
EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS
Earthquake Engng Struct. Dyn. 2002; 31:749–769 (DOI: 10.1002/eqe.119)

Tuned mass dampers for response control
of torsional buildings

Mahendra P. Singh∗;†, Sarbjeet Singh and Luis M. Moreschi

Department of Engineering Science and Mechanics; Virginia Polytechnic Institute and State University;
Blacksburg; VA 24061; U.S.A.

SUMMARY

This paper presents an approach for optimum design of tuned mass dampers for response control of
torsional building systems subjected to bi-directional seismic inputs. Four dampers with fourteen distinct
design parameters, installed in pairs along two orthogonal directions, are optimally designed. A genetic
algorithm is used to search for the optimum parameter values for the four dampers. This approach
is quite versatile as it can be used with di<erent design criteria and de=nitions of seismic inputs.
It usually provides a globally optimum solution. Several optimal design criteria, expressed in terms of
performance functions that depend on the structural response, are used. Several sets of numerical results
for a torsional system excited by random and response spectrum models of seismic inputs are presented
to show the e<ectiveness of the optimum designs in reducing the system response. Copyright ? 2002
John Wiley & Sons, Ltd.
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INTRODUCTION

For seismic response control of building structures, several passive and active control schemes
are being considered. Among the active and passive schemes, the latter have gained a wider
acceptance and are already being used in practice. The passive systems can be divided into
two basic categories: (1) base isolation systems and (2) energy dissipation systems. In en-
ergy dissipation systems, several di<erent damping systems have been considered (1) friction
dampers, (2) visco-elastic dampers, (3) viscous dampers, (4) yielding metallic dampers, and
(5) tuned mass dampers. (Although, the tuned mass damper is put in the category of the
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energy dissipation system here, the initial concept of this system was not based on the
dissipation of energy but rather on the transfer of energy from the system to be protected
to the tuned mass absorber.) All these systems have their special features and attributes that
make them suitable for particular response control applications. The focus of this paper is on
the use of the tuned mass dampers.

Since its invention in 1909 by Frahm, the concept of a tuned mass damper has attracted
special and continued attention of several researchers and practitioners for its application to
control vibrations caused by di<erent types of forces. Since it will not be possible to give a
complete account of the vast literature available on these devices, here only a few relevant
studies are cited. Den Hartog has lucidly described the working principle of the device in
his monograph [1], providing simple formulas to obtain the optimum tuning and damping
parameters of a tuned mass damper to control the displacement of an undamped single degree-
of-freedom system subjected to a harmonic force. Since its early initial application to control
the displacement response caused by a harmonic force, now several other excitation and
response control conditions have been analyzed. Warburton [2] among others has extended
the solution repertoire by covering several other cases of excitation and responses to be
controlled. The use and limitation of these formulas with multi-degree of freedom systems is
also discussed. Among other researchers, Tsai and Lin [3] have extended the classical solution
to a damped primary system. Using curve =tting, they have provided formulas to obtain the
optimal parameters.

Although tuned mass dampers have been quite successfully used in several structures to
control the wind induced vibrations, their use for seismic response control has not been
that convincing. Some investigators [4–6] have shown that tuned mass dampers can be used
to control the seismic response, yet there are others [7–9] that show otherwise. Without
scrutinizing the details of these studies, it is not straightforward to identify the precise reason
(or reasons) for these conLicting conclusions. However, Villaverde and his associate [10–12]
o<er, perhaps, the most convincing argument for these di<erent =ndings. They observe that
the primary reason for ine<ectiveness of the dampers is the use of the classical solutions
that are not necessarily optimal for the particular situation under study. They suggest that
the damper parameters must be tuned such that the damping ratios of the dominant modes
are increased. For this, the damper must be in resonance with its supporting structure and its
damping ratio must be equal to the structural damping ratio plus a term that depends on the
generalized mass ratio and the modal displacement at the point where the damper is attached
[11]. Several numerical results were presented to show the e<ectiveness of this tuned mass
damper design procedure.

Sadek et al. [13], however, further examined the approach suggested by Villaverde and Koyama
[11] with an example of a tuned mass damper attached to a single degree of freedom system.
They observe that that, except for very small mass ratios, Villaverde and Koyama’s approach
usually leads to unequal damping ratios in the two modes of the combined system, which is
not as eNcient as having two equal damping ratios in these modes. Based on an exhaustive
numerical search of the eigenvalues of the state matrix of the combined structure and damper
system for di<erent values of the system parameters, they were able to identify the optimum
values of the tuning and damping ratio parameters that would produce two modes with nearly
equal damping ratios. By curve =tting they propose simple formulas to calculate these optimum
parameters in terms of the mass ratio and the damping ratio of the primary mass. They present
several sets of numerical results to demonstrate the e<ectiveness of their design procedure.
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The e<ective use of the tuned mass damper formulas developed for the single degree of
freedom system with the multi degree of freedom systems has also been well demonstrated
by several investigators, e.g. in References [10–13]. In such applications, the multidegree
of freedom system is represented by an equivalent single degree of freedom system. Such
equivalent representations can be successfully used when the response of the multidegree of
freedom system is dominated by a single mode, usually the fundamental mode. However, to
further improve the robustness and reduce the sensitivity of a design caused by miss-tuning
or variability in the system parameter values, and also to control structures with closely
spaced frequencies, several researchers [14–18] have proposed the use of a cluster of tuned
mass dampers (usually called multiple tuned mass dampers). The frequencies of the cluster
are distributed within a frequency bandwidth, usually centered around the frequency of the
dominant mode. The objective of using a cluster of dampers is usually not to control several
modes of the structure but to improve the control characteristics of the system. However, Rana
and Soong [19] have also examined the use of di<erent tuned mass dampers for controlling
di<erent modes of a system.

The building systems with accidental or intended eccentricities between their mass and
sti<ness centers respond with coupled lateral and torsional motions under seismic excitation.
It is of interest to study the response control of such structures using several tuned mass
dampers, and this paper is precisely concerned with this topic. The writers are familiar with
the study by Jangid and Dutta [20] and Lin et al. [21] on the control of torsional systems
with tuned mass dampers. Jangid and Dutta [20] study the response control of a two degrees
of freedom torsional system by a cluster of multiple tuned mass dampers. The input to the
main system was white noise excitation. The optimum frequency bandwidth value—the value
corresponding to the maximum reduction in the root mean square value of the main system
response—was obtained by a parametric variation study. Lin et al. [21] study a multi-story
torsional building system with one and two tuned mass dampers. They propose a method
to identify the dominant modes and critical orientation of the damper track. The optimal
parameters are obtained by minimization of the root mean square response of displacement
of the dominant mode for a random input.

In this study, four tuned mass dampers, placed along two orthogonal directions in pairs,
are considered to control the coupled lateral and torsional response of a multistory building
structures subjected to bi-directional earthquake induced ground motions. The objective here
is not to target a particular mode of the system for control, but to maximize a performance
function that quanti=es reduction in a particular response or an overall system response. The
performance function may be de=ned in terms of the Loor accelerations, story drifts and
shears, and other response quantities of interest. The seismic motion at the base is represented
in a more general form either by a stationary random model or by a set of design response
spectra. A genetic algorithm is used to search for the optimal design parameters of the four
dampers. Several sets of numerical results are presented to demonstrate the e<ectiveness of
such optimally designed tuned mass dampers.

ANALYTICAL MODEL

A multistory shear building consisting of rigid Loors supported on deformable columns, with
coupled lateral and torsional motions, shown in Figure 1, is considered here for its control
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Figure 1. Building frame model with tuned mass dampers at top.

by tuned mass dampers. It is assumed that the mass and sti<ness centers of a story do not
coincide. However, without any loss of generality it is assumed that the mass centers of all
Loor diaphragms lie on the same vertical axis and likewise the sti<ness centers for each story
also lie on another vertical axis. Each Loor has three degrees-of-freedom: two displacements in
the x- and y-directions and a rotation � about the vertical axis. The equations of motion of such
a building excited by bi-directional seismic inputs in the horizontal plane can be written as

M PD+CḊ+KD=−rg Pg (1)

where M, C; and K, respectively are the mass, damping and sti<ness matrices of the system; D
is the relative displacement vector consisting of the relative displacements and rotations of each
Loor Di = {xi; yi; �i}T; rg is the inLuence of the ground excitation; and PgT = { Pxg Pyg} is the vec-
tor of the ground acceleration components in x- and y-directions. Although the damping matrix
could take any form, here it is de=ned in terms of assumed values of the modal damping ratios.

On the roof of the above system are installed two pairs of tuned mass dampers. The
mass, damping, and sti<ness parameters of the two dampers in x-direction are denoted by:
(mx1; mx2), (cx1; cx2), and (kx1; kx2). Similar parameters for the dampers along the y-direction
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are denoted by, (my1; my2), (cy1; cy2); and (ky1; ky2). The combined equations of motion of the
structure-TMD system can be written as

[
M 0
0 Md

]{ PD
Pd

}
+
[
C+C′ Cdp
C′′ Cd

]{
Ḋ
ḋ

}
+
[
K+K′ Kdp
K′′ Kd

]{
D
d

}
=
[
rg
rd

]
(3n+4)×2

{
Pxg
Pyg

}
(2)

where matrix Md = diag(mx1; mx2; my1; my2), Kd = diag(kx1; kx2; ky1; ky2), and Cd = diag(cx1; cx2;
cy1; cy2), respectively, are the mass, sti<ness and damping matrices of the damper system;
dT = {xd1; xd2; yd1; yd2} is the vector consisting of the relative displacements of the dampers
measured with respect to the Loor on which they are placed. The inLuence coeNcient matrix
associated with TMDs is represented by rd. In Equation (2), the coupling matrices Kdp and
Cdp and sti<ness and damping contribution to the system matrices represented by K′ and C′

are given in the Appendix A. Besides the damper sti<ness and damping coeNcients, these
matrices also depend upon the relative placement position of the dampers on the Loor. It is
assumed that the perpendicular distances from the center of mass of the damper tracks along
the x- and y-directions are l1 and l2, respectively.

Performance criteria

The objective is to calculate the values for the mass, damping, sti<ness, and distances l1 and
l2 of the tuned mass dampers that will maximize a performance function which measures the
reduction in some response quantity (or quantities) of design interest. The response quantities
of the design interest could be the base shear, Loor accelerations, etc. In this study, the
following four forms of performance functions are used, primarily because they are easy
to evaluate for the models of the ground motions (the spectral density function and design
response spectra) that are used in this study:

(i) Drift-based criterion (DBC)

f1 = 1−
Max[(

√
d2
x + d2

y )i; controlled ]

Max[(
√

d2
x + d2

y )j; uncontrolled ]
i; j=1; 2; 3; : : : ; n (3)

where dx and dy are the drifts of a story in the x- and y-directions, respectively.
(ii) Acceleration-based criterion (ABC)

f2 = 1−
Max[(

√
a2
x + a2

y)i; controlled ]

Max[(
√

a2
x + a2

y)j; uncontrolled ]
i; j=1; 2; 3; : : : ; n (4)

where ax and ay are the accelerations of a Loor in the x- and y-direction, respectively.
(iii) Drift-based second norm

f3 = 1−
√∑n

i=1 (d2
x + d2

y )i; controlled√∑n
i=1 (d2

x + d2
y )i; uncontrolled

(5)
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(iv) Acceleration-based second norm

f4 = 1−
√∑n

i=1 (a2
x + a2

y)i; controlled√∑n
i=1 (a2

x + a2
y)i; uncontrolled

(6)

The performance functions in Equations (3) and (4) tend to minimize the maximum story
drift and the maximum acceleration values. The drift will mostly be largest in the bottom
story. The acceleration will usually be the largest on the top Loor, but it may not be the
case always. In general, thus maximum controlled and uncontrolled values in Equation (4)
could possibly be in di<erent Loors of the structure. The performance functions in Equations
(5) and (6), which include the responses from all stories or the Loors, focus on reducing all
involved response quantities. It is mentioned that the optimal search procedure to be used,
however, is not restricted to these special forms of the performance functions; it can be used
with any input and function as long as the performance function can be calculated.

Optimal search approach

The optimal search for the damper parameters can be conveniently made by the (1) gradient-
based methods or (2) genetic algorithm (GA) methods. Here we will use the GA approach
primarily for the following reasons. This approach is highly Lexible as it can be used with any
form of the performance function and any seismic input as long as one can analyze the struc-
ture and calculate the performance function. The approach usually leads to a globally optimum
solution as it starts with many possible choices that evolve according to the rules of genetic
propagation. Earlier, Hadi and Ar=adi [22] have used the genetic algorithm to obtain the op-
timum parameters of a tuned mass damper installed on a planer structure. A brief description
of the basic elements of this very powerful and e<ective approach is provided below.

Since their development by Holland [23], the genetic algorithms have enjoyed a growing
interest in the combinatorial optimization community and have been used in many di<erent
applications. Recently, Singh and Moreschi [24] and Moreschi [25] have successfully used
GA for optimal sizing and placement of energy dissipation devices in multistory buildings
subjected to earthquake induced ground motions. Genetic algorithms are robust search and
optimization techniques that are based on the principles of natural biological evolution. In the
context of our problem of optimal design parameters of the dampers, all feasible designs of the
dampers represent the individuals in the search space. A design is considered the best (=ttest
individual) if the performance function associated with this design has the highest value. The
objective is to identify the best design in this search space. A genetic algorithm operates on
a population of the potential solutions (designs) which successively evolves through random
genetic changes, involving mating with crossover and mutations that emulate natural biological
evolution, to produce a successively better approximation to a design solution. The selection
of pairs for reproduction exploits the current knowledge of the solution space by propagating
better designs (individuals) and discouraging the poorer ones. The crossover and mutation
operators are the two basic mechanisms of a genetic algorithm; they create new designs for
further exploration in the search space. The rules for mating, crossover and mutation are
de=ned in a probabilistic manner. As a new population is created, the performance function
is evaluated for each new design to determine its =tness with respect to other designs in the
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population. This process is repeated for a number of cycles (generations) until no further
improvement is observed in the best individual in the subsequent generations. The genetic
algorithms, thus, di<er from conventional optimization techniques in the following ways: (1)
They consider simultaneously many design points in the search space and therefore have a
reduced chance of converging to local optima. (2) They do not require any computations
of gradients of complex functions to guide their search; the only information needed is the
response of the system to calculate the objective or =tness function. (3) They use probabilistic
transition rules (genetic operators) instead of deterministic transition rules. There are now
several monographs [26–29] on the subject and papers dealing with applications in structural
engineering [30–32] along with those mentioned earlier.

In the context of our problem of selecting the damper parameters, we proceed as follows.
For the four tuned mass dampers, there are total of 14 parameters to be calculated: four
parameters each for the mass, damping and sti<ness coeNcients plus two parameters for
the distances l1 and l2. First a workable range for each parameter value is selected. These
ranges are discretized to identify various discrete values the parameters can take. The discrete
values, randomly selected, de=ne a set of four tuned mass dampers, representing a possible
control system design. In GA terminology, each design represents a chromosome identifying
an individual of the population. The individual is made up of genes consisting of the selected
parameter values. The optimization process starts with a population of these individuals. For
the problem at hand, 30 individuals were selected to form the population. There is no hard and
fast rule to determine the size of a population. A larger population perhaps will go through
fewer evolutions of generations than a smaller population to converge to the =nal optimum
solution. However, in each generation a larger population will also require more calculation of
the performance function than the smaller population. The structural system is next analyzed
for each individual design of the population, and the individual designs are rank-ordered
according to the value of their performance functions. The design with highest performance
index is the best, and so on. The individual designs are then paired for reproduction of new
designs to create a whole new generation of designs through mating. Not all but a high
percentage of the individuals in the population are paired for reproduction. Herein we chose
to pair 95 per cent of the individuals. The pair selection for mating is done according to
the roulette-wheel scheme the details of which can be found in Reference [25]. Each pair of
individuals procreates a new pair of the o<-springs through crossover. The crossover involves
intermixing of the parental genes. A simple crossover scheme may consist of switching of
parental genes above a randomly selected gene location. More complex crossover schemes
with multiple point switchovers can also be used. A fraction of the new population is also
subjected to mutation to introduce new designs in the population. It involves a simple exchange
of an existing gene by a randomly selected new gene. In this study, in each generation a 5 per
cent of the population was subjected to mutation. Besides mutation, elitist selection schemes
are also introduced in the formation of a new generation. In this scheme, the last ranked
individuals in the current generation is dropped and replaced by the =rst ranked individual
from the previous generation. This tends to retain the best characteristics of the previous
generation in the current generation. The newly formed generation then goes through the
whole cycle of genetic evolution to create a new generation. After a few cycles of generation,
the best design in the population usually converges to the optimum design. To implement this
scheme in this study, the genetic algorithm module written in FORTRAN 90 by McMahon
et al. [33] was modi=ed and used.
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Performance function evaluation

In this genetic search process, the majority of computational e<ort is spent on the analysis of
structure to calculate the performance function for each individual design in each generation.
For the linear multidegree of freedom system and the seismic input considered in this study,
the response quantities required for calculating the performance function were obtained by a
generalized modal analysis approach. Although the damping of the structure is assumed to
be classical, the combined structure and damper system represented by Equation (2) will be
non-classically damped. To analyze a non-classically damped system, it is convenient to work
with the system of =rst order state equations

Aẏ(t) + By(t)=D′
{
0
rs

}
Pg (7)

where, for a N degree-of-freedom dynamic system (2) y(t) is the 2N × 1 state vector con-
sisting. The system matrices A; B and D′ of dimension 2N × 2N are de=ned as

A=
[
0 Ms

Ms Cs

]
; B=

[−Ms 0
0 Ks

]
; D′ =

[
0 0
0 Ms

]
(8)

where, Ms; Cs, and Ks are the mass, damping and sti<ness matrices of the combined structure
and damper system de=ned by Equation (2). Following the procedure described by Singh and
Maldonado [34; 35] one can calculate the means square value of a response quantity R for
bi-direction seismic input de=ned by spectral density functions as follows:

E[R2(t)]=
2∑

l=1




∑N
j=1 �

2
jl I

l
j + 4

∑N
j=1 a2

jlI2j +

2
∑N−1

j=1

∑N
k=j+1

[
Wjk

(
I lij −

I l1k
T4

jk

)
+Qjk(I l2j − I l2k) +

�jl�kl
T2

jk
I l1k + 4ajlaklI l2k

]


(9)

where various terms in this expression are de=ned in terms of the complex modal properties
for the system and seismic inputs, as described in Appendix B. I l1j, and I l2j are the frequency
integrals that express the mean square values of the relative displacement and relative velocity
responses of an oscillator of frequency !j and damping ratio �j subjected to the base motion
de=ned by the spectral density function Ul(!) as follows:

I l1j =
∫ ∞

−∞

Ul(!)
(!2

j −!)2 + 4!2
j �2

j !2
d!; I l2j =

∫ ∞

−∞

Ul(!)!2

(!2
j −!)2 + 4!2

j �2
j !2

d! (10)

By relating these frequency integrals with the ground response spectrum values of the input
motions, one can obtain the design value for the response quantity Rd of interest as follows:

R2
d =

2∑
l=1




∑N
j=1

(
�2jl
!4

j
P2
jl + 4a2

jlV
2

jl

)
+

2
∑N−1

j=1

∑N
k=j+1

[
Wjk

!4
j
(P2

jl − P2
kl) +Qjk(V 2

jl − V 2
kl ) +

�jl�kl
!2

j !2
k
P2
kl + 4ajlaklV 2

kl

]


 (11)
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where, Pjl and Vjl , respectively, are the pseudo-acceleration and relative-velocity response spec-
trum values for an oscillator with parameters (!j; �j) excited by the lth component of the
base motion.

NUMERICAL STUDY

System model

The 6-story shear building model shown in Figure 1 is considered for the numerical study.
Properties of the building are: mass of each Loor =40 000 kg, Lexural story sti<ness in
x- and y-direction (kx; ky)=4:5× 107N=m, torsional sti<ness of a story (k�)=1:18× 109Nm=
rad and radius of gyration (r)=11:7m. The distribution of sti<ness is symmetrical about the
y-axis, thus (ex=Lx =0). However, in the y-direction an eccentricity of magnitude ey=Ly =0:075
exists between the mass and sti<ness centers. The =rst nine natural frequencies of the building
are 7.98, 8.09, 11.36, 23.46, 23.79, 33.59, 37.59, 38.11, and 49:53 rad=s. It is noted that in
these nine frequencies there are three pairs of closely spaced frequencies. Modal damping
ration of the building is assumed to be 0.03 in all modes.

Ground excitation models

Both, the stochastic model and the design response spectra have been used to de=ne the
base input motion. For the stochastic model, the ground motions in x- and y-directions are
described by two identical but uncorrelated zero-mean stationary processes with power spectral
density functions Ul(!) of the Kanai–Tajimi form:

Ul(!)=
!4

g + 4!2
g "

2
g!

2

(!2 −!2
g )2 + 4!2

g "2g!2 S
2 (12)

The parameters of this function are: !=18:85 rad=s, �=0:65 and S2 = 0:0618 m2=s3=rad.
The response spectrum model is represented in terms of the pseudo acceleration and relative
velocity response spectra shown in Figures 2a and 2b, respectively. They are the average
values of the response spectra of an ensemble of 50 simulated ground acceleration time
histories.

Tuned mass damper parameters

As mentioned before, two pairs of tuned mass dampers are installed at the top of the building
(Figure 1). The objective of the study is to design the optimum parameters of these TMDs
that would maximize the performance functions stated earlier. The possible ranges for the
four design parameters are =xed as follows:

(a) Mass ratio, mr: The mass ratio is de=ned as the ratio of the damper mass to the total
building mass. It is assumed that each damper mass ratio can vary in the range of 0.1 per
cent to 1 per cent of the building mass. Thus the maximum mass of the damper system
consisting of four dampers could be as high as 4 per cent of the building mass.
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Figure 2. Input response spectra for: (a) pseudo-acceleration; (b) relative velocity.

(b) Frequency tuning ratio, fr: The frequency ratio for each damper is de=ned as the ratio
its own natural frequency to the fundamental frequency of the building structure. Here it
is assumed that this ratio could vary between the range of 0–2.5.

(c) Damping ratio: This is the ratio of the damping coeNcient to its critical value. Thus for
the ith damper in x-direction it is de=ned as �i = cxi=

√
4kximxi. It is assumed that this

ratio can vary in the range of 0–10 per cent.
(d) Damper positions from the mass center, l1 and l2: It is assumed that this distance can

vary between 1 and 2.5 metres.
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Table I. Damper parameters and their ranges for the three design cases.

Design parameters Case 1 Case 2 Case 3

Mass ratio (mr) 0:001¡mr60:01 0.01 (=xed) 0.01 (=xed)

Tuning frequency 0:0¡fr62:5 0:0¡fr62:5 0:0¡fr62:5 and
ratio (fr) fr1 =fr2;fr3 =fr4

Damping ratio (dr) 0%¡dr610% 0%¡dr610% 0%¡dr610%

Position from 1:06l62:5 1:06l62:5 1:06l62:5
center of mass (l)

To use the genetic algorithm, this continuous range is divided into 25 equally spaced
discrete values. Since there are 14 design parameters, and each parameter could be chosen
independently of others in 25 di<erent ways, there a total of 2514 possible design solutions.
One could not possibly evaluate each of these valid solutions to identify the optimum solution.
The genetic algorithm, however, makes it possible to identify the best solution within a
manageable computational e<ort.

Varying all parameters independently adds Lexibility in the optimization process, but it also
increases computational e<ort to achieve the optimum solution. So it might be of interest to
=x some parameter, or constrain them to a certain value, to reduce the number of di<erent
parameter combinations to be considered. To examine such e<ects, here three di<erent cases
have been considered. In case 1, all design parameters are allowed to vary independently of
each other within their speci=ed ranges. In case 2, however, the mass is =xed at its highest
value of 1 per cent for each damper, but other parameters are allowed to vary freely in their
ranges. Case 3 is similar to case 2, but with an additional constraint that frequencies of the two
x-direction dampers are the same, and so are the frequencies of the two y-direction dampers.
Except for these constraints on the mass and frequency ratios, the other two parameters can
vary freely in their own ranges. The characteristics of these three cases are shown Table I. A
comparison of these three cases with regard to their e<ectiveness in reducing the response will
show the bene=t of having Lexibility in the design process. Case 1 has the highest Lexibility
but also the largest number of design parameters to be optimized. Case 3 obviously has the
least Lexibility and correspondingly a smaller number of parameters to be optimized.

For the three cases shown in Table I, Figures 3(a) and 3(b) show the evolution of the
optimum solution with the number of generation. These results are for the input de=ned by
the spectral density functions. The performance function values are thus expressed in terms
of the mean square values of the drift and acceleration responses. Figure 3(a) is for the drift-
based performance function, and Figure 3(b) for the acceleration-based performance function.
The vertical axis indicates the value of the performance function for di<erent generations
shown on the x-axis. It is seen that the solutions for all cases approach their maximum values
after about 150 cycles of generations. The case 1, with most Lexibility and most number of
parameters, seems to converge the faster than others and also reaches the highest value of the
performance function. The case 3 converges more slowly and also does not reach as high in
its performance as the other two cases. Thus the case having the more Lexibility in the choice
of parameters is better than other cases. The =nal optimum parameters for the three cases for
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Figure 3. Performance improvement with generations for: (a) drift-based performance function, f1;
(b) acceleration based performance function, f2; Kanai–Tajimi PSDF input.

the two optimum design criteria are give in Table II. The table also shows the =nal values of
the performance functions obtained for these three cases. For the following numerical results,
only case 1 is considered.

Figures 4 and 5 show the mean square values of the story drift and Loor accelerations,
respectively, for the uncontrolled and controlled structures. The drifts and accelerations in
the x- and y-directions are shown separately. In both =gures, the controlled values for the
damper parameters obtained according to the drift-based and acceleration-based performance
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Figure 4. Inter-story drift responses in X - and Y -directions with and without tuned mass
dampers designed for f1 (Equation (3)) and f2 (Equation (4)) performance functions;

Kanai–Tajimi PSDF input.

Figure 5. Floor acceleration responses in X - and Y -directions with and without tuned mass
dampers designed for f1 (Equation (3)) and f2 (Equation (4)) performance functions;

Kanai–Tajimi PSDF input.
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Figure 6. Percent reduction in story drifts and Loor accelerations in X -direction for tuned mass dampers
designed for f1 (Equation (3)) and f2 (Equation (4)) performance functions; Kanai–Tajimi PSDF input.

Figure 7. Percent reduction in story drifts and Loor accelerations in Y -direction for tuned mass dampers
designed for f1 (Equation (3)) and f2 (Equation (4)) performance functions; Kanai–Tajimi PSDF input.

functions are shown. A signi=cant reduction in the two response quantities is noted for both
design criteria. The percent reductions in the responses are, however, more clearly seen from
Figures 6 and 7. Figure 6 is for the response values in the x-direction and Figure 7 for the
values in the y-direction. From these =gures it is noted that design based on a particular
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Figure 8. Percent reduction in total drifts and accelerations for 2 and 4 tuned mass dampers designed
with performance function, f1 (Equation (3)); Kanai–Tajimi PSDF input.

response quantity-based criterion may also be e<ective in reducing other response quantities.
However, in general, the use of the acceleration-based optimum design will be e<ective in
reducing the acceleration response more than the drift response, and vice versa. As one would
expect, the acceleration reduction at the base due to the tuned mass dampers installed on the
top is not as high as at the other locations.

In Figure 8 we compare the e<ectiveness of two versus four tuned mass dampers. The
response reductions in the total root mean square values of the story shears and Loor accel-
erations are shown. Here, the total response means the square root of the sum of the squares
of the x- and y-direction responses. The optimum designs were based on the drift-based per-
formance function. It is clear from this =gure that four dampers are more e<ective than two
dampers. Obviously, having more dampers provides additional Lexibility to adjust parameters
for a better response control, especially in a multi-degree of freedom system.

Figure 9 is similar to Figure 6 or 7, except that the seismic input for these results is de=ned
by the pseudo-acceleration and relative velocity response spectra of Figures 2. These results
are presented to simply show that one can e<ectively use the commonly used form of seismic
input—design response spectra—for optimum design of tuned mass dampers. The response
quantities in Figure 9 are calculated by the response spectrum approach mentioned earlier. The
percent reduction in the total story shear and Loor accelerations are shown for the two designs
based on acceleration and drift norms of Equations (5) and (6). The optimum parameters of
the dampers in the two designs are shown in Table III. Also shown are the =nal performance
function values achieved in the optimization process. The observations based on the results
of Figure 9 are similar to those given for Figures 6 and 7.

The calculated optimal parameter values can be further re=ned by dividing the parame-
ter ranges into =ner discrete values. This will of course increase the computational e<ort.
However, knowing an optimal parameter value with a coarser division of the range, one can
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Figure 9. Percent reductions in total drifts and accelerations for tuned mass damper designs based on
f3 (Equation (5)) and f4 (Equation (6)) performance functions; response spectrum input.

rede=ne a narrower range around the calculated optimal value. This narrower range can be
further divided into =ner discrete values to calculate a re=ned optimal value. This re=nement
was carried out here. The results in lower part of Table III show the new optimal values
of the parameters, and their corresponding performance function values. The re=ned param-
eter values, indeed, provide a better performance as indicated by the higher values of the
performance function realized.

CONCLUDING REMARKS

The paper describes an approach for calculating the optimum design parameters of several
tuned mass dampers to control the seismic response of torsionally coupled building structures.
As an example, two damper pairs are used on the top Loor of a torsionally coupled building.
The optimal parameters are obtained by maximizing several di<erent forms of the performance
functions that measure in di<erent ways the reduction in seismic response. A genetic algorithm
is used to search for the optimal solution. This optimal approach can be conveniently used
with any form of the performance function and seismic inputs as long as the performance
function can be calculated. For linear systems, the commonly used design spectra can be
used in optimal designs. Having more Lexibility in the choice of parameters can be bene=cial
for producing a better design. The e<ectiveness of the optimally designed tuned dampers is
demonstrated by several numerical examples.
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APPENDIX A

The coupling matrices involved with matrix Cs and Ks in Equation (2) are as follows:

Cdp =


−cx1 −cx2 0 0

0 0 −cy1 −cy2
l1cx1 −l1cx2 l2cy1 −l2cy2


 ; Kdp =


−kx1 −kx2 0 0

0 0 −ky1 −ky2
l1kx1 −l1kx2 l2ky1 −l2ky2


 (A1)

Cpd =CT
dp and Kpd =KT

dp (A2)

C′ =



[0](3n−3)×(3n−3) [0](3n−3)×3

[0]3×(3n−3)


 cx1 + cx2 0 (cx2 − cx1)l1

0 cy1 + cy2 (cy2 − cy1)l2
(cx2 − cx1)l1 (cy2 − cy1)l2 (cx1 + cx2)l21 + (cy1 + cy2)l22



3×3



(A3)

K′ =



[0](3n−3)×(3n−3) [0](3n−3)×3

[0]3×(3n−3)


 kx1 + kx2 0 (kx2 − kx1)l1

0 ky1 + ky2 (ky2 − ky1)l2
(kx2 − kx1)l1 (ky2 − ky1)l2 (kx1 + kx2)l21 + (ky1 + ky2)l22



3×3



(A4)

C′′ =[[0]4×(3n−3) [Cpd]4×3]; K′′ =[[0]4×(3n−3) [Kpd]4×3] (A5)

APPENDIX B

Various terms and coeNcients required in Equations (9), (10) and (11) are de=ned in terms
of the eigenproperties of the system obtained from the solution of the following eigenvalue
problem:

−[jA�j =B�j; j=1; : : : ; 2N (B1)

where ’j is the eigenvector. The eigenvalue )j is de=ned as

)j =−�j!j + i!j

√
1− �2

j (B2)

In terms of these, we de=ne

!j = |)j|; �j =−Re()j)=!j; Tjk =
!j

!k
(B3)

ajl =Re(*jFjl); bjl =Im(*jFjl) (B4)

�jl =2!j(bjl
√

1− �2
j − ajl�j) (B5)

In Equation (B4), Fjl is the participation factor de=ned as

Fjl = {-L
j }TMsrs (B6)
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where {’L
j } is the lower half of the eigenvector ’j. The quantity *j is the modal response

quantity of interest obtained from the eigenvector ’j as

*j =TT’j (B7)

The transformation vector T transforms the eigenvector into the desired response quantity. This
vector depends upon the system properties. InLuence matrix of ground excitation is de=ned
as

[rs](3n+4)×2 = [[rs1](3n+4)×1 [rs2](3n+4)×1] (B8)

The participation factor coeNcients Wjk and Qjk used in Equations (9) and (11) are de=ned
in the appendix of paper by Singh et al. [36].
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