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A Novel Approach to Simultaneous Robust
Design of Product Parameters and Tolerances
Using Quality Loss and Multivariate ANOVA
Concepts
Hossein Hazrati-Marangalooa*† and Hamid Shahriarib
Design and development of high quality products are of utmost importance to any production plant. Product design consists
of parameter design and tolerance design, which affect the product performances and the manufacturing costs, respectively.
Most products involve more than one quality feature. Design and development of such products raise multi-response surface
problems in which it is necessary to determine the optimal values of parameters and the tolerances for all responses
simultaneously. In this research, an approach for simultaneous robust parameter and tolerance design is proposed to deal
with multi-response problems. The proposed method employs quality loss concept and one-way multivariate analysis of
variance. Two simulation studies are performed to validate the applicability of the proposed method. Research findings show
that the proposed method performs better in quality improvement as well as in cost reduction than the existing methods.
The variances of the responses are also lower than those of the other methods, that is, the proposed method results in a more
robust approach to product design. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

I
n today’s highly competitive market, quality and proper functioning of the product according to the customers’ needs are essential
for the businesses to survive. Hence, the products with high level of quality and acceptable performance gain customer satisfaction
through their useful life. Taguchi 1 has introduced three stages for developing a product or a process including system design,

parameter design, and tolerance design. In system design, scientific and engineering principles are employed to determine the
structure and the arrangement of the system. The parameter design procedure is assigning specific values to the controllable
variables to meet the customer requirements. In the tolerance design stage, adequate tolerances for the parameters are determined.
Conventionally, each of the three stages with specific inputs and outputs is conducted independently. All these stages are
interrelated, and each one cannot guarantee the success of the product by itself. The use of concurrent engineering may yield a
proper relationship among the three stages and thus cause a significant decrease in introduction and development period of the
product. One of the most important features of the concurrent engineering is to consider manufacturing conditions in the early stage
of the product design. Although product quality and process quality are dependent, it is difficult to find a quantitative relationship
between them 2. The knowledge about manufacturing conditions solely may not result in high quality products. The manufacturing
conditions and related constraints should be considered in the early stages of the product design. Therefore, customer satisfaction is
gained when a product includes the following features:

1. A proper performance in all conditions to satisfy the customers’ requirements. In other words, it should be robust to
unpredictable conditions.

2. Adequate tolerances which are designed to minimize the quality loss and the manufacturing costs.
3. Commercially available in the market in the least possible amount of time.

Robust design as a useful tool in the product and process design may be applied to achieve these goals. By conducting the stages
of parameter and tolerance design simultaneously, better solutions may be found for a robust product. In Section 1, the robust
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parameter design, tolerance design, and simultaneous parameter and tolerance design are reviewed. The proposed method is
introduced and discussed in Section 2. In Section 3, two applied examples are provided to demonstrate and validate the proposed
method. Finally, the conclusions are drawn in Section 4.
1.1. Robust parameter design

The product designers attend to minimize the effects of uncertain conditions on product performances. Therefore, robust design is
applicable in many different areas. ‘Robust parameter design is an engineering methodology intended as a cost-effective approach
for the quality of products and processes’3. In robust design, the quality of the product increases by decreasing the variation. Robust
parameter design is the selection of the levels of the controllable variables to minimize the effects of nuisance variables. Robinson
et al. 3, Montgomery 4, and Hasenkamp et al. 5 have carried out a comprehensive literature review, which can be referred to for further
studies. Problems in engineering design involve the optimization of the product performance for multiple quality features. ‘Multi-
response optimization typically employs the loss or utility functions of individual responses into a multivariate function to evaluate
the set of responses created by a particular set of design factors’5. Multi-response optimizations have been discussed in 6 and 7. In
the area of robust design where relations between responses and the controllable variables are not known, response surface
methodology (RSM) is an effective tool. Two major approaches in the RSM are single response surface and dual response surface.
For more details on the RSM and its approaches, Anderson-cook et al 8 and Khuri and Mukhopadhyay 9 can be referred to.
1.2. Tolerance design

Tolerance design is one of the most important stages in the product design and development 10. From the designer’s point of view,
tolerances affect the final performance of the product. On the other hand, from the producers’ perspective, tolerances affect the
processes and the machine selection, the jigs, the fixtures, and especially the production costs 2. Statistical methods and
mathematical programming are used to design tolerances. A thorough study on the statistical methods of tolerance design may
be found in Nigam and Turner 11. Moskowitz et al. 12 proposed a model to allocate tolerances, considering second-order loss functions
related to the tolerances and tolerance costs. Lee and Tang 13 considered the assembly constraints in the tolerance design problem. In
addition to assembly constraint, process selection and process precision are also considered in the model, and genetic algorithm (GA)
is employed to solve the model as indicated in 14 and 15. Having considered quality loss costs and tolerance costs, Muthu et al. 16 used
particle swarm optimization algorithm for optimization of the tolerance design problem. Sivakumar et al. 17 formulated the tolerance
design problem in a multi-objective framework whose objectives are to minimize the quality loss and the tolerance costs. Tsai 18

proposed a method to solve the tolerance design problem using the orthogonal arrays.
1.3. Simultaneous parameter and tolerance design

In the product design and development procedure, the tolerance design is usually conducted after parameter design. This approach
cannot always guarantee a cost-effective procedure to achieve acceptable quality features 19. To address this, Li and Wu 20 proposed a
method for simultaneous parameter and tolerance design. By means of a case study in chemical engineering, they showed that when
the parameter design and the tolerance design are conducted simultaneously, the decrease in variability would be lower than or, at
least, the same as the time when they were carried out independently. In order to design parameters and tolerances simultaneously,
Jeang and Lue 21 employed computer simulations to estimate costs associated with the tolerances of the quality characteristics. These
two researches paved the way for simultaneous parameter and tolerance design with regard to costs associated with the tolerances.
Using loss function associated with the tolerances and the orthogonal arrays, simultaneous parameter and tolerance design is
conducted in Jeang and Chang 19. Jeang 22 suggested an approach to integrate the product and the process design via optimization
of process mean and process tolerance. Through this integration, the optimal process parameters and process tolerances for specified
design targets and product tolerances were achieved. Asymmetric cost function is applicable to the model by Jeang 23. In order to
estimate the relationship between the tolerances and the costs, Jeang et al. 24 employed the response surface methodology. Tsai
25 proposed a metaheuristic method to design parameter and tolerance simultaneously. Jeang 26 proposed a model, with assumption
of process shifting, to simultaneously determine initial setting of process parameters, process tolerances, and resetting cycle, which is
the time needed to set back process parameters to their initial settings. Process-capability limits, functionality requirements, and
conforming rate are also considered in the model. Jeang 27 proposed an integrated method to optimize production lot size and
process features, which are process parameters and process tolerances. Assuming non-constant variance of residuals or non-normal
responses, the quality loss function associated with the parameters and tolerances is developed by generalized linear models in 28; in
addition, the model is solved using GA. Jeang and Lin 29 carried out a concurrent product and process parameter optimization for cost
reduction and quality improvement. They considered process mean, process tolerance, and product tolerance as key controllable
variables. Jeang 30 proposed a model to determine parameters of product and process simultaneously. Jeang 31 conducted
simultaneous product and process design considering process mean, process tolerance, and product specifications. He also assumed
that production costs and quality losses are random variables with known probability contributions. There is, however, a little work on
designing the parameters and the tolerances of the products simultaneously. In this research, simultaneous robust design of product
parameters and tolerances is suggested by means of integrating a modified quality loss function and the one-way multivariate
analysis of variance (MANOVA). The proposed method is introduced in the next section.
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016,
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2. Proposed method

In this section, the proposed method of simultaneous robust parameter and tolerance design is discussed. The proposed method has
two characteristics: (i) modification of the quality loss functions for the parameters and the tolerances and (ii) employment of
MANOVA to allocate tolerances.

Products are identified by their quality features (QFs). In cases where the quality feature is composed of more other quality
features, it is usually broken down into its components to construct a product breakdown structure (PBS). In this situation, more than
one level of break down is permitted. The components in the last level of the PBS are considered to be controllable variables, which
are the output of particular processes. To illustrate, the PBS of a rectangular metal sheet from 33 is shown in Figure 1. The diameter of
the sheet is the intended QF, which is considered to be a function of its length and width. The length and width of the sheet are being
cut on two different machines.

Therefore, in general, a relationship between the QF and the controllable variables may be represented as follows:

y ¼ f x1; x2;…; xmð Þ (1)

Where y is a quality feature, xi represents the ith controllable variable for i = 1, 2,…, m, and f is the transfer function. In Eq. (1), only
one level of breakdown is considered. Equation (1) may be represented for all QFs in a product. In addition to different characteristics,
there are other differences between the product design and the process design. In the product design, the design factors are
controllable deterministic variables. Therefore, random variations are only transferred to the responses through the external nuisance
factors. In the process design, controllable factors may be considered as nuisance factors. This can transfer random and systematic
variations to the responses. ‘In robust process design, design factors may be controllable only in the sense that their long-term means
may be determined’32. In product design for each QF, the related target and tolerance values are allocated. The target value is
determined in order to meet the customers’ requirements. Because of some nuisance and uncontrollable factors in the production
stage, the variation is transferred to the QFs. Thus, for each QF, tolerance limits are assigned that are compatible with manufacturing.
Consequently, the effect of the allocated values of the tolerances in the product design stage may be realized in the manufacturing
phase. Considering the mentioned facts, quality loss of a product is broken down into two terms: (i) the quality loss associated with
the product parameters and (ii) the quality loss associated with the product tolerances. In the product design stage, there may be a
bias in the QF when controllable variables are designed improperly. The quality loss associated with the product parameters is
expressed as follows:

L1 yð Þ ¼ K1 y � Tð Þ2 ¼ K1 f x1; x2;…; xmð Þ � Tð Þ2 (2)

where L1(y) is the quality loss associated with product parameters, T is the target value of the QF, and K1 is the cost coefficient of the
quality loss. Equation (2) is only used for nominal-the-best (NTB) scenarios. Many industrial applications also deal with both the
smaller-the-better (STB) and the larger-the-better (LTB) scenarios. Therefore, the first term of the quality loss for all of the three
common scenarios, STB, NTB, and LTB is modified and expressed as follows:

L1 yð Þ ¼ K1
f max � f x1; x2;…; xmð Þ

fmax � fmin � 1

� �2

(3)

L1 yð Þ ¼
K1

f x1; x2;…; xmð Þ � f min

T � fmin � 1

� �2

fmin ≤ f x1; x2;…; xmð Þ≤T

K1
fmax � f x1; x2;…; xmð Þ

fmax � T
� 1

� �2

T ≤ f x1; x2;…; xmð Þ≤ fmax

8>>>><
>>>>:

(4)

L1 yð Þ ¼ K1
f x1; x2;…; xmð Þ � f min

fmax � fmin � 1

� �2

(5)
Figure 1. Product breakdown structure
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where f min and f max are the minimum and maximum values of the transfer function, respectively. Equations (3), (4), and (5) are the quality
loss functions associated with STB, NTB, and LTB scenarios, respectively. As shown in Eq. (1), QF is defined as a function of controllable
variables. In product design, the value of these controllable variables must be determined to minimize the quality loss functions.

In order to evaluate the allocated tolerances of the product, the tolerances of the controllable variables should be considered in
the production phase because tolerances are used to control dispersion. Because there are nuisance variables in the production
phase, only adequacy of the tolerances must be assessed via the variation transmitted to the product during manufacturing; this
variation is calculated in terms of the tolerances. To address this, Var(y) is used as a measure of dispersion to evaluate the allocated
tolerances. Equation (6) expresses the quality loss function associated with the product tolerances:

L2 yð Þ ¼ K2Var yð Þ (6)

where K2 is the cost coefficient of the quality loss associated with dispersion. A second-order Taylor series approximation expansion of
the transfer function around X0 = (t1, t2,…, ti,…, tm) is given by Eq. (7). X0 is the vector of nominal values allocated to the parameters in
the parameter design stage.

y ¼ f x1; x2;…; xmð Þ≅ f X0ð Þ þ ∑
∂f
∂xi

ti xi � tið Þj (7)

Then the following approximations are calculated:

Var yð Þ ¼ ∑
∂f
∂xi

jti
� �2

σ2xi (8)

Var xið Þ ¼ δi
3Cpm

� �2

(9)

where Cpm is the process-capability index. σ2xi and δi are the variance and the tolerance associated with the ith controllable variable,
respectively. Substitution of Eq. (9) into Eq. (8) results in the variation of the QF as follows:

Var yð Þ ¼ ∑
∂f
∂xi

jti
� �2 δi

3Cpm

� �2

(10)

Therefore, the variation transmitted to the product in the manufacturing phase is defined in terms of the tolerances 33. Equation
(10) shows that when the designed values of the parameters change, it results in changes in the variation coefficients. Therefore, the
parameters affect the tolerances. Thus, the relation between the product design stage and the manufacturing phase must be
modeled. In addition, the process capability index is meant to reflect the process conditions early in the product design stage. When
there is more than one QF to deal with, the quality loss function has to be determined for each response variable independently.

As mentioned earlier, tolerances affect the product performance. Conventionally, tolerances are allocated based on the
designers’ prior experiences. On the contrary, the proposed method allocates tolerances in a way that the product performance
does not change significantly when a controllable variable varies within its tolerance limits. Assuming p correlated responses,
one-way MANOVA is employed to allocate tolerances. Wilk’s lambda test statistic is applied to construct the MANOVA table. Wilk’s
lambda is defined as follows:

Λ� ¼ Bj j
BþWj j (11)

where B, W, and Λ* are treatment sum of squares and cross products, residual sum of squares and cross products, and Wilk’s lambda
test statistic, respectively 34. B and W are calculated using Eqs (12) and (13):

B ¼ ∑ g
l¼1n yl � yð Þ’ yl � yð Þ (12)

W ¼ ∑ g
l¼1∑

n
j¼1 ylj � y

� �
’ y lj � y
� �

(13)

where yl and y are the mean of the lth treatment and the overall mean, respectively. g is the number of the treatments. In the
proposed method, three treatments are considered when the tolerance effects on the response variables are evaluated. Assuming
that controllable variables are independent, each controllable variable is assessed separately. In order to assess the effects of the
assigned tolerances on the responses, three levels, ti� δi, ti, ti+ δi, are considered for the ith controllable variable. A design of
experiment with one factor in three levels is employed to construct the MANOVA tests; n observations are generated in each
treatment using a multivariate normal distribution. Each observation is a p-vector of QF values, which are of interest. For the lth
treatment associated with the ith controllable variable, observations are generated using normal distribution with mean vector μl(i)
and covariance matrix Σ. For l= 1, 2, and 3, μl(i) is defined as follows:

μ1 ið Þ ¼ f 1 t1; t2;…; ti � δi;…; tmð Þ;…; f p t1; t2;…; ti � δi;…; tmð Þ� �
(14)
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016,
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μ2 ið Þ ¼ f 1 t1; t2;…; ti;…; tmð Þ;…; f p t1; t2;…; ti;…; tmð Þ� �
(15)

μ3 ið Þ ¼ f 1 t1; t2;…; ti þ δi;…; tmð Þ;…; f p t1; t2;…; ti þ δi;…; tmð Þ� �
(16)

Notations are as defined earlier. Table I shows the treatments and the distribution of the generated observations under each treatment.
Now, covariance matrix, Σ, must be defined. Considering the kth QF where k = 1, 2,…, p, the kth QF requires a variation as follows:

σ2kR ¼ 1=3ð Þ ykmax � ykmin

2

� �h i2
(17)

In Eq. (17), ykmin and ykmax are the maximum and the minimum values of customer requirements for the kth QF, respectively. σ2kR is
the variation associated with the kth QF imposed by the customer 26. Therefore, the diagonal elements of the covariance matrix are
calculated using Eq. (17). For the off diagonal elements, the covariance among all the QFs must be computed using:

σkh ¼ cov Yk ; Yhð Þ ¼ E Yk :Yhð Þ � E Ykð ÞE Yhð Þ
¼ E f k x1; x2;…; xi;…; xmð Þ:f h x1; x2;…; xi;…; xmð Þ½ �
� E f k x1; x2;…; xi;…; xmð ÞEf h x1; x2;…; xi;…; xmð Þ½ �

f or k; h ¼ 1; 2;…; p ; k ≠ h

(18)

where E(.) is the expected value. Because controllable variables are assumed to be the outputs of particular processes, then the

controllable variables are independently distributed as N μi;
δi

3Cpm

� �2
� �

. It is also assumed that all processes perform on their targets,

that is, E(Xi) =μi= ti. So, the moments of the normal distribution may be employed to simplify Eq. (18). As a result, the covariance
matrix, Σ, is now completely defined.

In the proposed method, the initial values are allocated to the tolerances of the controllable variables in advance, and then the
observations are generated using the previously mentioned equations. Performing MANOVA here requires modification of the test
statistic in Eq. (11). Considering the conditions for the problem in hand, the modified test statistic is represented as follows:

F0 ¼ 3 n� 1ð Þ
2

� 1� Λ�

Λ� (19)

Notations are as defined earlier. This modified test statistic follows an F distribution with 2 and 3(n�1) degrees of freedom 34. When
F0 is smaller than or equal to F (2, 3(n�1); α), then the ith controllable variable has no significant effect on the QFs under investigation as
long as it changes within its tolerances. F (2, 3(n�1); α) is the critical point of an F distribution with 2 and 3(n�1) degrees of freedom
leaving α under its right tail. When MANOVA shows significant difference among the mean of the treatments at significance level α,
then the tolerance associated with ith controllable variable decreases. Otherwise, the P-value of the hypothesis is compared with a
pre-specified value γ. The tolerance value associated with ith controllable variable increases as long as the P-value of the test is larger
than γ. By experiment, γ is set to be 0.05 to 0.10. This helps to allocate the tolerance as loose as possible without causing any significant
change in the response variables as long as the controllable variable changes within its tolerance limits. Assuming that there are no
significant interactions between the controllable variables, each controllable variable is assessed independently. This procedure,
generating observations, performing MANOVA, and comparing the P-value of the test to α and γ, must be repeated until the P-value
of the tests is larger than α but smaller than γ. The output of this procedure is the sets of assigned tolerances associated with each
controllable variable. Figure 2 presents the block diagram of the proposed method. As shown in Figure 2, the steps of the proposed
method for tolerance design are boxed in a red line. These steps illustrate the way that the one-way MANOVA concept is applied to
tolerance design. The proposed method allocates tolerances through an iterative approach. As mentioned earlier, these steps must
be followed for all controllable variables. The pseudo code for the tolerance design is available in Appendix 1.

As shown in Table I and Eqs (12) to (14), the only difference between the treatments is related to different levels of the ith
controllable variable. Different levels of the ith controllable variable are constructed using its tolerances. Therefore, when MANOVA
results in no significant difference among the treatments, it means that product performance does not change significantly when
the controllable variable varies within its tolerance limits.
Table I. Treatments and generated observations

Treatment 1 Treatment 2 Treatment 3

y11 y21 y31
⋮ ⋮ ⋮
y1u y2u y3u
⋮ ⋮ ⋮
y1n y2n y3n

y1u~N(μ1(i), Σ) y2u~N(μ2(i), Σ) y3u~N(μ3(i), Σ)

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016,



Figure 2. Block diagram of the proposed method
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3. Applications

In this section, two case studies are presented to evaluate and to justify the proposedmethod. The first one is a wheel mounting assembly
19, and the second one is a design of a polymer 7,35. Parameter design and tolerance design are provided in each case. The problems are
formulated using the proposed method, and the formulations are explained in details later in solving process. For the proposed method,
the sample sizes for the two cases are 30 and 25, respectively. The values of α and γ are 0.05 and 0.07 for both cases, respectively.
Furthermore, the initial value for all tolerances is 1. The multi-objective structure of the proposed method requires its integration with
the non-dominated sorting genetic algorithm II introduced in 36. Non-dominated sorting genetic algorithm II is a tool for finding the
Pareto front for a multi-objective problem. Pareto front is a set of Pareto solutions, which, according to 7, are defined as follows:

‘In a common multi-response problem, the optimization scheme for a vector function f(x) is of the form

Min
xϵS

f xð Þ ¼ f 1 xð Þ; f 2 xð Þ;…; f k xð Þf g (20)

It is assumed that the control factors or decision variables xϵRn belong to a nonempty compact feasible region S ⊂ Rn’. The decision
variable x* is a Pareto solution to Eq. (20) if and only if there does not exist any xϵS such that f(x) ≤ f(x*) and for at least one iϵ
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016,
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{1, 2, …, k}, fi(x)< fi(x*). Using the integrated method, the allocated values of the parameters and the tolerances are evaluated by
means of the quality loss functions, which were defined earlier.

Example 1: Wheel mounting assembly

Figure 3 shows a wheel mounting assembly, which consists of components x1, x2, x3, x4, and x5
19.

Figure 4 shows the PBS of the wheel mounting assembly (Figure 4).
The components are linked with two interrelated dimension chains represented as follows:

y1 ¼ x2 � x4

y2 ¼ �x1 � x2 � x3 þ x5

Parameters and tolerances for each component should be determined. The target values for both y1 and y2 are 0.14. The lower
bound and the upper bound for each response variable are 0 and 0.3, respectively. Cost coefficients of the quality loss are
K1 = 3000, K2 = 4000. Responses have the same dimensions, and both are NTB. Considering Eq. (2), the quality loss function associated
with the parameters is calculated as follows:

L1 y1ð Þ ¼ 3000 y1 � 0:14ð Þ2

L1 y2ð Þ ¼ 3000 y2 � 0:14ð Þ2

Variation of the responses is calculated by considering Eqs (7) to (10) and Cpm= 1:

Var y1ð Þ ¼ δ22
9
þ δ24

9

Figure 3. Wheel mounting assembly

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016,



Figure 4. Product breakdown structure of wheel mounting assembly

H. HAZRATI-MARANGALOO AND H. SHAHRIARI
Var y2ð Þ ¼ δ21
9
þ δ22

9
þ δ23

9
þ δ25

9

As a result, the second term of the quality loss for each response is as follows:

L2 y1ð Þ ¼ 4000Var y1ð Þ ¼ 4000
δ22
9
þ δ24

9

� �

L2 y1ð Þ ¼ 4000Var y2ð Þ ¼ 4000
δ21
9
þ δ22

9
þ δ23

9
þ δ25

9

� �

The total quality loss function is defined as follows:

TQL ¼ L1 y1ð Þ þ L1 y2ð Þ þ L2 y1ð Þ þ L2 y2ð Þ
The tolerance cost function is as follows:

Ci δið Þ ¼ ai þ bie
�ciδi

where Ci(δi) is the tolerance cost of the ith component and ai, bi, and ci are the coefficients that vary from one component to another.
The values of coefficients are given in Table II.

The objectives are to minimize:

Z1 ¼ TQL ¼ 3000 x2 � x4 � 0:14ð Þ2 þ 3000 �x1 � x2 � x3 þ x5 � 0:14ð Þ2 þ 4000
δ22
9
þ δ24

9

� �
þ

4000
δ21
9
þ δ22

9
þ δ23

9
þ δ25

9

� �

Z2 ¼ C δð Þ ¼ ∑
5

i¼1
ai þ bie

�ciδi� 	

The variances are computed using

σ21R ¼ σ22R ¼ 1=3ð Þ 0:3� 0

2

� �
 �2
¼ 0:0025
Table II. Tolerance cost function coefficients

Variables a(i) b(i) c(i)

x1 3.231 81.49 37.11
x2 6.498 40.77 43.4
x3 3.231 81.49 37.11
x4 0 16.48 -15.21
x5 4.292 28.9 44.3

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016,



Table III. Some of the Pareto solutions of the proposed method

Solutions

[y1, y2] [Var(y1), Var(y2)] TQL CM TCParameters Tolerances

(5.0408, 8.3769, 4.1684,
8.2349, 17.5845)

(0.0816, 0.0794, 0.0831,
0.0264, 0.0719)

[0.1402,0.1404] [0.00077,0.0028] 14.2587 52.0474 66.3061

(4.9688, 8.6670, 3.8364,
8.5208, 17.4729)

(0.0875, 0.0685, 0.0844,
0.0289, 0.0590)

[0.1462,0.1469] [0.00061.0.0025] 12.9136 53.7483 66.6619

(4.9451, 8.5268, 4.0088,
8.3852, 17.4793)

(0.0816, 0.0915, 0.0872,
0.0246, 0.0789)

[0.1416,0.1402] [0.00099,0.0032] 16.8300 50.0036 66.8336

TQL: Total Quality Loss Costs; CM: Tolerance Costs; TC: Total Costs.

Table IV. Optimal values of the implemented methods

Methods Variables x1 x2 x3 x4 x5

Jeang & Chang 19 ti 5.0006 8.4678 4.0058 8.3218 17.6145
δi 0.0975 0.0935 0.1310 0.0262 0.0714

Proposed method ti 4.8943 8.4870 4.0362 8.3454 17.4107
δi 0.0972 0.0511 0.0858 0.0268 0.0796
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The covariance between responses is computed using

E Y1:Y2ð Þ ¼ E x2 � x4ð Þ �x1 � x2 � x3 þ x5ð Þ½ �
¼ E �x2x1 � x2

2 � x2x3 þ x2x5 þ x4x1 þ x4x2 þ x4x3 � x4x5
� 	

¼�t1t2 � δ22
9
þ t22

� �
� t2t3 þ t2t5 þ t4t1 þ t4t2 þ t4t3 � t4t5

E Y1ð Þ ¼ t2 � t4

E Y2ð Þ ¼ �t1 � t2 � t3 þ t5

σ12 ¼ cov Y1; Y2ð Þ ¼ E Y1:Y2ð Þ � E Y1ð ÞE Y2ð Þ ¼ �δ22
9

Therefore, the covariance matrix is as follows:

Σ ¼
0:0025 �δ22

9

�δ22
9

0:0025

2
64

3
75

The proposed method is applied to obtain the optimal values of the parameters and the tolerances. Some of the solutions of the
Pareto front obtained from the proposed method are presented in Table III. The optimized results of the proposed method are
compared with those of the method presented in Jeang and Chang 19. Tables IV and V show the optimized results of the two methods.

The variances obtained using the proposed method and the Jeang and Chang 19 method are shown in Figure 5. For both
responses, the proposed method generates smaller variances than Jeang and Chang 19.

Figure 6 presents total quality loss costs, tolerance costs, and total costs of the twomethods. The total quality loss and the total costs
for the proposed method are smaller than those of the Jeang and Chang 19, but the tolerance costs of the proposed method are larger.
Table V. Result comparison of the implemented methods

Jeang & Chang 19 Proposed method

[y1, y2] [0.1459,0.1403] [0.1417,0.1348]
[Var(y1), Var(y2)] [0.0010,0.0045] [0.00036,0.0029]
TQL 22.3155 13.0100
CM 46.5547 52.8938
TC 68.8701 65.9037
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Figure 5. Comparison of the variances of the implemented methods

Figure 6. Result comparison of the implemented methods
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Example 2: Design of a polymer

The second example is from Ardakani and Wulff 7 and Myers et al. 35. The controllable variables are the reaction time (x1), the
reaction temperature (x2), and the amount of catalyst (x3). Thus, the feasible region is cubical where S = [�1.682, 1.682]3 ⊂ R3. The
responses are the percentage of conversion (y1), and thermal activity (y2) of a polymer. Usually, the relations among the responses
and the controllable variables are unknown in such chemical processes. So, such relations can be estimated through RSM. In this case,
for the data provided in Appendix 2, the estimated response function for the percentage of conversion (y1 ) and the estimated
response function for the thermal activity (y2 ) are given as follows:

y1 Xð Þ ¼ 80:93þ 1:03x1 þ 4:10x2 þ 6:20x3 � 1:63x21 þ 2:96x22 � 5:18x23 þ 2:03x1x2 þ 11:37x1x3 � 3:80x2x3

y2 Xð Þ ¼ 60:51þ 3:58x1 þ 2:23x3

Figure 7 shows the PBS of the chemical product.
The objective is to maximize the percentage of conversion and to reach to the thermal activity response as close as possible to the

target value of T = 57.5. Customer requirements indicate that the percentage of conversion has to be greater than 80 and lower than
100. Cost coefficients of the quality loss are K1 = K2 = 2000. Considering Eqs (2) through (5), the quality loss function associated with
the parameters can be calculated as follows:

L1 y1

� �
¼ K1

y1 � 5:7848

116:2545� 5:7848
� 1

� �2

L1 y2

� �
¼

K1
y2 � fmin

T � f min � 1

� �2

50≤f x1; x2;…; xnð Þ≤T

K1
fmax � y2
f max � T

� 1

� �2

T≤f x1; x2;…; xnð Þ≤ 70

8>>><
>>>:
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Figure 7. Product breakdown structure of the chemical product

H. HAZRATI-MARANGALOO AND H. SHAHRIARI
Considering Eqs (7) through (10) and Cpm=1, then the quality loss functions associated with the tolerances are as follows:

L2 y1

� �
¼ 2000Var y1

� �
¼ 2000∑3

i¼1

∂ y1
∂xi

jti
� �2 δi

3

� �2

L2 y2

� �
¼ 2000Var y2

� �
¼ 2000∑3

i¼1

∂ y2
∂xi

jti
� �2 δi

3

� �2

The tolerance cost function is the same as the one mentioned in the wheel mounting assembly example. The values of coefficients
associated with this case are given in Table VI.

The objectives are to minimize:

Z1 ¼ TQL Z2 ¼ C δð Þ ¼ ∑3
i¼1 ai þ bie

�ciδi
� 	

Similar to the example earlier, the covariance matrix of the response variables must be computed. Then using the covariance matrix,
observations are generated. Some of the solutions of the Pareto front obtained from the proposed method are presented in Table VII.
Table VI. Tolerance cost function coefficients

Variables a(i) b(i) c(i)

x1 3.231 81.49 37.11
x2. 6.498 40.77 43.4
x3 331 81.49 37.11

Table VII. Some of the Pareto solutions of the proposed method

Solutions

y1 ; y2
� �

Var y1
� 	

; Var y2
� 	� �

TQL CM TCParameters Tolerances

(�0.4704,1.6784,0.5607) (0.0613,0.014, 0.0783) [94.4117,57.5756] [0.0068,0.0087] 109.3465 47.7678 157.1143
(�0.4763,1.6787,�0.5656) (0.0430,0.0104, 0.0768) [94.4176,57.5434] [0.0043.0.0059] 98.4773 60.1428 158.6200
(�0.4791.1.6782,�0.5683) (0.0318,0.0114,0.0673) [94.4100,57.5276] [0.0044,0.0039] 94.4100 69.5874 164.5535

Figure 8. Comparison of the variances of the implemented methods
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Figure 9. Result comparison of the implemented methods

Table VIII. Optimal values of the implemented methods

Methods Variables x1 x2 x3

GA-1 ti -0.5351 1.6527 -0.4942
δi 0.0584 0.0195 0.0703

Proposed ti -0.4719 1.6798 -0.5591
δi 0.0537 0.0140 0.0678

GA, genetic algorithm.

Table IX. Result comparison of the implemented methods

GA-1 Proposed method

y1 ; y2
� �

[94.0224,57.4922] [94.4312,57.5737]
Var y1

� 	
; Var y2

� 	� �
[0.0092,0.0076] [0.0062,0.0066]

TQL 114.6131 103.7943
CM 45.7789 52.8204
TC 160.3920 156.6147
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For the purpose of comparison, a second approach called GA-1 is applied to this example. The quality loss functions of this approach
are the same as the proposed method, but they are optimized using Optimization Toolbox of MATLAB 2010Ra. Results of the
optimization procedures are given in Tables VIII and IX.

Results of the two approaches are presented in Figures 8 and 9. Figure 8 shows that the proposed method results in a lower
variation of the responses than the GA-1.

Figure 9 presents total quality loss costs, tolerance costs, and total costs of the two approaches. Total quality loss and total costs for the
proposed method are lower than those of GA-1, but the summation of tolerance costs for the proposed method is higher. The proposed
method is coded using MATLAB 2010Ra Software and is run on a Laptop with four processors each 2.53GHz and 4.00GB of RAM.
4. Discussions and conclusions

A novel approach to simultaneous robust parameter and tolerance design for multi-response problems is proposed in this research.
The proposed method takes into account the conditions of the manufacturing phase early in the product design stage to evaluate
effects of the tolerances on the cost and quality. It employs the quality loss concept to formulate quality loss associated with the
parameters and the tolerances of a product. One-way MANOVA is also used to allocate the optimal tolerances. The applicability
and effectiveness of the proposed method are demonstrated through two case studies. The first case has linear responses, while
the second one consists of a linear and a nonlinear response. In the first example, Mount Wheel Assembly, the proposed model yields
both lower quality loss costs and lower total costs than those of the Jeang and Chang 19. In this example, the proposed model sets the
response variables closer to their target values in comparison to those of Jeang and Chang 19. In the second example, Design of a
Polymer, the variation for the thermal activity of the polymer for the proposed method is lower than that of the GA-1. Moreover,
the variation for the conversion percentage for the proposed method is smaller. It is also shown that the proposed method allocates
tolerances more properly than when we use traditional methods. Moreover, the proposed method reduces the costs of the quality
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016,
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loss as well as the total costs. In both cases, it is shown that the proposed method provides a high quality and low cost approach to
the simultaneous parameter and tolerance design, that is, the proposed method achieves higher quality with lower cost. Because the
proposed method achieves lower variation for the responses than the other methods, the proposed method is more robust in the
product design. The proposed method is flexible, so it may be applied to all three common scenarios, STB, NTB, and LTB. Multi-
objective formulation of the problem generates more solutions, which may help the user to make appropriate decisions. For further
research, considering reliability concept in the product design can be intended.
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Appendix A

Pseudo code of the tolerance design procedure
Input: Initial tolerances, μ, Σ, α, γ, sample size
Repeat for all variables (x1, x2, x3,…, xm) /*Controllable variables*/

Repeat for xi
Data =Mnormrnd (μ, Σ); /* Generate observations from a Multivariate Normal Distribution*/
P-value =Manova (Data); /*Perform MANOVA*/
If P-value ≤ α Then Reduce the Tolerance
μ=g (μ); /* Update mu */
Σ=g (Σ)/* update the covariance matrix*/
Else if P-value> γ, Then increase the tolerance
μ=g (μ); /* Update mu */
Σ=g (Σ)/* update the covariance matrix*/

Until P-value> α value<= γ /*Stopping criteria*/
Go to xi + 1; /* Tolerance design for next variable*/

Until Stopping criteria; /*e.g. i=m*/
Output: Optimal tolerances
Appendix B

Experimental data of the chemical product example are presented in Table X 35.
Table X. Experimental data of the chemical product example

x1 (time) x2 (temperature) x3 (catalyst) y1 (conversion) y2 (thermal activity)

-1 -1 -1 74 53.2
1 -1 -1 51 62.9
-1 1 -1 88 53.4
1 1 -1 70 62.6
-1 -1 1 71 57.3
1 -1 1 90 67.9
-1 1 1 66 59.8
1 1 1 97 67.8
-1.1682 0 0 76 59.1
1.1682 0 0 79 65.9
0 -1.1682 0 85 60.0
0 1.1682 0 97 60.7
0 0 -1.1682 55 57.4
0 0 1.1682 81 63.2
0 0 0 81 59.2
0 0 0 75 60.4
0 0 0 76 59.1
0 0 0 83 60.6
0 0 0 80 60.8
0 0 0 91 58.9
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