restrictive
assumption and taking into account the dynamic coupling effect of the pipe wall through the Poisson’s ratio of material has
been developed by Wiggert et al. [4], Otwell [5], Chaudhry et al. [6,7]. Bahrar et al. [8,9] have developed a numeric code
using the shell theory of Timoshenko for dynamic behavior of pipe wall and bi-dimensional flow. More recently, Wiggert
and Tijsseling [10] have conducted similar studies, but in the assumptions of Timoshenko beams.

The work presented herein has been done, in planar beams theory of Bernoulli–Euler [11,12], for pipe in transverse
and longitudinal vibrations. It discusses the effects of dynamic coupling of the pipe wall and the fluid and illustrates the
parameters affecting waterhammer and evaluates the approximations made in the classical theory.
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Nomenclature

a Celerity of a classical waterhammer
α Parameter characterizing the type of anchoring

the pipe
A f Cross section area of the fluid
A p Cross sectional area of pipe wall
Cars( J ) The Laplace–Carson transform
d()/dt Total derivative
δ()/δt Derivative operator along characteristic curves
∂()/∂t Temporal derivative operator
(̇ ) Time derivative
(′) Spacial derivative
D Inner diameter of the pipe
Dm Average diameter
e Pipe wall thickness
εe The instantaneous elastic deformation
εr Strain retarded creep
E Young’s modulus
E(0) The instantaneous relaxation modulus
Ei The generic spring of Kelvin–Voigt model
E∗ Differential operator associated to the relax-

ation modulus of the material
I Moment of inertia of the cross section of the

pipe (fluid and material pipe)
g Acceleration of gravity
J (0) The instantaneous compliance of the material

of pipe wall
J The creep compliance function
J i The generic compliance of the Kelvin–Voigt el-

ement
κ Bulk modulus of elasticity of fluid
L Length of pipe wall
m f Mass of fluid per unit of length
mp Mass of pipe wall material per unit of length

m Total mass of fluid and pipe wall per unit
length

Ne(x) The shape functions
P Fluid average pressure along a cross section
qe Elementary vector of nodal degree of freedom
s Complex variable
t Time
τ , τi Relaxation times
η,ηi Viscous dampers
T f Friction term of fluid at inner surface of pipe

wall
u, w Longitudinal and transverse displacements of

pipe wall
V Fluid average velocity
x Longitudinal component of axis along a pipe
z The piezometric head at the abscissa x
ρ f Mass density of fluid
ρm Mass density of pipe wall material
ν Poisson’s ratio of material
u̇ Longitudinal velocity of the pipe wall
[m] Elementary mass matrix
[c] Elementary damping matrix
[k] Elementary stiffness matrix
{ f } Elementary term reflecting the transfer of the

momentum
[M] Global mass matrix
[C] Global damping matrix
[K ] Global stiffness matrix
{F } Global term reflecting the transfer of the mo-

mentum
X(t) Vector function of displacements of the pipe

wall at nodes

2. Basic equations and assumptions made

The basic equations are derived from the classical laws of conservation of mass, momentum for the fluid and the pipe
wall in the isentropic transformations. Assume also the fluid is barotropic Newtonian and the material of the pipe wall
behaves as elastic or viscoelastic model of Kelvin–Voigt [13]. Geometrically, the conduit is supposed to be horizontal cylin-
drical and circular. One end is rigidly attached to the tank which requires a constant pressure and the other is on the fixed
support. The flow is axisymmetric and the longitudinal gradients of the flow velocity are assumed to be small compared to
transverse gradients.

2.1. The equations of fluid

Given these assumptions, the averaged equations of the flow in a cross section of pipe can be written as hyperbolic
system that is suitable for characteristic methods:

∂(ρ f A f )

∂t
+ ∂(ρ f A f V )

∂x
= 0 (1)

ρ f
dV

dt
+ ∂ P

∂x
+ ρ f g

∂z

∂x
− 4T f

D
= 0 (2)

If we introduce εe = α(p(x, t) − p(x,0))Dm J (0)/2e the instantaneous elastic deformation of the wall and εr = ∫ t
0 α(P (x,

t − τ ) − P (x,0)) Dm d J (τ ) dτ its resulting strain retarded creep, the deformation of the wall can be considered as the sum
2e dτ
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Fig. 1. The model.

of two terms εe + εr , and α: parameter characterizing the type of anchoring the pipe and which, in the case of a pipe
anchored longitudinally, is written α = 1 + e2/D2

m + 2νeDm − ν2(1 − e/Dm)2 [2] and Eq. (1) above becomes:

1

ρ f

dP

dt
+ a2 ∂V

∂x
− 2a2ν

∂ u̇

∂x
+ 2a2 dεr

dt
= 0 (1′)

where:

a = (
ρ f

(
1/κ + αDm J (0)/e

))−1/2

The term −2a2ν ∂ u̇
∂x represents the coupling of fluid movement and dynamic behavior in the longitudinal direction through

the Poisson’s ratio ν of the pipe material.
The creep compliance function can be expressed as:

J (t) = J (0) +
n∑

i=1

J i
(
1 − exp(−t/τi)

)

corresponding to a generalized model of Kelvin–Voigt [13] in Fig. 1. In this representation, J i = 1/Ei , Ei is the spring in
parallel with viscous dampers ηi , leading to a relaxation time τi = ηi/Ei , J (0) = 1/E(0), E(0) represents the instantaneous
relaxation modulus.

2.2. Dynamic equations of pipe wall

Under the assumptions previously mentioned and small deformations, the dynamic equations of the pipe wall in longi-
tudinal and transverse direction are reduced to the following system [11,12]:

Ap E∗ ∂2u

∂x2
− mp

∂2u

∂t2
+ Ap Dν

2e

∂ P

∂x
+ T f A f = 0 (3)

E∗ I
∂4 w

∂x4
+ m

∂2 w

∂t2
+ 2V m f

∂2 w

∂x∂t
+ V 2m f

∂2 w

∂2x
= 0 (4)

where E∗ = E(1 + τ∂/∂t) is the differential operator associated to the relaxation modulus of the material of pipe wall. We
have in the Laplace–Carson transform (Cars( f ) = s

∫ ∞
0 f (t)e−st dt), the relation Cars( J ) = 1/Cars(E∗) [13]. In elastic case, E∗

is identified with Young’s modulus E .
The term ν

Ap D
2e

∂ P
∂x , in Eq. (3), is the coupling term representing the effects of the expansion of the pipe induced by fluid

pressure on the longitudinal behavior through the Poisson’s ratio. In Eq. (4) the two terms, E∗ I∂4 w/∂x4 and m∂2 w/∂t2,

represent the bending stiffness and the inertial force, and the coupling terms, 2V m f
∂2 w
∂x∂t and V 2m f

∂2 w
∂2x

, describe the forces
required to change the flow direction and to twist the element of fluid by the effect of the wall.

3. Initial and boundary conditions

The initial conditions are those for steady flow and the balance for the pipe wall. The boundary conditions are in
addition to the pressure imposed by the tank on the upstream and the instantaneous closing of valve on the downstream,
the conditions of fluid–conduit interfaces requiring, in viscous flow, equal velocities and stresses as well as:

u(x = 0, t) = ∂u(L, t)

∂x
= 0

and

w(x = 0, t) = ∂ w(x = 0, t)

∂x
= w(x = L, t) = ∂2 w(x = L)

∂2x
= ∂3 w(x = L)

∂x3
= 0
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4. Numerical solution

The numerical solution of Eqs. (1′), (2), (3) and (4) associated to initial and boundary conditions are obtained by separate
treatment method of the fluid–structure interaction: at each step of time we first solve the equations for the fluid by the
method of characteristics (MOF) with a regular grid [14] and then the dynamic equations of pipe wall is solved by the finite
elements method with at each node three degrees of freedom. This algorithm is combined with that of temporal integration
of Newmark [15]. This yield:

(a) For the fluid along the characteristic curves of slope: dx/dt = V ± a

δP

δt
± ρ f a

δV

δt
+ 2ρ f a2

V ± a

{
V

δεr

δt
± a

∂εr

∂t

}
± ρ f ag

∂z

∂x
∓ 4aT f

D
− 2νρ f a2 ∂ u̇

∂x
= 0 (5)

(b) Along the characteristic curve of slope dx/dt = 0

∂εr

∂t
=

t∫
0

αDm

2e

∂ P (x, t − τ )

∂t

d J (τ )

dτ
dτ (6)

(c) Finite elements method for pipe wall

The two dynamic equations (3) and (4) of movement of pipe wall can be discretized into finite elements [16]. Using
respectively the linear and cubic approximations for longitudinal and transverse displacement, the displacement vector in
terms of nodal degree of freedom is: qe = [u1, w1, θ1, u2, w2, θ2], the shape functions

[
Ne(x)

] =
⎛
⎝

L1 0 0 L2 0 0

0 N1 N2 0 N3 N4

0 N ′
1 N ′

2 0 N ′
3 N ′

4

⎞
⎠

and the generic nodal relationship is (u, w, θ)e = (Ne)qe .
So we have after discretization for the two dynamic vibration wall systems:

(c.1) Dynamic longitudinal vibrations

[m] =
L∫

0

ρp Ap[N]T [N]dx

[c] =
L∫

0

Ap Eτ
[
N ′]T [

N ′]dx

[k] =
L∫

0

E Ap
[
N ′]T [

N ′] dx

{ f } = −
L∫

0

(
A f T f + Ap Dν

2e

∂ P

∂x

)
[N]T dx + ([N]T Ap E

(
τ u̇′ + u′))∣∣L

0

(c.2) Dynamic transverse vibrations

[m] =
L∫

0

m[N]T [N]dx

[c] = −
L∫

2m f V
[
N ′]T [

N ′] dx +
L∫

E Iτ
[
N ′′]T [

N ′′]dx
0 0
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Fig. 2. Creep function versus temperature.

[k] =
L∫

0

E I
[
N ′′]T [

N ′′] dx −
L∫

0

m f V 2[N ′]T [
N ′] dx

{ f } = −([N]T (
E I

(
w ′′′ + τ ẇ ′′′) + m f V 2 w ′ + 2m f V ẇ

))∣∣L
0 + ([

N ′]T
E I

(
w ′′ + τ ẇ ′′))∣∣L

0

The assembly of the two sub-systems gives the following global system in similar case:

[M] Ẍ(t) + [C] Ẋ(t) + [K ]X(t) = {
F (t)

}
(7)

where X(t) = (u1, w1, θ1, u2, w2, θ2, . . . , un, wn, θn)T is the vector function of displacements of the pipe wall at nodes for
the finite elements discretization.

To determinate the dynamic responses of pipe wall structure in a transient flow, the Newmark implicit temporal integra-
tion method is adapted because of its high accuracy and stability [16].

5. Application and results

The initial velocity was set equal to V = 0.55 m/s and the piezometric head at tank is H = 0.55 m, for transient flow of
water at 25 ◦C; its cinematic viscosity 10−6 m2/s and κ = 2.1×109 Pa. The results presented below, represent the evolution
of pressure versus time at the valve for instantaneous closing of valve (10 ms).

5.1. Classical model

For viscoelastic case, the results presented in Fig. 2 are obtained experimentally for polyethylene pipe line tested at the
Laboratory of Fluid Mechanics of I.N.S.A Lyon [4].

This pipe is of data: L = 43.1 m, D = 50 mm, e = 4.2 mm, ρm = 930 kg/m3, ν = 0.43

J (t) = J0 +
3∑

i=1

J i
(
1 − exp

(−t/τi
))

, J0 = 1.542 × 10−9 Pa−1, J1 = 0.754 × 10−9 Pa−1

J2 = 1.046 × 10−9 Pa−1, J3 = 1.237 × 10−9 Pa−1, τ1 = 0.89 × 10−4 s, τ2 = 0.022 s, τ3 = 1.864 s

The viscoelastic behavior is even more pronounced as the temperature is high. At low temperatures, little change explains
that one can admit behavior substantially elastic, but when temperature rises, the effect of viscoelasticity becomes dominant
and must be taken into account in the calculations.

The results presented in Fig. 3 correspond respectively to:

– Graph a: measurement results [4].
– Graph b: theoretical calculation in elastic behavior under the conditions mentioned above, the losses being those corre-

sponding to a steady friction term.
– Graph c: theoretical calculations in viscoelastic tube, the losses is also those of a steady friction term.
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Fig. 3. Response of pressure at downstream end of polyethylene pipe on sudden closure of valve in classical model – comparison of theory and experiment
at 25 ◦C.

Fig. 4. Response of pressure at the downstream end of the polyethylene pipe on the sudden closure of a valve.

– Graph d: theoretical calculations in viscoelastic tube, still under the same conditions, but with taking into account the
unsteady part of friction term [17,18]. This correction slightly improves the concordance between theory and experi-
ment. It is found that viscoelasticity has a significant effect of depreciation that classical model in elastic case does not
take into account.

5.2. Fluid–structure interaction model

In this case the calculations were conducted for a polyethylene pipe and a copper pipe. For a polyethylene pipe, as the
first two relaxation times are small compared to the computation time, the conduit can be considered of Young modulus
E = 1/( J0 + J1 + J2). Moreover, this part is limited at the level of losses, to the steady friction term.

The numerical results are shown in Figs. 4 and 5. In Fig. 4 corresponding to the polyethylene pipe, the graphs correspond
respectively to:
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Fig. 5. Response of pressure at the downstream end of a rigid pipe (copper) on the sudden closure of a valve.

– Graph a: classical theory.
– Graphs b, c and d: model of fluid–structure interaction in elastic case: b and viscoelastic cases: c and d. The highlight

the effects of fluid–structure interaction of fluid and pipe wall without or taking into account its viscoelastic charac-
ter for arbitrary relaxation times τ = 1 s and τ = 0.1 s. We see, in elastic case, additional disturbances of pressure
related to wave’s propagation in the material of the pipe. These disturbances are added to the main disturbance in a
complex interaction. The composite wave pressure could be of quite large magnitude. The viscosity of the fluid and the
viscoelastic nature of the material have the effect of dissipation and damping of pressure waves.

Fig. 5 corresponds in the same conditions to the evolution of the pressure versus time at the valve, in a purely elastic
behavior and relatively more rigid pipe (copper) with data L = 26 m, D = 20 mm, e = 1 mm, E = 1.2 × 1011 Pa, ρm =
8920 kg/m3, ν = 0.33.

We see a similar shape but with small pressure fluctuations. Our computer code is in good agreement with those recently
found in the literature such as the work of Wiggert and Tijsseling [10].

6. Conclusion

We have attempted in this study, to give a numerical fluid–structure interaction code to calculate transients in elastic and
viscoelastic pipes. This code includes, in addition to the rheology of the pipe wall, its dynamic behavior. Unlike the classical
theory, this solver is able to accurately predict the phenomena of waterhammer. It highlights additional disturbances related
to wave’s propagation in the material of the pipe. These disturbances are added to the main disturbance in a complex
interaction. The composite wave pressure could be of quite large magnitude. The viscosity of the fluid and the viscoelastic
nature of the material have the effect of dissipation and damping of pressure waves. This code can be generalized for
industrial pipes to predict the acoustic vibrations and in addition, be adapted to simulate, in hemodynamic, some arterial
disease.
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