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Abstract—In mining data streams the most popular tool is the Hoeffding tree algorithm. It uses the Hoeffding’s bound to determine the

smallest number of examples needed at a node to select a splitting attribute. In the literature the same Hoeffding’s bound was used for

any evaluation function (heuristic measure), e.g., information gain or Gini index. In this paper, it is shown that the Hoeffding’s inequality

is not appropriate to solve the underlying problem. We prove two theorems presenting the McDiarmid’s bound for both the information

gain, used in ID3 algorithm, and for Gini index, used in Classification and Regression Trees (CART) algorithm. The results of the paper

guarantee that a decision tree learning system, applied to data streams and based on the McDiarmid’s bound, has the property that its

output is nearly identical to that of a conventional learner. The results of the paper have a great impact on the state of the art of mining

data streams and various developed so far methods and algorithms should be reconsidered.

Index Terms—Data streams, decision trees, Hoeffding’s bound, McDiarmid’s bound, information gain, Gini index
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1 INTRODUCTION

1.1 Motivation and Results

DECISION trees developed in the 80s and the 90s, e.g., ID3,
C4.5, and Classification and Regression Trees (CART),

are powerful techniques in data mining. At the beginning
of 2000s, they have been adapted to deal with stream data
[1], [2], [4], [8], [9]. The problem was to ensure that, with
high probability, the attribute chosen using N examples is
the same as that chosen using infinite examples. The goal
was to compute the heuristics measures, e.g., information
gain or Gini index, based on these N examples, and then to
split the examples (learning sequence) according to this
attribute. To solve the problem hundreds of researches
used the so-called “Hoeffdings trees,” derived from the
Hoeffding’s bound, for mining data streams. The Hoeff-
ding’s bound states that with probability 1� � the true
mean of the random variable of range R does not differ
from the estimated mean, after N independent observa-
tions, by more than:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 lnð1=�Þ

2N

r
: ð1Þ

A close look at the techniques and reasoning of data stream

researches motivated us to revise their methodology. In this

paper, we show that:

1. The Hoeffding’s inequality is not an adequate tool to
solve the underlying problem and the previously
obtained and presented in the literature results,
based on it, in a general case (for any heuristic
measure) are not true. Consequently, all methods and
algorithms developed in the literature for mining
data streams, if they use the Hoeffding’s bound,
should be revised.

2. The McDiarmid’s inequality, used in a proper way,
is an effective tool for solving the problem.

3. The well-known result “Hoeffding’s bound,” with �
given by (1), for an arbitrary heuristic measure,
cannot be obtained either from the Hoeffding’s
inequality (see Section 1.3) or from the McDiarmid’s
inequality (see Section 2).

4. The McDiarmid’s bound for information gain (used
in ID3 algorithm) is given by (29) and (30), see
Theorem 1 in Section 3. It is easily seen that our result
differs from (1).

5. The McDiarmid’s bound for Gini index (used in CART
algorithm) is given by (37) and (38), see Theorem 2 in
Section 4. Formulas (37) and (1) are, by chance, of the
same form. However, it should be emphasized that (1)
cannot be derived from the Hoeffding’s inequality, as
it was argued by previous authors.

Without any doubts, the results of the paper have a great
impact on the state of the art of mining data streams and it
shows that various developed so far methods and algo-
rithms should be reconsidered.

1.2 Decision Trees for Nonstream Data

Data mining is an interdisciplinary branch of science
drawing ideas from various methods, areas and techniques
such as regression analysis and generally statistics, machine
learning, database systems, pattern recognition, signal and
image processing and soft computing [10], [22], [23], [15].
Typical applications include prediction of sales in a super-
market or clustering bank’s clients into groups of a risk. One
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of the most popular techniques in data mining is based on a
decision tree induction. Historically, the first decision tree
algorithm was ID3 (Iterative Dichotomiser) [20], later C4.5
[21] and Classification and Regression Trees [5] algorithms
were developed. In the beginning they were applied to solve
problems characterized by static data. In most algorithms,
e.g., ID3, entropy was taken as a measure of the impurity in
a collection of training examples. As a measure of the
effectiveness of an attribute in classifying the training data,
the so-called information gain was used. Its interpretation is
the expected reduction in entropy caused by splitting the
examples according to this attribute. We will now formally
describe this method and introduce the notation used
through the rest of the paper.

Suppose that attribute a can take one of jaj different
values from the set A ¼ fa1; . . . ; ajajg (analogously for any
other attribute) and � ¼ fk1; . . . ; kKg is a set of different
classes. Let

Z ¼ fX1; . . . ; Xi; . . . ; XNg; ð2Þ

be the training set (set of examples) of size N , where
X1; . . . ; XN are independent random variables defined as
follows:

Xi ¼ ðaji ; bli ; . . . ; kqiÞ 2 A�B� � � � � �; ð3Þ

for i ¼ 1; . . . ; N , ji 2 f1; . . . ; jajg, li 2 f1; . . . ; jbjg; . . . ; qi 2 f1;
. . . ; Kg.

Each element of Z belongs to one of the K different
classes kj. Entropy associated with the classification of Z is
defined as

HðZÞ ¼ �
XK
j¼1

pj log2 pj; ð4Þ

where pj is the probability that element from Z comes from
class kj. We estimate this probability by nj

N , where nj is the
number of elements from class kj. Then

HðZÞ ¼ �
XK
j¼1

nj

N
log2

nj

N
: ð5Þ

Let us choose an attribute a, characterizing the elements
of set Z. Then Zai denotes a set of elements from Z, for
which the value of a is ai. The number of elements from set
Zai is labeled as nai . Then the weighted entropy for attribute
a and set Z is given by

HaðZÞ ¼
Xjaj
i¼1

nai
N
HðZaiÞ; ð6Þ

where

HðZaiÞ ¼ �
XK
j¼1

njai
nai

log2

njai
nai

; ð7Þ

and njai denotes the number of elements in set Zai from class
kj. Information gain for attribute a is given by

GainaðZÞ ¼ HðZÞ �HaðZÞ: ð8Þ

Let us assume, that a is an attribute with the highest value
of information gain, while b is the second-best attribute.
Define

fðZÞ ¼ GainaðZÞ �GainbðZÞ
¼ HðZÞ �HaðZÞ � ðHðZÞ �HbðZÞÞ
¼ HbðZÞ �HaðZÞ:

ð9Þ

In Section 4, we will extend the above notation to deal with
another heuristic measure—Gini index.

1.3 Decision Trees for Stream Data and Hoeffding’s
Inequality

Traditional techniques for data mining require multiple
scans of data to extract the information, which is not
feasible for stream data. It is not possible to store an entire
data stream or to scan through it multiple times due to its
tremendous volume. The amount of events in data streams
which had previously happened, is usually extremely
large. Moreover, the characteristics of the data stream can
vary over time and the evolving pattern needs to be
captured [7], [14], [16], [24], [25], [26], [27]. To address these
problems, as we indicated, several methods, including
Hoeffding’s tree algorithm, Very Fast Decision Tree (VFDT)
and Concept-adapting Very Fast Decision Tree (CVFDT),
have been developed and studied [6], [12], [13], [19], [17],
[3]. These methods were supported mathematically by the
Hoeffding’s inequality [11]. Unfortunately, the authors
applying the Hoeffding’s inequality did not carefully check
whether this probabilistic model is adequate to the
descriptions of ID3 or C4.5, or CART algorithms.

Let Y1; Y2; . . . ; YN be random variables with real values
from a certain distribution. Let Yi 2 ½0; R� for i ¼ 1; . . . ; N
and some constant R. Let us denote the expected value of
this distribution by E½Y � and the sample mean by Y . The
sample mean differs from the expected value by at least
� � 0, with probability less than �, i.e.

PrðY �E½Y � � �Þ � �: ð10Þ

Since Y ¼
PN

i¼1
Yi

N , we can rewrite (10) as follows:

PrðY � E½Y � � �Þ ¼ Pr
PN

i¼1 Yi
N

�E½Y � � �
 !

� �: ð11Þ

Formula (11) is equivalent to

Pr
XN
i¼1

Yi �N � E½Y � � N�
 !

� �: ð12Þ

We will now recall the Hoeffding’s inequality.

Hoeffding’s inequality
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Obviously Hoeffding’s inequality holds only for real
valued data.

If each Yi comes from the same distribution, then E½Y � ¼
E½Y1� ¼ � � � ¼ E½YN �. Hence, E½S� ¼ N � E½Y �. Applying
Hoeffding’s inequality (13) to (12) we get

PrðS � E½S� � N�Þ � exp
�2N2�2PN
i¼1ðbi � aiÞ

2

 !

� exp
�2N2�2PN

i¼1 R
2

 !
:

ð15Þ

Simplifying the denominator and equating the right side of
(15) to � we obtain

exp
�2N�2

R2

� �
¼ �: ð16Þ

Solving (16) with respect to �, one gets (1).
Therefore, when N tends to infinity, � tends to 0.

Unfortunately, by analyzing descriptions (2)-(9) it can be
easily seen that they do not fit the Hoeffding’s inequality
probabilistic model. First, only numerical data are applic-
able to the Hoeffding’s inequality. In the general case the
data do not have to be numerical. Second, split measures,
like information gain and Gini index, cannot be expressed
as a sum S of elements Yi. Moreover they are using only the
frequency of elements. The solution for this problem seems
to be an application of the McDiarmid’s inequality instead
of the Hoeffding’s inequality.

The rest of the paper is organized as follows: in Section 2,
the McDiarmid’s inequality is quoted. Sections 3 and 4
present the McDiarmid’s bound for information gain and
Gini index, respectively. In Section 5, following the idea of
Domingos and Hulten [6], the McDiarmid Decision Tree
algorithm is described. Experimental results are given in
Section 6. The conclusions are drawn in Section 7.

2 MCDIARMID’S INEQUALITY

Let Z, given by (2), be the set of independent random
variables, with Xi taking values in a set Ai for each i. Let us
define

Z0 ¼ fX1; . . . ; X̂i; . . . ; XNg; ð17Þ

with X̂i taking values in Ai. Observe that Z0 differs from Z,
given by (2), only in the ith element.

In this paper, the basic tool to analyze data streams is the
following McDiarmid’s inequality [18].

McDiarmid’s inequality

Remark. The Hoeffding’s inequality (13) is a special case of
McDiarmid’s inequality (19) when Xi 2 Ai ¼ ½ai; bi�, for
i ¼ 1; . . . ; N , are real valued random variables and
~fðZÞ ¼

P
Xi2Z Xi.

Let us assume that ~f is the function f defined by (9). Since
fðX1; . . . ; XNÞ is a function of random variables, it is a
random variable as well. Then E½fðX1; . . . ; XNÞ� is its
expected value. To obtain the same form of � as in (1), the
following condition should be satisfied:

sup

X1;...;XN ;bXi

jfðZÞ � fðZ0Þj � C

N
; ð20Þ

for some constant C. Then,

PrðfðZÞ � E½fðZÞ� � �Þ

� exp
�2�2PN
i¼1

C2

N2

 !
¼ �;

ð21Þ

and we can get � given by (1), if C ¼ R.
Next it will be shown that assumption (20) does not hold

and result (1) cannot be derived using the McDiarmid’s
inequality.

Let us assume that each element X from set Z comes
from class k1 and its value of attribute a is equal to a1. The
value of attribute b for all elements is equal to b1, apart from
element Xp, for which it is b2, i.e.,

Xi ¼
ða1; b1; k1Þ; for i 2 f1; . . . ; Ng n fpg;
ða1; b2; k1Þ; for i ¼ p:

�
ð22Þ

Then, in view of (6), (7), and (9) we have

fðZÞ ¼ GainaðZÞ �GainbðZÞ
¼ HbðZÞ �HaðZÞ

¼ �
Xjbj
i¼1

nbi
N

XK
j¼1

njbi
nbi

log2

njbi
nbi

þ
Xjaj
i¼1

nai
N

XK
j¼1

njai
nai

log2

njai
nai

¼ � 1

N

1

1
log2

1

1|fflffl{zfflffl}
0

�N � 1

N

N � 1

N � 1
log2

N � 1

N � 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

þN
N

N

N
log2

N

N|fflfflffl{zfflfflffl}
0

¼ 0:

ð23Þ

Next, the element Xp ¼ ða1; b2; k1Þ is replaced by X̂p ¼
ða1; b2; k2Þ. The value of f for set Z0 is given by

fðZ0Þ ¼ GainaðZ0Þ �GainbðZ0Þ
¼ HbðZ0Þ �HaðZ0Þ

¼ �
Xjbj
i¼1

nbi
N

XK
j¼1

njbi
nbi

log2

njbi
nbi

þ
Xjaj
i¼1

nai
N

XK
j¼1

njai
nai

log2

njai
nai
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¼ � 1

N

1

1
log2

1

1|fflffl{zfflffl}
0

�N � 1

N

N � 1

N � 1
log2

N � 1

N � 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

þN
N

N � 1

N
log2

N � 1

N
þ 1

N
log2

1

N

� �
¼ 1

N
ðN � 1Þ log2

N � 1

N
þ log2

1

N

� �
:

ð24Þ

From (23) and (24) we get

jfðZÞ � fðZ0Þj ¼ N � 1

N
log2

N

N � 1
þ log2 N

N

				 				: ð25Þ

It is easy to prove that

log2

nþ 1

n

� �
� log2 e

n
: ð26Þ

In view of (26), for N � 2, we can bound (25) as follows:

1

N
� log2 N

N

� N � 1

N
log2

N

N � 1
þ log2 N

N

				 				|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
jfðZÞ�fðZ0Þj

� log2 e

N
þ log2ðNÞ

N
� 3 log2ðNÞ

N
:

ð27Þ

In this particular example it is shown that the bound given
in the form C=N (see (20)) is not sufficient for jfðZÞ � fðZ0Þj.
For any constant C1 > 0 there exists ~N ¼ 2C1 , such that for
every N > ~N the following inequality is satisfied:

C1

N
<
log2N

N
� jfðZÞ � fðZ0Þj: ð28Þ

3 MCDIARMID’S BOUND FOR INFORMATION GAIN

In this section, we assume that the split measure is
information gain. The following theorem guarantees that a
decision tree learning system, applied to data streams, has
the property that its output is nearly identical to that
produced by a conventional learner.

Theorem 1 :

Proof. see Appendix I, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2012.66. tu

Corollary 1. Suppose a and b are attributes for which the values of
information gain, calculated from the data sample Z, satisfy
GainaðZÞ > GainbðZÞ. For any fixed � and � given by (29), if
fðZÞ > �, then with probability 1� � attribute a is better to
split than attribute b, according to whole data stream. Moreover,

if a and b are attributes with the highest and the second highest
values of information gain, then with probability 1� �, a is the
best attribute to split according to the whole stream.

Proof. For this particular choice of attributes a and b the
assumptions of Theorem 1 are satisfied. Therefore,
inequality (30) holds and can be transformed to the form

P ðE½fðZÞ� � fðZÞ � �Þ � 1� �: ð31Þ

Notice that if fðZÞ > �, then E½fðZÞ� > 0 with probability
1� �. The inequality E½fðZÞ� > 0 is equivalent to
E½GainaðZÞ� > E½GainbðZÞ� what means that the attri-
bute a is better than attribute b to split, according to the
whole data stream, with probability 1� �.

Let us consider now the case, where a and b are
attributes with the highest and the second highest values
of information gain, respectively. Then for any other
attribute c (c 6¼ a), by virtue of Theorem 1, E½GainaðZÞ� >
E½GaincðZÞ� with probability 1� �. tu

Example 1. We want to check if attribute a is better to split
than attribute b, with probability 1� � ¼ 0:95, using
information gain given by (8). Assume that we have set
Z of 500,000 data and each of them is assigned to one
of 3 classes.

Now we have to compute �using (29). It is easy to check
that for our data � is equal to 0.847229. Since K ¼ 3,
Gainað�Þ �Gainbð�Þ 2 ½0; log2 3�. In our case, ifGainaðZÞ �
GainbðZÞ 2 ð0:847229; log2 3�, then attribute a is better to
split the node than attribute b, with probability 0.95.
Otherwise, for GainaðZÞ �GainbðZÞ 2 ½0; 0:847229�, we
have fðZÞ � �. Therefore, we cannot use inequality (31) to
determine which attribute is better to split.

Example 2. Let us assume that the calculated value of
fðZÞ ¼ GainaðZÞ �GainbðZÞ equals 2.28885 and the
number of classes K ¼ 8. We want to know if our
amount of data N is sufficient to say that attribute a is
better to split than attribute b, with probability 1� � ¼
0:95. According to inequality (31), N is a sufficient
number if fðZÞ > �, where � is given by (29). Formula
(29) does not allow to determine N analytically, however
the problem can be solved numerically. In our case, for
N ¼ 327,741 the value of � is 2.288853 and it is greater
than fðZÞ. It means that N is not large enough. However,
for N ¼ 327; 742 we obtain � ¼ 2:2888496 and it satisfies
the condition fðZÞ > �. In this case N is large enough to
say that attribute a is better to split than attribute b, with
probability 0.95.

4 MCDIARMID’S BOUND FOR GINI INDEX

Gini index for a set Z is defined as follows:

GiniðZÞ ¼ 1�
XK
j¼1

nj

N

� �2

: ð32Þ
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Let A ¼ fa1; . . . ; ajajg be a set of values for attribute a.

There are 2jaj�1 � 1 different ways of partitioning set A into

two disjoint subsets: A1 ¼ faji 2 A : i 2 f1; . . . ; Dgg and

A2 ¼ faji 2 A : i 2 fDþ 1; . . . ; jajgg ¼ A nA1. S ince A ¼
A1 [A2, it is sufficient to consider only one of these sets,

e.g., A1. The set Z (Z0) is partitioned into two disjoint

subsets Z1 and Z2 (Z01 and Z02), according to sets A1 and

A2. Let us define

GiniA1
ðZÞ ¼ n1

N
1�

XK
j¼1

nj1
n1

 !2
0@ 1A

þ n2

N
1�

XK
j¼1

nj2
n2

 !2
0@ 1A ¼ GiniA2

ðZÞ;

ð33Þ

where nl; l ¼ 1; 2, is a number of elements in set Zl and njl is
a number of elements in set Zl from class kj.

Among all the possible partitions of set A into two
disjoint sets A1 and A2, we choose one with the lowest value
of GiniA1

ðZÞ. This value is a Gini index for attribute a

GiniaðZÞ ¼ min
A1

fGiniA1
ðZÞg: ð34Þ

We will call it an optimal partition.
A split measure for attribute a, based on Gini index (Gini

gain), is given by

�GiniaðZÞ ¼ GiniðZÞ �GiniaðZÞ: ð35Þ

Let us assume that a is an attribute with the highest value
of �GiniaðZÞ and b is the second-best attribute. Define

fðZÞ ¼ �GiniaðZÞ ��GinibðZÞ
¼ GinibðZÞ �GiniaðZÞ:

ð36Þ

The interpretation of the following theorem is the same
as that of Theorem 1.

Proof. Appendix II, which is available in the online
supplemental material. tu

Corollary 2. Suppose a and b are attributes for which the values
of Gini gain, calculated from the data sample Z, satisfy
�GiniaðZÞ > �GinibðZÞ. For any fixed � and � given by
(37), if fðZÞ > �, then with probability 1� � attribute a is
better to split than attribute b, according to whole data stream.
Moreover, if a and b are attributes with the highest and the
second highest values of Gini gain, then with probability 1� �,
a is the best attribute to split according to the whole stream.

Proof is analogous to the proof of Corollary 1.

Example 3. Let us assume that we have set Z of 10,000 data.
We want to check if attribute a is better to split than
attribute b, with probability 1� � ¼ 0:95. To check this,
we use expressions (37) and (38).

First let us compute the value of � given by (37). For
our data � ¼ 0:0979099. Note that in this case, contrary to
Theorem 1, the value of � does not depend on the
number of classes K. According to Corollary 2 attribute a
is better to split the node than attribute b, with
probability 1� �, if fðZÞ > �. In our case this condition
is satisfied for GinibðZÞ �GiniaðZÞ > 0:0979099.

If GinibðZÞ �GiniaðZÞ � �, then we cannot determine
which attribute is better.

Example 4. Let us assume that the calculated value of
fðZÞ ¼ GinibðZÞ �GiniaðZÞ is equal to 0.354. We want to
know how many data elements N we should have, to say
that attribute a is better to split than attribute b with
probability 1� � ¼ 0:975. According to inequality (31),
with � given by (37), N is a sufficient number if

fðZÞ > 8 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=�Þ

2N

r
: ð39Þ

Contrary to the case of information gain (see Example 2),
N can be determined using simple algebra

N >
64 lnð1=�Þ
2 � ðfðZÞÞ2

: ð40Þ

In our case the number of elements N should satisfy
N > 941:9718. So if we have 942 elements or more, we
can say that with probability 0.975 attribute a is better to
split than attribute b.

5 THE MCDIARMID TREE ALGORITHM

In [6], Domingos and Hulten developed two algorithms for
stream data mining: the Hoeffding Tree algorithm and the
VFDT algorithm. In both cases they applied the Hoeffding’s
bound, with � given by (1), for choosing the best attribute to
split a node. Their methodology to deal with data streams is
not contested in our paper, however a choice of the best
attribute to split a node, as we showed in Section 1.3, cannot
be based on the Hoeffding’s inequality. In Table 1, we quote
the pseudocode of “the Hoeffding Tree algorithm,” as it
was called in [6], replacing the Hoeffding’s bound by the
McDiarmid’s bound (with � given by (29) and (37) for
information gain and Gini gain, respectively).

For convenience the following notations will be intro-
duced:

. A—set of all attributes.

. a—any attribute from set A.

. aMAX1—attribute with the highest value of Gð�Þ.

. aMAX2—attribute with the second highest value of
Gð�Þ.

6 EXPERIMENTAL RESULTS

To evaluate the performance of the McDiarmid Tree
algorithm, several simulations were conducted. Since � for
the Gini gain tends to zero much faster than for the
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information gain, only the Gini gain is considered in the
following experiments. Synthetic data were used, generated
on a basis of synthetic decision trees. These synthetic trees
were constructed in the same way as described in [6]. At
each level of the tree, after the first Lmin levels, each node is
replaced by a leaf with probability !. To the rest of nodes a
splitting attribute is randomly assigned; it has to be an
attribute which has not already occurred in the path from
the root to the considered node. The maximum depth of the
synthetic tree is Lmax (at this level all nodes are replaced by
leaves). After the whole tree is constructed, to each leaf a
class is randomly assigned. Each synthetic tree represents a
different data concept. Data concept is a particular

distribution of attributes values and classes. In this work
12 synthetic trees were generated (all of them with ! ¼ 0:15,
Lmin ¼ 3 and Lmax ¼ 18) giving twelve different data
concepts. In the following simulations, for any set of
McDiarmid Tree parameters (�, N), algorithm was run
12 times, once for each synthetic data concept. Then, the
final result was obtained as the average over all runs.

First, we compare the performance of the McDiarmid
Tree algorithm according to different values of parameter �.
As we can see in Fig. 1, the accuracy increases with
increasing values of �. Analyzing this relationship, we
noticed that with decreasing values of � trees become less
complex. It happens because the splitting condition is more
difficult to achieve. Therefore, a new mechanism should be
added, that allows to split a node when there are two good
attributes. We notice also, that there are only slight changes
of accuracy according to � (less than 2.5 percent).

In the next simulations, the performance of the McDiar-
mid Tree algorithm was compared with the CART algo-
rithm [5], developed for static data. As it is depicted in
Fig. 1, the accuracy of the McDiarmid Tree algorithm is not
satisfactory. This result is mainly due to the small depth of
the obtained trees. For small sizes of training data sets N ,
the tree remains undivided (consisting of only one
node—the root). If there are two attributes with compar-
able, very high values of the Gini gain function, the
algorithm cannot decide which one is better even for very
large N . Such a situation can dramatically slow down the
tree construction process. In view of this problem, we
modified the McDiarmid Tree algorithm introducing the tie
breaking parameter � , following the idea of the VFDT
system [6]. If � < � , the split is made. As in [6], � was set to
0.05. Previous results (see Fig. 1) show, that the accuracy of
the tree depends on � only slightly. Thus, parameter � can
be chosen arbitrarily and we set � ¼ 10�7, as in [6].
Simulations for the McDiarmid Tree algorithm were
performed for different training data set sizes, from N ¼
104 to N ¼ 109. Simulations for the CART algorithm were
performed maximally for N ¼ 106, because of the random
access memory limits. Results are presented in Fig. 2.

For the same value of N , the accuracy of the CART
algorithm is significantly better than for the McDiarmid
Tree algorithm. The accuracy increases with the growth of
the size N of the training data set. For N around 109 high
accuracy can be obtained.
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Fig. 1. Accuracy as a function of parameter �.

TABLE 1
The McDiarmid Tree Algorithm



In our experiments also the relation between the
processing time and the size of training data set was

analyzed. The results are presented in Fig. 3.
As we can see, for the same number of data elements N ,

the CART algorithm is much more time consuming than

the McDiarmid Tree algorithm. The processing time for the

CART algorithm is a power function of N (note that the
scale in Fig. 3 is logarithmic). For the McDiarmid Tree

algorithm the relation is almost linear. Low memory

consumption is the another advantage of the McDiarmid

Trees. The amount of memory does not depend on the size

of a training data set. For the CART algorithm the consumed
memory depends linearly on N .

The above properties of the proposed method, i.e., fast

processing, low memory consumption and quite good

accuracy, make McDiarmid Trees a proper tool for data

stream mining.

7 FINAL REMARKS

In the paper, we showed that result (1), the most cited in

data stream mining, is not valid in a general case. The

appropriate tool to solve the problem is the McDiarmid’s

inequality and its application led to bounds given in
Theorems 1 and 2. Therefore, we would suggest to use

the term “McDiarmid Trees” instead of “Hoeffding Trees”

in all algorithms previously developed and based on the

Hoeffding’s inequality. A challenge for future work is to

improve bounds obtained in Theorem 1 and Theorem 2.
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