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Abstract
Hypothalamic leptin action promotes negative energy balance and modulates glucose

homeostasis, as well as serving as a permissive signal to the neuroendocrine axes that control

growth and reproduction. Since the initial discovery of leptin 20 years ago, we have learned a

great deal about the molecular mechanisms of leptin action. An important aspect of this has

been the dissection of the cellular mechanisms of leptin signaling, and how specific leptin

signals influence physiology. Leptin acts via the long form of the leptin receptor LepRb. LepRb

activation and subsequent tyrosine phosphorylation recruits and activates multiple signaling

pathways, including STAT transcription factors, SHP2 and ERK signaling, the IRS-protein/

PI3Kinase pathway, and SH2B1. Each of these pathways controls specific aspects of leptin

action and physiology. Important inhibitory pathways mediated by suppressor of cytokine

signaling proteins and protein tyrosine phosphatases also limit physiologic leptin action.

This review summarizes the signaling pathways engaged by LepRb and their effects on energy

balance, glucose homeostasis, and reproduction. Particular emphasis is given to the multiple

mouse models that have been used to elucidate these functions in vivo.
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Introduction
Obesity and its many comorbidities present a significant

challenge to public health in the USA. The health care

costs associated with obesity totaled more than $147

billion annually. In addition to the economic burden,

obesity results in premature death and disability from

stroke, cardiovascular disease, and type 2 diabetes mellitus

(http://www.cdc.gov/obesity/data/adult.html accessed

6/29/14). Furthermore, the obesity epidemic is no longer

confined to the USA. Worldwide, more than 1.4 billion

adults were overweight or obese in 2008 (Danaei et al.

2011). Clearly, the need for anti-obesity therapies is

large and growing larger, yet no pharmacotherapies have

been achieved more than minimal success in promoting

long-term weight loss.
At its most basic level, body weight is determined

by the amount of energy taken in relative to energy

expenditure (Schwartz et al. 2000). If energy intake

exceeds energy expenditure, excess energy accumulates

in the form of triglycerides stored in adipose tissue,

resulting in weight gain and obesity. However, the brain

integrates signals of long-term energy stores with other

physiologic inputs to modulate energy intake relative to

energy expenditure. When adipose energy (fat) stores fall,

hunger increases and energy expenditure decreases to

defend body energy stores; conversely, the brain responds

to nutritional surfeit by permitting increased energy

expenditure and decreased feeding to maintain a constant

body weight.
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One of the most important and widely studied players

in the control of energy balance is the hormone leptin

(Friedman & Halaas 1998, Elmquist et al. 2005). Leptin was

discovered by Zhang et al. (1994). Defects in leptin

production underlie the massive obesity observed in ob/ob

mice. Leptin is produced in adipose tissue in proportion

to triglyceride stores, and serves as a critical indicator of

an organism’s long-term energy status (Frederich et al.

1995a, Maffei et al. 1995). Leptin acts primarily in the

brain, especially the hypothalamus, where its action is

integrated with that of other adipokines, gastrokines, and

other signals to coordinate energy homeostasis (Friedman &

Halaas 1998, Bates & Myers 2003, Myers et al. 2009, Ring &

Zeltser 2010). In addition to leptin-deficient ob/ob mice,

rare human mutations resulting in leptin deficiency have

also been identified; leptin-deficient mice and humans

display hyperphagia, decreased energy expenditure, and

early-onset obesity (Montague et al. 1997, Farooqi et al.

1999). Leptin receptor (LepRb)-deficient humans and db/db

mice display a similar phenotype (Tartaglia et al. 1995,

Chua et al. 1996). Numerous studies have elaborated the

critical role of leptin in the modulation of energy balance:

the lack of leptin, as in starvation or genetic leptin

deficiency, increases hunger while promoting an energy-

sparing program of neuroendocrine and autonomic

changes, including decreased sympathetic nervous system
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Figure 1

Leptin signaling and biological function. Leptin binds to LepRb, activating

the associated JAK2 tyrosine kinase. Activated JAK2 phosphorylates the

intracellular tail of LepRb on three tyrosine residues. Phosphorylated Tyr985

recruits SHP2, which participates in ERK signaling; Tyr985 also serves as a

binding site for the negative feedback regulator, SOCS3. Phosphorylated

Tyr1077 partially mediates leptin’s control of reproduction; while STAT5

binds this site, STAT5 does not appear to participate in this effect of

leptin. Phosphorylated Tyr1138 engages the STAT3 transcription factor.
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tone, thyroid function, growth, and reproduction (Ahima

et al. 1997). Leptin treatment largely reverses these changes

(Farooqi et al. 1999, 2002). Decreased leptin also promotes a

variety of other behavioral and physiologic changes to

respond appropriately to low energy stores (Lu et al. 2006,

Liu et al. 2010, 2011).

Despite the initial heralding of leptin as a potential

cure for human obesity, most obese humans exhibit high

circulating leptin concentrations (Maffei et al. 1995).

Serum leptin increases in proportion to body fat percen-

tage; obese patients secrete leptin at levels appropriate for

their increased adipose mass and display elevated leptin

concentrations (‘hyperleptinemia’) relative to lean con-

trols (Tobe et al. 1999). Clearly, however, these high

circulating leptin levels do not suffice to restore body

adiposity to lean levels, as might be predicted based on the

sensitivity of organisms to decreases in leptin signaling.

Whether this inability of leptin to suppress feeding in the

face of obesity results from an intrinsic or acquired defect

in leptin action, or rather simply reflects the inability of

homeostatic controls to overcome hedonic feeding drives

remains a matter of debate. This controversy serves to

underscore the importance of developing a more complete

understanding of leptin signaling, its cellular effects,

target neural pathways, and integration with other

determinants of energy homeostasis (Figs 1 and 2).
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LepRb/STAT3 signaling represents the primary mechanism by which

leptin regulates energy balance, although the target genes of STAT3 in

LepRb neurons remain undiscovered. Leptin also recruits the IRS2/PI3K

and SH2B1 pathways, although the mechanism of their recruitment to

LepRb remains unclear. Some glucoregulatory and reproductive actions of

LepRb appear to be mediated by unknown signals that function

independently of LepRb tyrosine phosphorylation sites.
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Figure 2

Hypothalamic leptin action. Leptin acts on its receptor (LepRb) on neurons

in a series of interconnected hypothalamic nuclei to regulate satiety,

neuroendocrine function, and autonomic tone. In the arcuate nucleus,

leptin controls the melanocortin system through its opposing actions on

POMC and AgRP neurons. ARC, arcuate nucleus; VMH, ventromedial

hypothalamic nucleus; DMH, dorsomedial hypothalamic nucleus;

LHA, lateral hypothalamic area; PVH, paraventricular hypothalamic

nucleus; MC4R, melanocortin 4 receptor; POMC, pro-opiomelanocortin;

AgRP, agouti-related peptide.
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Leptin and the LepRb

Leptin is a 146 amino acid protein produced in white

adipose tissue in proportion to triglyceride stores

(Frederich et al. 1995b). Once secreted into the circulation,

leptin travels to the brain, where it enters the CNS,

presumably via the choroid plexus and circumventricular

organs. In the brain, leptin acts by binding and activating

the long form of LepRb, which is expressed primarily on

specialized subsets of neurons in certain hypothalamic

and brainstem nuclei (Tartaglia 1997, Elias et al. 2000,

Scott et al. 2009, Patterson et al. 2011). Mutations that

inactivate LepRb, as well as antagonists of LepRb acti-

vation, confirm that leptin binding to LepRb is required

for its biological activity (Chen et al. 1996, Shpilman et al.

2011). While the LEPR gene encodes multiple isoforms

(LepRa-f in rats), only LepRb contains the full intracellular

domain necessary for the activation of critical second

messenger pathways and normal leptin action (Chua et al.

1996, 1997, Lee et al. 1996, Tartaglia 1997). Many

functions for the other (‘short’) forms of the receptor

have been hypothesized, including actions as a serum-

binding protein that functions in leptin stabilization
http://joe.endocrinology-journals.org
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or sequestration (Zastrow et al. 2003, Yang et al. 2004,

Zhang & Scarpace 2009), or as a leptin transporter

(Bjorbaek et al. 1998a, Kastin et al. 1999), but LepRb

alone suffices for the control of energy balance, glucose

homeostasis, and other leptin effects, and LepRb thus

constitutes the focus of this review.
Peripheral actions of leptin

Multiple studies have attempted to assess the role of leptin

in the periphery. Mice with ablated hepatic leptin

signaling had normal body weight and blood glucose

levels, but were protected from high-fat diet or age-

induced insulin intolerance. Mice in which LepRb was

deleted from the pancreas using a Pdxcre or Ripcre also

showed improvements in glucose tolerance (Morioka et al.

2007, Huynh et al. 2010). However, interpretation of these

results is confounded by hypothalamic CRE expression in

both the PDx and RIP models (Schwartz et al. 2010,

Wicksteed et al. 2010). LepRb expression has also been

demonstrated in perivascular intestinal cells, although the

function of LepRb in these cells has not been determined
Published by Bioscientifica Ltd
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(Rajala et al. 2014). Studies examining the role of LepRb

in the heart have been difficult to perform based on the

negative effects of cre expression on cardiac function

(Hall et al. 2011). One model revealed an additive role

for cardiac-specific LepRb deletion in inducing cardiac

failure, however, suggesting that LepRb may regulate the

cardiovascular system through both central and peripheral

mechanisms (Hall et al. 2012).
Central actions of leptin

Within the brain, leptin acts on multiple populations of

LepRb neurons – primarily in the hypothalamus and

brainstem (Scott et al. 2009, Patterson et al. 2011). While

leptin action in the nucleus of the solitary tract plays a

role in the modulation of satiety, and ventral tegmental

area LepRb contributes to the control of reward and

aversion, hypothalamic LepRb appears to mediate the

lion’s share of leptin action on energy balance (Hommel

et al. 2006, Hayes et al. 2010, Ring & Zeltser 2010). Within

the hypothalamus, leptin acts on multiple populations of

LepRb-expressing neurons, including those in the lateral

hypothalamic area and the ventromedial, dorsomedial,

ventral premammillary, and arcuate (ARC) nuclei (Scott

et al. 2009, Patterson et al. 2011). Each of these sites

contains multiple distinct types of LepRb cells, each of

which contributes uniquely to leptin action. The most

studied site of leptin action is the ARC, where leptin

inhibits orexigenic agouti-related protein/neuropeptide

Y-containing (AgRP/NPY) neurons and stimulates ano-

rexigenic proopiomelanocortin (POMC)-containing

neurons. POMC neurons produce anorexigenic neuropep-

tides, while AgRP is a potent antagonist of the melano-

cortin system and NPY mediates additional orexigenic

signals (Schwartz et al. 2000).
LepRb signaling

LepRb is an IL6-type class I cytokine receptor, consisting

of an extracellular leptin-binding domain, a single-pass

membrane spanning domain, and an intracellular tail

that contains binding domains for multiple signaling

proteins (Tartaglia et al. 1995, Baumann et al. 1996). LepRb

is present on the cell membrane as a mixture of monomers

and dimers (Devos et al. 1997). Unlike many other

cytokine receptors, ligand binding does not appear to

activate LepRb by promoting receptor dimerization, but

rather promotes a conformational change that results in

the autophosphorylation and activation of JAK2, which

is constitutively bound to Box1 and Box2 motifs in the
http://joe.endocrinology-journals.org
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membrane-proximal portion of LepRb (Banks et al. 2000,

Kloek et al. 2002). Activated JAK2 phosphorylates LepRb

on three tyrosine residues in mice: Tyr985, Tyr1077, and

Tyr1138 (Banks et al. 2000, Gong et al. 2007). Each of these

phosphorylated tyrosine (pY) residues represents a Src

homology 2 (SH2)-binding motif that recruits specific

SH2-containing effector proteins to the receptor to

mediate subsequent signaling.

Leptin binding to LepRb results in the activation of

several major signaling pathways. Importantly, phos-

phorylation of Tyr1138 results in the recruitment of

STAT3 to LepRb, to permit its phosphorylation (pSTAT3)

and activation by JAK2 (White et al. 1997, Banks et al.

2000). Activated pSTAT3 translocates to the nucleus,

where it mediates changes in the expression of target

genes, including suppressor of cytokine signaling 3 (Socs3)

(which encodes a feedback inhibitor of LepRb signaling)

(Bjorbaek et al. 1999). Phosphorylation of Tyr985 recruits

protein tyrosine phosphatase 2 (SHP2; PTPN1) to LepRb,

contributing to the activation of the ERK signaling

pathway (Banks et al. 2000, Bjorbaek et al. 2001). Tyr985

also serves as the binding site for SOCS3 and thus plays

a prominent role in the feedback inhibition of LepRb

(Bjorbaek et al. 2000). Phosphorylated Tyr1077 promotes

the recruitment and activation of STAT5; Tyr1138 may also

contribute to STAT5 activation (Gong et al. 2007).

Another SH2 domain protein, SH2B1, also participates

in LepRb signaling. In addition to increasing the ampli-

tude of LepRb signaling via JAK2, SH2B1 may control

specific downstream LepRb signals, including insulin

receptor substrate (IRS)-proteins (Duan et al. 2004, Ren

et al. 2005). IRS-proteins also participate in leptin action;

they control the phosphatidylinositol 3-kinase (PI3K)

pathway, and the subsequent regulation of Akt/FoxO1

and mTORC1 signaling (Niswender et al. 2001, Kim et al.

2006, Kitamura et al. 2006). The mechanism(s) whereby

LepRb modulates this pathway remains obscure; some

data suggest a potential role for poorly understood LepRb

signaling that occurs independently of LepRb pY sites.
LepRb signaling and physiology

LepRb/STAT3 signaling

Multiple LepRb signaling pathways coordinate the

regulation of energy homeostasis. Of these, the Tyr1138/

pSTAT3 pathway plays an especially prominent role (Bates

& Myers 2003). Mice containing a substitution mutation

of LepRb Tyr1138 (which renders LepRb incapable of

recruiting and activating STAT3; s/s mice) display
Published by Bioscientifica Ltd
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hyperphagia and obesity approaching that of db/db

animals (although linear growth, fertility, and glucose

homeostasis are relatively protected in s/s relative to db/db

mice) (Bates et al. 2003, 2004, 2005). Furthermore, brain-

specific STAT3-knockout mice (STAT3NK/K) exhibit severe

obesity (Gao et al. 2004). Mice in which STAT3 was deleted

specifically in LepRb neurons (LepRbSTAT3-KO) similarly

develop hyperphagic obesity with some preservation of

glucose homeostasis (Piper et al. 2007). These studies

highlight the importance of LepRb Tyr1138/STAT3

signaling for the regulation of body weight, but suggest

some regulation of growth, reproduction, and glucose

homeostasis by leptin independently of this pathway.

The role of STAT3 signaling in energy balance in

discrete neural populations has been best characterized in

the ARC. As might be expected, specific deletion of STAT3

from AgRP neurons results in moderate obesity, increased

Npy expression, and decreased sensitivity to leptin (Gong

et al. 2008). STAT3 deletion from POMC neurons also

increases adiposity, but the effect is milder than that

observed for the AgRP-specific knockout, suggesting a

greater role for STAT3 in leptin action in AgRP neurons

than in POMC cells (Xu et al. 2007). In contrast to STAT3

deletion studies, the interpretation of studies in which a

mutant, transcriptionally active, form of STAT3 (STAT3-C)

is expressed in ARC neurons is more complicated. While

STAT3-C expression in AgRP neurons promotes leanness,

STAT3-C expression in POMC neurons results in obesity

(Mesaros et al. 2008, Ernst et al. 2009). Agrp expression is

not altered in AgrPSTAT3-C mice, consistent with the notion

that Agrp expression is more sensitive to modulation by

PI3K than by STAT3 (see below) (Mesaros et al. 2008). It

is possible that the mild obesity resulting from STAT3-C

action in POMC neurons results from altered transcrip-

tional activity of this isoform relative to native STAT3, but

STAT3-C also promotes Socs3 expression, which could

limit endogenous leptin action despite increased tran-

scription mediated by STAT3-C. Interestingly, although

the Pomc promoter contains known STAT3-binding sites

(Munzberg et al. 2003) and Pomc expression is decreased in

s/s mice and animals with neuronal STAT3 ablation (Bates

et al. 2003, Gao et al. 2004), Pomc expression is decreased

in PomcSTAT3-C animals (Ernst et al. 2009), suggesting that

while Socs3 represents a direct STAT3 target, the control of

ARC Pomc expression may reflect the effects of additional

and/or downstream LepRb signals, as well. Additionally,

none of the phenotypes resulting from the modulation

of LepRb/STAT3 signaling in POMC or AgRP neurons

approach that of brain or hypothalamus-wide modu-

lation, suggesting that LepRb/STAT3 signaling in other,
http://joe.endocrinology-journals.org
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non-ARC LepRb cells contributes to the control of energy

balance during LepRb/STAT3 signaling.
Tyr985-dependent signaling, SOCS3, and SHP2

In contrast to the obese phenotype that results from

disruption of LepRb/STAT3 signaling, mice with a

mutation in Tyr985 display a lean phenotype (which is

especially pronounced in females). These mice also display

decreased hypothalamic Agrp expression, increased

pSTAT3, exaggerated sensitivity to exogenous leptin, and

resistance to DIO (Bjornholm et al. 2007). These results are

consistent with increased LepRb signaling due to decreased

LepRb feedback inhibition via disruption of SOCS3

binding. Indeed, as for mice mutant for LepRb Tyr985,

disruption of Socs3 in the brain decreases adiposity (more

dramatically in female than in male mice) and increases

the response to exogenous leptin (Mori et al. 2004).

In addition to its role in feedback inhibition, Tyr985

may also coordinate energy homeostasis via SHP2/ERK

signaling (Bjorbaek et al. 2000, 2001). As a tyrosine

phosphatase, SHP2 was initially investigated as a potential

negative regulator of leptin signaling. However, deletion

of Shp2 from the forebrain disrupts ERK signaling and

promotes early-onset obesity (Zhang et al. 2004). Further-

more, deletion of Shp2 from POMC neurons results in mild

obesity and increased susceptibility to DIO (Banno et al.

2010). Similarly, female mice expressing a dominant

active SHP2 mutant in the brain are resistant to DIO (He

et al. 2012). Thus, these data are consistent with the notion

that LepRb/SHP2 signaling is important for leptin action

and the control of energy homeostasis, rather than SHP2-

mediating feedback inhibition on LepRb. While SHP2

plays an essential role in the control of energy homeo-

stasis, however, the promiscuity of SHP2 (which plays

roles in many signaling pathways) renders it difficult to

assess the specificity of SHP2 effects for LepRb signaling.
Tyr1077 and STAT5

LepRb/STAT5 signaling appears to have little impact on

energy balance. While brain-wide STAT5 knockout mice

develop late-onset obesity, this phenotype is quite mild

(Lee et al. 2008). LepRb Tyr1077 mutants develop only

mildly increased food intake and adiposity (Patterson et al.

2012). Furthermore, a recent study deleting STAT5

specifically in LepRb neurons has revealed no body weight

phenotype; deleting both STAT3 and STAT5 that did not

produce a more robust phenotype than deleting STAT3

alone (Singireddy et al. 2013). Also, Tyr1077 mutants enter
Published by Bioscientifica Ltd
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puberty normally, but have a prolonged inter-estrus

interval, suggesting mild subfertility in these animals.

However, LepRSTAT5-KO animals display normal estrus

cycling and fertility. Altogether, these studies suggest

that Tyr1077 plays a minor role in the control of feeding

and reproductive functions, but that STAT5 may not be

the binding partner that mediates this effect.
Other LepRb signals

Although the tyrosine phosphorylation of LepRb is

essential for the majority of leptin’s actions, mice in

which Tyr985, Tyr1077, and Tyr1138 have all been replaced

with phenylalanine (LepRb3F) are less slightly less obese

than db/db animals and display significant improvements

in glucose homeostasis and fertility relative to db/db mice

(Jiang et al. 2008). In contrast, mice express a LepRb

truncation mutant (LepRbD65) that retains JAK2 signaling

and activity but lacks Tyr985, Tyr1077, and Tyr1138 pheno-

copy db/db animals and do not appear to be significantly

protected from the obesity, diabetes and infertility that are

hallmarks of impaired leptin signaling (Robertson et al.

2010). Thus, the improved phenotype seen in LepRb3F mice

relative to db/db animals does not result from JAK2

signaling alone, as the LepRbD65 model reveals that JAK2

signaling is not sufficient to mediate these improvements.

The differing phenotypes between mice expressing LepRb3F

and LepRbD65 thus suggest the existence of non-canonical

signaling pathway that may emanate from a distal site

on LepRb, independently of LepRb pY sites. Further work

will be required to identify this presumptive pathway.

While SH2B1 and IRS-protein/PI3K signaling contrib-

ute to leptin action, the mechanism(s) of their activation

by LepRb remain somewhat unclear; no LepRb pY site has

been definitively shown to mediate their recruitment.

Thus, it is possible that one or both of these pathways

constitute the presumptive LepRb pY-independent signal-

ing pathway. Furthermore, these pathways may overlap,

as SH2B1 recruits the IRS-protein/PI3K pathway during

leptin signaling in cultured cells (Kim et al. 2000, Duan

et al. 2004). However, the SH2B1 and IRS-protein/PI3K

pathways contribute to energy balance in vivo. Sh2b1-null

mice display severe early-onset obesity and hyperphagia

(Ren et al. 2005). Furthermore, neuron-specific restoration

of SH2B1 throughout the CNS rescues this phenotype,

suggesting that CNS SH2B1 is crucial for the control

of body weight (Morris et al. 2010). Unfortunately,

the critical role of SH2B1 in insulin signaling (which is

also significantly impacted by this deletion) as well as

in signaling by other receptor tyrosine kinases renders
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-14-0404

� 2014 Society for Endocrinology
Printed in Great Britain
it challenging to determine whether this phenotype

results from only from the disruption of LepRb/SH2B1

signaling.

The roles for PI3K signaling in leptin action and the

control of energy balance are also complicated. Leptin

administration activates IRS-protein/PI3K signaling in the

mediobasal hypothalamus, and ICV treatment with

PI3K inhibitors inhibits leptin’s anorexigenic effects

(Niswender et al. 2001), along with the ability of

exogenous leptin to suppress Agrp mRNA expression in

fasted rats (Morrison et al. 2005). Furthermore, deletion

of IRS2 specifically in LepRb neurons results in obesity

(although it does not impact the ability of LepRb to

stimulate pSTAT3) (Sadagurski et al. 2012). Both in vitro

and in vivo studies have also implicated PI3K signaling in

the acute actions of leptin. Leptin treatment induces the

depolarization of POMC neurons in slice recordings; these

effects are abrogated by pretreatment with PI3K inhibitors

(Hill et al. 2008). This effect is also perturbed in mice

lacking the PI3K regulatory subunits p85a and p85b in

POMC neurons (Hill et al. 2008). While these mice do not

display gross phenotypic abnormalities, leptin’s ability to

promote acute decreases in food intake is also disrupted.

Studies in which the PI3K catalytic subunits p110a and

p110b were deleted in AgRP or POMC neurons confirm

these findings – mice lacking p110b in AgRP neurons are

mildly lean, whereas mice lacking p110b in POMC

neurons are more sensitive to DIO (Al-Qassab et al.

2009). It is unclear however, whether these results

emanate from disrupted LepRb-PI3K signaling, or from

alternations in IR-PI3K signaling, especially in light of data

that suggests that leptin and insulin activate non-

overlapping populations of POMC neurons (Williams

et al. 2010). Together, these data suggest that leptin-

induced PI3K signaling has a limited effect on energy

balance. However, the importance of the LepRb-PI3K

pathway for the glucoregulatory or reproductive functions

of leptin is yet to be determined.
Negative regulation of leptin signaling

Multiple pathways and proteins inhibit LepRb. Given its

role as an inhibitor of LepRb signaling, the mechanisms

of action for SOCS3 have been a point of considerable

interest. SOCS3 binds to LepRb Tyr985 and mediates

negative feedback by directly inhibiting JAK2 activity

and/or targeting the receptor-JAK2 complex for protea-

somal degradation (Bjorbaek et al. 1998b, 1999, 2000).

Neuron-wide deletion of Socs3 using either nestin-cre

(Socs3NK/K) or synapsin-cre confers a significant resistance
Published by Bioscientifica Ltd

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-14-0404


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Thematic Review M B ALLISON and M G MYERS Leptin signaling and physiology 223 :1 T31
to diet-induced obesity (Mori et al. 2004). Socs3NK/K mice

also display increased leptin sensitivity as measured by

both leptin-induced food intake and STAT3 phosphoryl-

ation, as well as by increased PI3K activity. While Socs3 has

not been disrupted specifically in LepRb neurons, over-

expression of Socs3 in LepRb neurons (LepRbSocs3-OE) yields

an unexpected phenotype of slightly increased leanness

(Reed et al. 2010). This may result from a compensatory

increase in STAT3 at baseline and a corresponding increase

in pSTAT3 levels after leptin treatment, although the

mechanism for this is unclear and would seem to be a bit

counter-intuitive. Clearly, however, the function of

SOCS3 may not be as uniform or straightforward as

initially thought.

Because high-fat diet induces Socs3 expression in the

ARC, ARC populations have been posited to be a major site

of leptin resistance. As a result, the role of Socs3 in arcuate

POMC and AgRP neurons has been extensively studied. As

with Socs3NK/K mice, POMCSocs3-KO mice are resistant to

DIO, but display normal body weight on chow diet (Kievit

et al. 2006). Interestingly, POMCSocs3-KO mice also have

improved glucose homeostasis on a chow diet, suggesting

that POMC neurons may be a critical site of LepRb/SOCS3

signaling in the control of peripheral blood glucose levels.

Unlike LepRSocs3-OE mice, mice overexpressing Socs3

in POMC neurons develop mild obesity on a chow

diet, and acute leptin resistance (as assessed by leptin-

induced inhibition of feeding) before any divergence in

body weight (Reed et al. 2010). These animals also display

a POMC neuron-restricted reduction in the pSTAT3

response to leptin, suggesting that potential compensa-

tory mechanisms induced in the LepRbSocs3-OE model were

not activated in this more restricted cell population.

AgRPSocs3-OE mice also display early-onset leptin resist-

ance, and slightly abnormal glucose homeostasis, but no

alterations in body weight (Olofsson et al. 2013). Thus,

while decreasing Socs3 levels may prove protective against

obesity, the modest body weight changes that occur with

overexpression of Socs3 suggest that increased Socs3 levels

may reflect hyperleptinemia and increased overall leptin

signaling, rather than promoting obesity, per se.

Protein tyrosine phosphatases (PTPases) also modulate

the amplitude and duration of LepRb signaling. Protein

tyrosine phosphatase 1B (PTP1B) has been the most

extensively studied of these, but other PTPs such as

TCPTP and RPTPe also play critical roles in both leptin

and insulin signaling (see review by Tsou & Bence

(2013)). PTP1B is a promiscuous phosphatase that atte-

nuates signaling by the receptor for insulin as well as

other receptors, in addition to LepRb. In vitro, PTP1B
http://joe.endocrinology-journals.org
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dose-dependently suppresses the leptin-stimulated

phosphorylation of Jak2 and pSTAT3 (Zabolotny et al.

2002). In vivo, whole-body PTP1B knockout (PTP1BTKO)

results in a lean phenotype, resistance to DIO, and

increased sensitivity to exogenous leptin, consistent with

the interpretation that PTP1B is a negative regulator of

LepRb signaling (Klaman et al. 2000). Interpretation

of the PTP1BTKO model is complicated by the promiscuity

of PTP1B and its broad pattern of expression, however,

provoking more focused studies of the sites and

mechanisms of its action. Pan-neuronal deletion of

PTP1B also induces a lean phenotype, whereas liver or

muscle-specific deletion has no effect, and adipose-specific

deletion actually causes weight gain (perhaps due to

enhanced adipose insulin signaling) (Bence et al. 2006).

LepRb neuron-specific PTP1B deletion (LepRbPTP1B-KO)

results in a leaner phenotype than that observed in the

PTP1BTKO mice, suggesting that this model may have

unmasked an even more important role for PTP1B in

LepRb neurons that may have been opposed by other

tissue (e.g., adipose) effects in the PTP1BTKO model (Tsou

et al. 2012). The specificity of PTP1B action on LepRb for

the development of the lean phenotype is supported by

the similar phenotypes of hypothalamic LepRb knockout

and LepRb/PTP1B double-knockout mice, suggesting the

LepRb dependence of the lean phenotype of PTP1B-null

animals (Tsou et al. 2014). Interestingly, heterozygous

LepRbPTP1BC/K mice display as strong a phenotype as

LepRbPTP1B-KO, underscoring the importance of appropri-

ate levels of phosphatase action in the control of LepRb

signaling (Tsou et al. 2012).
Future directions: leptin signaling and
gene transcription

Despite the early identification of LepRb/STAT3 signal-

ing as the primary mechanism for leptin’s control of

energy balance, LepRb/STAT3 target genes remain

poorly defined. Currently, the list of genes known to be

regulated by leptin in vivo is short: Socs3, Pomc, Cart

(Cartpt), Agrp, and Npy. LepRb/STAT3 signaling is

required for appropriate Socs3, Pomc, and Agrp gene

expression, although (as noted above) Pomc and Agrp

may represent indirect targets of STAT3 and/or may be

partly controlled by other pathways; PI3K appears to play

a role in the control of Agrp and Npy expression.

Furthermore, of these five genes, only Socs3 is thought to

be induced in multiple LepRb populations; Pomc, Agrp,

Npy, and Cart expression are restricted to circumscribed

populations and do not contribute to leptin action in
Published by Bioscientifica Ltd
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the majority of LepRb neurons. This dearth of information

about LepRb/STAT3 target genes can largely be attributed

to the challenge of specifically isolating LepRb neurons

from the hypothalamic milieu; LepRb neurons comprise

approximately !5% of all hypothalamic neurons, making

it challenging to identify cell-autonomous changes in gene

transcription for any subset of neurons. Clearly, more

work will be necessary to identify the hypothalamic gene

targets of LepRb and STAT3 signaling. These transcripts

will be responsible for much of leptin action and may

represent potential targets for therapy, in addition to

shedding light on the mechanisms of leptin action.
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