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Abstract

Speaker diarization of meetings can be significantly imgdov
by overlap handling. Several previous works have expldned t
use of different features such as spectral, spatial andygrfier
overlap detection. This paper proposes a method to estimate
probabilities of speech and overlap classes at a segmegit lev
which are later incorporated into an HMM/GMM baseline sys-
tem. The estimation is motivated by the observation that sig
nificant portion of overlaps in spontaneous conversatiake t
place where the amount of silence is less, e.g., during speak
changes. Experiments on the AMI corpus reveal that the proba
bility of occurrence of overlap in a segment is inverselypme
tional to the amount of silence in it. Whenever this inforimat

is combined with acoustic information from MFCC features in
an HMM/GMM overlap detector, improvements are verified in
terms of F-measure. Furthermore the paper investigatassthe
of exclusion and labelling strategies based on such detfmto
handling overlap in diarization reporting F-measure invpro
ments from 0.29 to 0.43 in case of exclusion and from 0.15 to
0.22 in case of labelling. Consequently speaker diarinatio

ror is reduced by 8% relative compared to the baseline based
solely on acoustic information.

Index Terms: speaker diarization, meeting recordings, diariza-
tion error, spontaneous overlap speech.

1. Introduction

Speaker diarization is the task of inferring “who spoke when
in an audio recording. When diarization is performed on spon
taneous conversations such as meeting room recordings, sig
nificant amount of errors are due to speech from simultaneous
speakers (overlap speech) [1, 2, 3]. Studies on meeting cor-
pora have shown that significant proportion of speech is-over
lapped and thus diarization and ASR in spontaneous conversa
tions have to deal with overlaps in an effective manner [4] to
avoid high errors. Speaker diarization studies have alewsh
that effective handling of overlap speech can largely redbe
diarization error [5] and several recent works have deditat
considerable effort to this problem. In [6], authors expbbr
various features such as energy and short-term specttatésa
(MFCC) for overlap detection. In [7, 8], authors investight
the use of spatial features estimated from time delay ofarri
(TDOA) of speech using multiple distant microphones. Re-
cently, the use of prosodic features [9] has shown improwsne
over MFCC. All the above methods use features that are frame
level estimates and do not incorporate information fronglon
term context into the detection system.

Studies on meeting conversations have shown that over-
laps are more likely to occur at some specific locations such
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as turn exchanges and back-channels [10] and 73% of over-
laps occur at end of speaker turns [10]. This paper proposes
a method to estimate the probability of overlap speech in a
conversation (a meeting recording) based on a longer contex
than a frame (at segment level) and incorporate those dssma
into a baseline overlap detection system to improve itsoperf
mance. The method makes use of the relation between single
speaker speech, silence and overlap within a segment and is
based on the observation that a significant portion of opsrla
occurs in regions with small amount of silence, e.g., speake
turn changes. On the other hand, parts of the conversatin wi
monologues contain little overlaps and also contain more si
lence due to speaker pauses. An example supporting this-obse
vations is explained in Figure 1. Therefore, we hypothetiaée
presence of low amount of silence in a segment is an indicator
of presence of overlap within that segment. As silence ieeas

to detect compared to overlap speech, silence statistitbea
used to estimate probability of overlap within the segment.

We verify this hypothesis on meetings from AMI corpus
and show that the proposed method improves overlap detectio
and consequently speaker diarization. Rest of the papegds o
nized as follows, Section 2 presents briefly state-of-tté&ase-
line speaker diarization, overlap detection systems amdvbr-
lap handling methods. Section 3 describes the proposecheth
for estimating the probability of single speaker speechaed-
lap; furthermore it proposes a way of incorporating theno int
baseline overlap detector. Section 4 describes the expetah
results on overlap detection and speaker diarization aid Se
tion 5 concludes the paper.

2. Speaker diarization and overlap

The diarization process starts with speech activity ditect
(SAD) based on HMM/GMM system described in [11]. Af-
ter this the speech segments detected are uniformly segcthent
and agglomeratively clustered until stopping criteriomist.
The diarization output assigns each speech segment to @euniq
cluster (speaker) in the output (see [12] for details). Ty® s
tem is evaluated according to the Diarization Error RateRPE
which is the sum of speech/non-speech error and speaker erro
Speech/non-speech error is the sum of miss and false alarm er
rors. Speaker errors are clustering errors happening whene
speech segments of a speaker are attributed to a different on
This metric has been used in several NIST Rich Transcription
evaluation campaigns [13].

Previous works [5, 1, 2] have shown that overlap speech re-
gions degrade speaker diarization in two ways. When overlap
segments are included in the agglomerative clustering, GMM
models are corrupted thus producing an increase in speeker e
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Figure 1: Speaker vocalizations from a snippet of multi-party cosaton. The fixed length segments (a) and (c) are in regions of
speaker change and contain overlap whereas segments (dacdntain single speaker speech. It can be observed thratido of
silence within segments a,c is significantly less when ceedga that in b,d.

ror. Furthermore, as conventional diarization systempuita
single speaker for each time instant, whenever overlapmnegi
are scored, an increase in the missed speech error is verified
Overlap handling is addressed performing three steps:ital in
detection, followed by exclusion and labelling tasks diesct
below.

2.1. Basdineoverlap detection and handling system

Overlap detection is typically obtained using an HMM/GMM
system with two states, one representing speech classcfspee
from a single speaker) and the other representing the @verla
class [6, 9] (speech from multiple speakers). The emission
probabilities of the states are modelled by GMMs with diag-
onal covariance trained using 12 dimensional MFCC features
and energy along with deltas. The features are mean and vari-
ance normalized. A minimum duration constraint is imposed
on each HMM state. Furthermore, an overlap insertion pgnalt
is introduced to control the trade-off between misses alsa fa
alarms (see [6, 9]) which affect DER differently. The optima
value of the penalty is obtained by tuning on a separate data
set. This system will be referred as baseline overlap datect
from here after. In summary, I8¢ denote the sequence of
single-speaker speech, overlap-speech states{agenote the
sequence of acoustic features; the baseline overlap faassi

fers the most probable sequence of states by Viterbi degodin
as:

V* = argmax P(V|X) = argmax P(X|V)P(V) (1)
v v

Prior probabilities of single-speaker speech and ovesfaech
are represented in Equation (1) by the tefl/). In the AMI
corpus, approximately 18% of speech is overlapped. Thigeval
is an average over the entire corpus and obviously can signifi
cantly change from one recording to another as well as within
the same recording (for instance presentations and momedog
contain less overlap than discussions) [4].

Once overlap speech is detected, two strategies have been
proposed to handle it and are referred as overlap exclusion a
overlap labelling [5].

Overlap exclusion: Prior to clustering, an overlap detection

is performed and the detected segments are excluded from the
clustering step in order to avoid GMM corruption. Once the fi-
nal clustering is obtained, the excluded regions are asdigma
speaker by the Viterbi realignment decoder. Overlap ei@tus
reduces the total speaker error [5, 6, 9].

Overlap labdlling: In this case, the handling happens after the
diarization system is run by labelling the overlap segmuuitis

two speakers. This step can be performed according to two
strategies: in the first one an overlap segment is assigned to
the two nearest speakers in time [5], while in the secong; the
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Figure 2: Probability of overlap based on silence duration ob-
tained using ground truth speech/sil segmentation and-auto
matic SAD output.

are assigned to two speaker with highest posterior prahaiil
these regions [6]. Overlap labeling reduces the missedchpee
error [5, 6, 9].

3. Overlap detection based on silence
distribution

As previously described, the overlap detection starts with
a speech/silence segmentation followed by a single-speake
speech/overlap detection. Under the rationale that, ttissts
of silence, single speaker speech and overlap during a sawve
tion are related to one another(see [14]), this work inges#s
how the amount of single-speaker speech and overlap rétates
the amount of silence in a segment. The study is carried on two
disjoint subsets of AMI meeting corpus one for training amel t
other for testing. The ground-truth segmentation is oleiiny
force-aligning the manual segmentation.

Consider a short segment of conversation with a duration
D frames. Let us designate with(sl = z) the total num-
ber of segments which contain frames of silence and with
n(ov, sl = z) the number of segments which contaiframes
of silence and contain an overlap between speakers. It is pos
sible to estimate the probability of having overlap withises-
ment conditioned on the amount of silence in that segment as:

P(ov|sl = z) = n(ov, sl = z)/n(sl = z), 2

Figure 2 (left plot) showsP(ov|sl = z) conditioned on the
value of x for a segment of four seconds, i.d) = 400
frames. It can be noticed that the probability of having ever
lap in a segment is inversely proportional to the amount -of si
lence. When the amount of silence is zero, the probability of
having an overlap in the segment is 0.7. In other words, it
is possible to estimate the probability of having an oveitap
a segment by the amount of silence in it. This information is
potentially useful as speech/silence detection is a simptk
compared to single-speech/overlap detection. In ordeetifyv
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Figure 3:Estimation of probabilities of single-speech and over-
lap states for a frame based on duration of silencg; present
in the segment; centered around the frame

if this conclusion also holds in case of automatic speecti/no
speech segmentation, the previous statistics are recechpst

ing the output of the automatic segmenter and plotted in Fig-
ure 2 (right plot) showing exactly similar trends. The proba
bility of a single-speaker speech within a segment can be ob-
tained asP(sp|sl = x) 1 — P(ov|sl = z). In order

to compute these statistics for the whole recording, the seg
ment is progressively shifted by one frame at each step and
P(ov;|sl;), P(spi|sl;) are estimated/i wherei € {1...N}
and N is the total number of frames in the file. This process is
depicted in Figure 3.

Let us now investigate how the statistiéqov|sl = x)
andp(sp|sl = x) generalize to a test set different from the
one used for their estimation. In order to do this, the cross e
tropy between those estimates and the test distribuffondb-
tained from ground-truth segmentation is measured. Thie-pro
abilities for the test distribution are obtained for eacanie
i € {i...N} as follows, P;(ov;) = 1, P:(sp;) = 0 if the
frames is overlapped and? (sp;) = 1, Pi(ov;) = O if the
framei is single speaker speech. Then the cross entropy be-
tween the test distribution and the estimated distribus@om-
puted as follows.

C=— %( Z log(P(ov;|sl;)) + Z lOg(P(Spj|3lj))>
ie{OV}

je{spP}

where L is total number of frames used in the estimation,
{OV} is the set of frames in overlap regions aftlP} is the
set of frames in the single-speech regions. Figure 4 glbts
as a function of various segment lengtbs It is important to
notice that forD = 1, the single-speech/overlap-speech statis-
tics reduce to the frame based statistics, anddor- 1, those
statistics include information from longer time spans ofi-co
versation. Figure 4 reveals that segment lengths longer tha
one frame reduce the cross-entropy thus the statistics thhem
training set generalize to the test set. Furthermore thienapt
segment length, i.e., the one that minimizes the cross@niso
approximatively 400 frames, i.e., 4 seconds.

Incorporating this information into the baseline
HMM/GMM overlap detector described in Equation (1) is
straightforward. Let us designate with= {v;} = {sp;, ov;}
the sequence of states single-speech/overlap, Witk {z;}
the sequence of acoustic vectors and with = {sl;} the
sequence of silence durations contained in segments cen-
tered around frame. The optimal single-speech/overlap
segmentation can be obtained by Viterbi decoding as:

argmax P(V|X,SL) = argmax P(X|V,SL)P(V|SL)
v v

= arg‘r/nax P(X|V)P(VISL) (3)

In Equation (3) it is assumed that the observed featui€s (
are independent of amount of silenc8I() given the state
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Figure 4:Cross entropy measure for various window lengths.

V. In other words, the information from the acoustic features
P(X|V) is combined together witk?(V'|SL) which estimates
how probable an overlap is given a certain amount of silence i
the segment. Furthermoi@(V'|SL) is estimated from a long
temporal window (four seconds) and thus includes inforomati
from surrounding speech/non-speech estimafegX|V) is a
probability density function (a GMM) and(V'|SL) is given

by probabilitiesP (sp;|sl;) and P(ov;|sl;) , thus a scaling fac-
tor tuned on an independent data set is introduced to brang th
in comparable ranges. From here on, we will refer to the pro-
posed method as overlap detector based on silence statistic

4. Experimentsand Results

Experiments are conducted on meeting recordings in AMI
meeting corpus [15]. The corpus consists of about 100 hours
of meeting recordings captured using multiple distant micr
phones at multiple sites. The audio signals are enhanced by
beamforming usind@deamformlttoolkit [16]. Two disjoint sets

for training and testing are created each consisting of 832én
meetings respectively by randomly picking while the rerirain
meetings are used for estimating the probabilitld/|SL).

Both the train and test sets contain recordings from all teetm

ing sites and ground truth speaker times obtained from ASR
force-aligned manual transcriptions. The differencesvbeh

the baseline overlap detector and the proposed method @re co
pared in two tasks: overlap detection and overlapping speec
diarization. P(V|SL) are estimated based on statistics com-
puted using automatic speech/silence segmentation, ageFig
shows that the estimates are similar for both reference and a
tomatic segmentations.

4.1. Experimentson Overlap detection

Performances of the overlap detectors are compared in terms
of Recall, Precision and F-measure. Figure 5 (a) plots the f-

measures of the baseline overlap detector and the overtap de
tector incorporating silence statistics as a function dfedi

ent overlap insertion penalties (OIP). It can be observethfr
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Figure 5:Performance of overlap detectors. (a) F-measures of
baseline detector, and detector based on silence statiste
timated based on automatic SAD. (b) Precision(dashed,line)
Recall(solid line) for classifiers



Fig. 5(a) that the system incorporating silence statistasbet-
ter performance than baseline system for all penaltieshBur
more Fig. 5(b) plots the precision and recall for the two eyt
for different penalties. It can be observed that incorporadf

silence statistics improves the recall.

4.2. Experimentson overlap speaker diarization

Table 1 (first line) shows DER for the speaker diarization sys

tem without any overlap handling as described in [12] which

is 29.9. To get an estimate of the maximum possible improve-
ments obtained by overlap handling, Table 1 (third lineprép

the performance of labelling and exclusion methods whemeve
oracle overlap speech (from the reference segmentatiosgis

Let us now compare the results obtained by the baseline
overlap detector and the proposed system that incorposates
lence statistics on three tasks overlap exclusion, latgebind
both. Overlap labelling for baseline and proposed method is
done based on 2-nearest speaker strategy proposed in [8]. Th
improvements obtained by the baseline detector are sintailar
those reported in previous works [6, 9]. It can be observexh fr
Table 1 (fourth and fifth line) that the proposed system hagito
DER than the baseline system on all the three tasks. When both
exclusion and labelling are done, the proposed methodahie
about 8% relative reduction in DER (from 26.2% to 24.3%).
The improvement is particularly large in case of exclusfoon
26.8% to 25.1%), where the proposed method performs as good
as the oracle.

Let us now compare the two approaches in terms of F-
measure. As the operating point for overlap detectors are se
lected by minimizing the DER on a separate train set [9, 6],
different operating points are used for exclusion and laizgel
The F-measures at the operating points chosen for basgbne s
tem and the proposed method are reported in Table 2 showing
improvements from 0.29 to 0.43 for the exclusion and frons0.1
to 0.22 for the labeling. As insertion penalties are sameoth b
cases, the gain in the f-measure can be attributed to thegedp
incorporation of silence statistics into the classifier.

Table 1:DERs for various systems on test set using with relative
improvements over baseline within parenthesis.

No overlap handling 29.9
System Exclusion Labelling Both
Oracle 25.1(16.1%) 18.9(36.8%) 15.0(49.8%)
Baseline 26.8 (10.4%) 29.3 (2%) 26.2 (12.3%)

Silence stats  25.1 (16.1%) 29.1 (2.7%) 24.3 (18.7%)

Table 2:F-measures for the overlap detectors on test set at the
operating points used for speaker diarization

task baseline Silence Statistics
Exclusion 0.29 0.43
Labelling 0.15 0.22

5. Conclusions

Speaker diarization of spontaneous conversations likdingse

is seriously affected by overlap speech. This problem haa be
widely addressed using signal processing approachesrdisca
ing the fact that meetings are spontaneous conversatiahs an
overlap occurs in particular moments for instance whenrs¢ve
speakers are competing to talk at the same time. Severabwork
have shown that during conversations silence, singlekgpea

speech and overlap speech are related to each other [17] and

present patterns that can be modeled [14].
This paper proposed a method for estimating the probabil-
ity of overlap speech based on a longer context than a frame

at a segment level based on the amount of silence in the seg-
ment. As speech/silence detection is easier comparedgtesin
speech/overlap detection, silence statistics can be gsaaixd-
iary information during the overlap detection task.
Experiments on the AMI corpus revealed that the proba-
bility of having overlap in a segment is inversely propanab
to the amount of silence in it. Cross-entropy measure redeal
that silence statistics from a segment length of approxipat
400 frames (4 seconds) minimizes the cross-entropy on a sepa
rate test data set. Furthermore the paper proposed a method t
include these statistics in a conventional HMM/GMM overlap
detector by combining this information with acoustic featu
Experiments on the AMI corpus revealed that the proposed
method outperforms the conventional overlap detectorringe
of F-measure for all the possible operating points. Wheneve
the detected overlap is used in speaker diarization foop®arf
ing labelling and exclusion tasks, the DER is reduced by atmo
8% relative from 26.2% to 24.3%. F-measure in overlap detec-
tion improved from 0.29 to 0.43 for the exclusion task anarfro
0.15 to 0.22 for the labelling task.
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