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ABSTRACT
The micropolar elasticity theory provides a useful mate-

rial model for dealing with fibrous, coarse granular, and large
molecule materials. Though being a well-known and well-
developed elasticity model, the linear theory of micropolar elas-
ticity is not without controversy. Specially simplification of the
microppolar elasticity theory to the couple-stress and classical
elasticity theories and the required conditions on the material
elastic constants for this simplification have not been discussed
consistently. In this paper the linear theory of micropolar elas-
ticity is reviewed first. Then the correct approach for a consistent
and step-by-step simplification of the micropolar elasticity model
with six elastic constants to the couple-stress elasticity model
with four elastic constants and the classical elasticity model with
two elastic constants is presented. It is shown that the classical
elasticity is a special case of the couple-stress theory which itself
is a special case of the micropolar elasticity theory.

INTRODUCTION
The classical theory of linear elasticity has a long history

of development and verification and produces acceptable results
in numerous engineering problems with various structural ma-
terials. However, for the cases with large stress gradients (e.g.,
in the vicinity of holes and cracks) or materials with significant
microstructure contribution (e.g. composites, polymers, soil, and
bone) the classical theory of elasticity fails to produce acceptable
results. To improve the results of the classical theory of elastic-
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ity Voit [1] incorporated the effects of couple stresses and gen-
eralized the symmetric classical theory of elasticity to the asym-
metric couple-stress theory. This was then extended by E. and
F. Cosserat [2] who considered a body microrotation field, in-
dependent of the body displacement field. Eringen [3] further
developed Cosserat’s model by including the body microinertia
and renamed it as the micropolar theory of (asymmetric) elastic-
ity. Nowacki [4] provides an extensive description of the linear
theory of micropolar elasticity.

Broadly speaking these newer, more elaborate, material
models are useful when dealing with materials that have a de-
fined internal structure; e.g. fibrous materials such as bone,
coarse granular materials such as soil, and large molecule poly-
mers such as foams. It is noteworthy that experimental verifi-
cation of the micropolar theory for these materials is not fully
accomplished yet and one is faced with a situation when theory
precedes experiment.

Although being a well-known and well-developed elasticity
model, the linear theory of micropolar elasticity is not without
controversy. Especially simplification of the micropolar elas-
ticity to the classical elasticity theory and determination of the
micropolar material parameters are labeled as inconsistent. In
particular, whereas the micropolar elasticity model with zero mi-
cropolar elastic constants (including a zero micropolar couple
modulus) is considered by some authors to coincide with the
classical elasticity model (e.g. [5], [6], and [7]), there are other
authors who observed some inconsistencies in the micropolar
elasticity model with a zero micropolar couple modulus (e.g. [8]
and [7, 9]).
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This paper suggests that the apparent inconsistencies in the
micropolar theory of linear elasticity are mainly a result of the
approach taken or assumed for simplification of the micropo-
lar theory of elasticity to the classical theory of elasticity and
may be resolved provided a different simplification approach is
taken. We will show, assuming a general linear theory of mi-
cropolar elasticity applied to a homogeneous, isotropic, and cen-
trally symmetric material, that a new approach, in which a zero
micropolar couple modulus is not required, can be taken for sim-
plification of the micropolar theory of elasticity to the classical
theory of elasticity.

MICROPOLAR ELASTICITY THEORY
To provide a brief overview of the three-dimensional linear

theory of micropolar elasticity, consider a general homogeneous,
isotropic, and centrally symmetric elastic body occupying a vol-
ume domain V in R3 , bounded by surface S. Assume that the
body undergoes a motion and deformation due to the action of
external volume force and moment

→
f V and →m

V . A body frame
Fb and a position vector

→
p (with respect to the inertial frame

Fo ) correspond to each representative infinitesimal element of
the body (see Fig. 1).
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FIGURE 1. A GENERAL ELASTIC BODY AND ITS REPRESEN-
TATIVE ELEMENT.

In the micropolar elasticity model, the (classical) displace-
ment field vector→u is complemented by a microrotation field vec-
tor →ϑ (independent of the displacement field). Consequently, the
translational velocity and acceleration vectors are →̇u and →̈u, and
the angular velocity and acceleration vectors are →̇ϑ and →̈ϑ [10].

The micropolar deformation is fully described by (asymmet-
ric) strain and twist tensors,↔ε and↔τ , which are defined as:

εi j = u j , i− ei jk ϑk,

τi j = ϑ j , i,
(1)

where ei jk is the third-order Levi-Civita or permutation tensor.
Based on these definitions the following relations can be derived:

ϑi =
1
2

ei jk

(
uk , j− ε jk

)
,

τi j =
1
2

e jkl

(
ul ,ki− εkl , i

)
,

τii = −
1
2

ei jk ε jk , i.

(2)

It is also useful to define the (classical) macrorotation vector →θ
and the (classical) macrorotation tensor↔θ

× such that:

θi =
1
2

ei jkuk , j,

θ
×
i j = − ei jk θk = −

1
2

(
u j , i−ui, j

)
.

(3)

Then the strain and twist tensors can be decomposed into their
symmetric and antisymmetric (skew-symmetric) parts as:

εi j = ε
s
i j + ε

a
i j,

ε
s
i j =

1
2

(
u j , i +ui, j

)
,

ε
a
i j =

1
2

(
u j , i−ui, j

)
− ei jkϑk = ei jk

(
θk−ϑk

)
,

(4)

and:

τi j = τ
s
i j + τ

a
i j,

τ
s
i j =

1
2

(
ϑ j , i +ϑi, j

)
,

τ
a
i j =

1
2

(
ϑ j , i−ϑi, j

)
,

(5)

where note that↔ε
a is a representation of the difference between

the (classical) macrorotation and the (micropolar) microrotation.
As shown in Fig. 2, in a micropolar continuum, the (classical

force) stress field tensor ↔σ is completed by a (micropolar) cou-
ple stress field tensor

↔
χ . Considering the free body diagram in

Fig. 2, for a micropolar elastic body under the action of a general
volume force

→
f V and a general volume moment →m

V the balance
of linear and angular momenta can be written in the following
differential form:

σ ji, j + f V
i = ρ

V üi,

χ ji, j + ei jk σ jk +mV
i = ıV

ϑ̈ i,
(6)
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where ρ
V is the material volume mass density and ıV is the ma-

terial volume microinertia density. Note that a more general
case is when the material has a tensor of microinertia density

↔ı
V , however this paper is confined to the isotropic case where

↔ı
V = ıV

↔1 [4].
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FIGURE 2. FREE BODY DIAGRAM OF A REPRESENTATIVE
ELEMENT IN A MICROPOLAR ELASTIC BODY.

Analogous to the decomposition of strain and twist tensors,
the force and couple stress tensors can be decomposed into their
symmetric and antisymmetric parts as:

σi j = σ
s
i j +σ

a
i j,

σ
s
i j =

1
2

(
σi j +σ ji

)
, σ

a
i j =

1
2

(
σi j−σ ji

)
,

(7)

and:

χi j = χ
s
i j +χ

a
i j,

χ
s
i j =

1
2

(
χi j +χ ji

)
, χ

a
i j =

1
2

(
χi j−χ ji

)
.

(8)

Utilizing Eqn. (7) and noting the fact that for any symmetric
second-order tensor ↔d , ei jkd jk = 0, the equilibrium relations in
Eqn. (6) can be rewritten as:

σ
s
ji, j +σ

a
ji, j + f V

i = ρ
V üi,

χ ji, j + ei jk σ
a
jk +mV

i = ıV
ϑ̈ i.

(9)

Solving the second relation of Eqn. (9) for the antisymmetric
force stress tensor ↔σ

a and substituting into the first relation of
Eqn. (9) one can rewrite the balance relations as:

σ
s
ji, j +

1
2

ei jk

(
χlk , l j +mV

k , j− ıV
ϑ̈ k , j

)
+ f V

i = ρ
V üi,

ei jk

(
χlk , l +mV

k − ıV
ϑ̈ k

)
= 2σ

a
ji.

(10)

As can be concluded from Eqn. (9) the antisymmetric part of the
force stress tensor, ↔σ

a , couples the linear and angular momenta
balance relations.

The linear theory of micropolar elasticity proposed by Erin-
gen results in a set of two constitutive relations with six elas-
tic constants for a general homogeneous, isotropic, and centrally
symmetric elastic body. These relations have the following form:

σi j =
(

µ +κ

)
εi j +

(
µ−κ

)
ε ji +λ εkk1i j,

χi j =
(

γ +β

)
τi j +

(
γ−β

)
τ ji +α τkk1i j,

(11)

where 1i j is the Kronecker delta tensor. Among the six elastic
constants denoted in Eqn. (11), µ and λ are the classical Lamé
parameters (µ is also called Lamé shear modulus or shear mod-
ulus). The other four constants κ , γ , β , and α are the new elastic
constants usually referred to as the micropolar or Cosserat elas-
tic constants. Note that κ is usually called the micropolar couple
modulus. The micropolar constants represent the contribution of
the material microstructure to the elastic properties of the body.

By decomposing the strain and twist tensors, as given by
Eqns. (4) and (5), the constitutive relations in Eqn. (11) can be
rewritten as:

σi j = 2 µ ε
s
i j +λ εkk1i j +2κ ε

a
i j,

χi j = 2γ τ
s
i j +α τkk1i j +2β τ

a
i j.

(12)

Now a similar decomposition for the force and couple stress ten-
sors, as given by Eqns. (7) and (8), gives rise to the following
relations:

σ
s
i j = 2 µ ε

s
i j +λ εkk1i j, σ

a
i j = 2κ ε

a
i j,

χ
s
i j = 2γ τ

s
i j +α τkk1i j, χ

a
i j = 2β τ

a
i j,

(13)

where the first relation is identical with the constitutive relation
of classical elasticity.

Considering the original constitutive relations in Eqn. (11)
and applying the Einstein summation convention on stress ten-
sors, ↔σ and

↔
χ , it can be shown that:

σkk = 3Bεkk, B = λ +
2
3

µ,

χkk = 3B τkk, B = α +
2
3

γ,

(14)

where B is known as the bulk modulus, and B as dual of the bulk
modulus can be called the tortile or torsional bulk modulus.
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Simplifying the first constitutive relation given by Eqn. (11)
for the simple force stress state of uniform tension along axis ox1,
where the only nonzero element of the force stress tensor is σ11 ,
results in definitions of the (classical) strain Poisson’s ratio ν and
the (classical) Young’s modulus E as:

ν = − ε22

ε11
= − ε33

ε11
=

λ

2
(

µ +λ

) ,
E =

σ11

ε11
=

µ

(
2 µ +3λ

)
µ +λ

= 2 µ

(
1+ν

)
.

(15)

The second constitutive relation in Eqn. (11) can be simplified
to account for the simple couple stress state of uniform torsion
along axis ox1 , where the only nonzero element of the couple
stress tensor is χ11 . Then the micropolar twist Poisson’s ratio ξ

and the micropolar tortile or torsional modulus E can be defined
as:

ξ = − τ22

τ11
= − τ33

τ11
=

α

2
(

γ +α

) ,
E =

χ11

τ11
=

γ

(
2γ +3α

)
γ +α

= 2γ

(
1+ξ

)
.

(16)

Utilizing the constitutive relations in Eqn. (11) and the def-
initions of the strain and twist tensors in Eqn. (1) to replace the
force and couple stresses in the balance of momenta relations
given by Eqn. (6), the system of partial differential equations
(PDEs) representing the equations of motion for a micropolar
continuum are derived as:(

µ +κ

)
ui, j j +

(
µ−κ +λ

)
u j , ji

+2κ ei jk ϑk , j + f V
i = ρ

V üi,(
γ +β

)
ϑi, j j +

(
γ−β +α

)
ϑ j , ji

+2κ

(
ei jk uk , j−2ϑi

)
+mV

i = ıV
ϑ̈ i.

(17)

Considering Eqns. (9) and (10) and substituting from the as-
sociated constitutive equations and the definitions of the strain
and twist tensors into them, the following alternative forms for
the dynamic equations can be attained respectively:

µ ui, j j +
(

µ +λ

)
u j , ji−2κ ei jk

(
θk , j−ϑk , j

)
+ f V

i = ρ
V üi,(

γ +β

)
ϑi, j j +

(
γ−β +α

)
ϑ j , ji +4κ

(
θi−ϑi

)
+mV

i = ıV
ϑ̈ i,

(18)

and:

µ ui, j j +
(

µ +λ

)
u j , ji

+
1
2

ei jk

((
γ +β

)
ϑk , ll j +mV

k , j− ıV
ϑ̈ k , j

)
+ f V

i = ρ
V üi,(

γ +β

)
ϑi, j j +

(
γ−β +α

)
ϑ j , ji

+mV
i − ıV

ϑ̈ i = −4κ

(
θi−ϑi

)
,

(19)

where it is recalled that for any symmetric second-order tensor

↔d , ei jkd jk = 0.
In the linear micropolar elasticity theory the strain energy

density U V
e is expressed as:

2U V
e = σi j εi j +χi j τi j. (20)

By decomposing the force stress, couple stress, strain, and twist
tensors into their symmetric and antisymmetric parts this expres-
sion can be rewritten as:

2U V
e = σ

s
i j ε

s
i j +σ

a
i j ε

a
i j +χ

s
i j τ

s
i j +χ

a
i j τ

a
i j. (21)

Correspondingly substitutions from the constitutive relations in
Eqns. (11) and (13) into Eqns. (20) and (21) result in the follow-
ing strain energy density expressions:

2U V
e =

(
µ +κ

)
εi j εi j +

(
µ−κ

)
ε ji εi j +λ εii ε j j

+
(

γ +β

)
τi j τi j +

(
γ−β

)
τ ji τi j +α τii τ j j,

(22)

and:

2U V
e = 2 µε

s
i j ε

s
i j +λ εii ε j j +2κε

a
i j ε

a
i j

+2γ τ
s
i j τ

s
i j +α τii τ j j +2βτ

a
i j τ

a
i j.

(23)

The fact that the strain energy density expression should
have a positive definite quadratic form imposes the following re-
strictions on the material elastic constants [4]:

µ > 0, κ > 0, 2 µ +3λ > 0,
γ > 0, β > 0, 2γ +3α > 0.

(24)

SIMPLIFICATION TO COUPLE-STRESS ELASTICITY
Consider again the general homogeneous, isotropic, and

centrally symmetric elastic body under the action of (finite) body
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volume force
→
f V and moment →m

V . For such a body, utilizing
the linear micropolar theory of elasticity results in the relations
and definitions given by Eqns. (1)–(24). Now by taking into ac-
count the constitutive relations, especially the first relation given
in Eqn. (12), and letting the micropolar couple modulus κ tend to
infinity while noting that the force stress tensor ↔σ should remain
finite, one can conclude that the antisymmetric part of the strain
tensor, i.e.↔ε

a , should vanish:

ε
a
i j = ei jk

(
θk−ϑk

)
= 0,

ϑi = θi =
1
2

ei jk uk , j.
(25)

Consequently, the kinematic relations given by Eqns. (1)–(5) can
be simplified to:

εi j = ε
s
i j + ε

a
i j =

1
2

(
u j , i +ui, j

)
,

ε
s
i j =

1
2

(
u j , i +ui, j

)
,

ε
a
i j = 0,

τi j = τ
s
i j + τ

a
i j =

1
2

e jkl ul ,ki,

τ
s
i j =

1
4

e jkl ul ,ki +
1
4

eikl ul ,k j,

τ
a
i j =

1
4

e jkl ul ,ki−
1
4

eikl ul ,k j,

τii = 0.

(26)

For such a case (i.e. when κ → ∞ and thus ε
a
i j = 0 and τii =

0), the constitutive relations given by Eqn. (13) take the form:

σ
s
i j = 2 µ εi j +λ εkk1i j, σ

a
i j = ∞×0 = ¿,

χ
s
i j = 2γ τ

s
i j, χ

a
i j = 2β τ

a
i j,

where ¿ is a symbol that represents a numerical quantity whose
magnitude cannot be determined (an indeterminate quantity).
However, as τii = 0 this form impose an unnecessary constraint
on the couple stress tensor, that is χii = 0. To remove this con-
straint it can be assumed that in the constitutive relations given
by Eqn. (13) (in addition to the micropolar couple modulus κ )
the micropolar twist coefficient α goes to infinity as well. Using
the second relation of Eqn. (14), this assumption gives rise to the
following form for the constitutive relations in Eqn. (13):

σ
s
i j = 2 µ εi j +λ εkk1i j, σ

a
i j = ∞×0 = ¿,

χ
s
i j−

1
3

χkk1i j = 2γ τ
s
i j, χ

a
i j = 2β τ

a
i j,

χii = ∞×0 = ¿,

(27)

or equivalently:

σi j−σ
a
i j = 2 µ εi j +λ εkk1i j,

χi j−
1
3

χkk1i j =
(

γ +β

)
τi j +

(
γ−β

)
τi j,

σ
a
i j = ∞×0 = ¿, χii = ∞×0 = ¿.

(28)

It is worthwhile to note here that the indeterminacy of the asym-
metric force stress tensor↔σ

a and the summation of normal couple
stresses χii means they cannot be obtained from the constitutive
relations and (if possible) one should use the kinetic balance re-
lations to determine them.

Whereas the bulk modulus B, strain Poisson’s ratio ν , and
Young’s modulus E defined in Eqns. (14) and (15) remain un-
changed as κ and α tend to infinity, by letting α in Eqns. (14)
and (16) go to infinity one can derive the tortile bulk modulus B,
twist Poisson’s ratio ξ , and tortile modulus E which correspond
to the current case, that is:

B = λ +
2
3

µ, ν =
λ

2
(

µ +λ

) ,
E =

µ

(
2 µ +3λ

)
µ +λ

= 2 µ

(
1+ν

)
,

B = ∞, ξ =
1
2
, E = 3γ.

(29)

By letting κ and α go to infinity, however, the kinetic rela-
tions will remain unchanged as no restriction is imposed on the
force and couple stress tensors and, therefore, one can repeat, for
example, the equilibrium relations given by Eqn. (6):

σ ji, j + f V
i = ρ

V üi,

χ ji, j + ei jk σ jk +mV
i = ıV ei jk ük , j,

(30)

or more properly the equilibrium relations in Eqn. (10):

σ
s
ji, j +

1
2

ei jk

(
χlk , l j +mV

k , j− ıV eklm üm, l j

)
+ f V

i = ρ
V üi,

ei jk

(
χlk , l +mV

k − ıV eklm üm, l

)
= 2σ

a
ji.

(31)

Substitution from the constitutive relations of Eqn. (28) into
the balance relations given by Eqn. (31) (or revision of the mo-
tion equations in Eqn. (19) for the case when κ→∞ and α→∞)
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results in the corresponding equations of motion:

µ ui, j j +
(

µ +λ

)
u j , ji +

1
4

ei jk

(
γ +β

)
eklm um, lnn j

+
1
2

ei jk

(
mV

k , j−
1
2

ıV eklm üm, l j

)
+ f V

i = ρ
V üi,

2σ
a
ji−

1
3

ei jk χll ,k =
1
2

ei jk

(
γ +β

)
eklm um, lnn

+ ei jk

(
mV

k −
1
2

ıV eklm üm, l

)
.

(32)

Here the first relation of Eqn. (32) corresponds to a set of three
PDEs, enough for determination of the displacement vector.
However, the second relation of Eqn. (32) also corresponding to
a set of three PDEs does not provide enough information to com-
pute the undetermined parts of the force and couple stress ten-
sors, i.e. ↔σ

a and χii , from a known displacement vector. Indeed,
there are only three equations that should be used to determine
four unknowns (three elements of ↔σ

a and the scalar χii).
Finally when κ → ∞ and α → ∞, the strain energy density

U V
e can be written as (compare this to Eqns. (20) and (21) given

previously for a general micropolar case):

2U V
e =

(
σi j−σ

a
i j

)
εi j +

(
χi j−

1
3

χkk1i j

)
τi j

= σ
s
i j εi j +

(
χ

s
i j−

1
3

χkk1i j

)
τ

s
i j +χ

a
i j τ

a
i j.

(33)

Now substituting from Eqn. (27) or (28) into Eqn. (33) results in
the following expression for strain energy density U V

e (in com-
parison with Eqn. (22) or (23)):

2U V
e = 2 µεi j εi j +λ εii ε j j +

(
γ +β

)
τi j τi j +

(
γ−β

)
τ ji τi j

= 2 µεi j εi j +λ εii ε j j +2γ τ
s
i j τ

s
i j +2βτ

a
i j τ

a
i j,

(34)
which have a positive definite form provided (compared to the
conditions in Eqn. (24)):

µ > 0, 2 µ +3λ > 0,
γ > 0, β > 0.

(35)

The relations given by Eqns. (25)–(35) (especially after ig-
noring the terms containing the material microinertia density ıV )
are known as the relations of the indeterminate couple-stress the-
ory [11] (since, as mentioned previously, the number of equa-
tions in Eqn. (32) are not enough for complete determination of
engaged unknowns, the couple-stress theory is usually called the
indeterminate couple-stress theory).

To sum up, one can conclude that the couple-stress theory
with four material elastic constants µ, λ , γ, and β is a special case
of the more general micropolar theory of elasticity consisting of
six material elastic constants µ , κ , λ , γ , β , and α which can be
obtained mathematically as κ → ∞ and α → ∞ (it is also usual
to neglect the microinertia effects by assuming ıV → 0).

SIMPLIFICATION TO CLASSICAL ELASTICITY
Consider the relations of the couple-stress theory, given in

the previous section by i.e. Eqns. (25)–(35), which were obtained
from the relations of the micropolar elasticity theory by assuming
κ,α→∞. By taking another step and letting the micropolar twist
coefficients γ and β and the microinertia density ıV go to zero,
the couple-stress theory relations will further simplify to a set of
relations in which the effects of the couple stresses are almost
negligible. For such a case the constitutive relations will be:

σi j−σ
a
i j = 2 µ εi j +λ εkk1i j,

χi j−
1
3

χkk1i j = 0,

σ
a
i j = ¿, χii = ¿.

Although one can continue while keeping the indeterminate por-
tion of the couple stress, i.e. χii , it is more useful to neglect the
couple stresses completely and consequently write the constitu-
tive relations as:

σi j−σ
a
i j = 2 µ εi j +λ εkk1i j,

σ
a
i j = ¿,

χi j = 0.

(36)

This implies that the couple stresses do not exist and as a result
there is no need to define the twist tensor and derive the equa-
tions related to it. One can accordingly simplify Eqns. (25)–(35)
to obtain; the definitions of the strains and the micro or macro
rotations:

εi j =
1
2

(
u j , i +ui, j

)
,

ϑi = θi =
1
2

ei jk uk , j,

(37)

the constitutive relations:

σ
s
i j = σi j−σ

a
i j = 2 µ εi j +λ εkk1i j, σ

a
i j = ¿, (38)
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the definitions of the bulk modulus, strain Poisson’s ratio, and
Young’s modulus:

B = λ +
2
3

µ, ν =
λ

2
(

µ +λ

) ,
E =

µ

(
2 µ +3λ

)
µ +λ

= 2 µ

(
1+ν

)
,

(39)

the relations of the balance of linear and angular momenta:

σ ji, j + f V
i = ρ

V üi,

ei jk σ jk +mV
i = 0,

(40)

σ
s
ji, j + f V

i +
1
2

ei jk mV
k , j = ρ

V üi,

ei jk mV
k = 2σ

a
ji,

(41)

µ ui, j j +
(

µ +λ

)
u j , ji +

1
2

ei jk mV
k , j + f V

i = ρ
V üi,

2σ
a
ji = ei jk mV

k ,
(42)

the strain energy density definitions:

2U V
e =

(
σi j−σ

a
i j

)
εi j = σ

s
i j εi j, (43)

2U V
e = 2 µεi j εi j +λ εii ε j j, (44)

and the conditions under which the strain energy has a positive
definite quadratic form:

µ > 0, 2 µ +3λ > 0. (45)

The set of relations given by Eqns. (37)–(45) correspond to
the asymmetric theory of classical elasticity [12]. Compared to
the (well-known) symmetric classical elasticity, in the asymmet-
ric theory of classical elasticity, although the strain tensor is sym-
metric, the force stress tensor can be asymmetric in the presence
of a volume moment distribution. There is no constitutive rela-
tion for the antisymmetric part of the stress tensor (as given by

Eqn. (38)) and the antisymmetric stress tensor is instead deter-
mined by the angular momentum balance equation (as given by
Eqn. (41) or (42)). Also, the volume moment distribution ap-
pears as an equivalent force distribution in the linear momentum
balance equation (as in Eqn. (41) or (42)).

Accordingly, one can conclude that the asymmetric classical
theory of elasticity with two material elastic constants µ and λ

is a special case of the more general couple-stress theory includ-
ing four material elastic constants µ , λ , γ , and β which can be
obtained mathematically as γ → 0, β → 0, and ıV → 0 [13].

Recalling that the couple-stress theory is itself a special case
of the micropolar theory of elasticity, one can obtain the classical
theory of elasticity directly from the micropolar theory of elas-
ticity by letting κ,α → ∞ and γ,β , ıV → 0. In other words, the
couple-stress theory is an intermediate theory derived through
the process of recovering the classical elasticity theory from the
micropolar elasticity theory. This is summarized in the flowchart
shown in Fig. 3.

Micropolar 

Theory of 

Elasticity

Classical

Theory of 

Elasticity

0

0
Couple-Stress 

Theory

,

,

,

,
,

FIGURE 3. SEQUENTIAL STRUCTURE FOR SIMPLIFICATION
OF THE MICROPOLAR ELASTICITY THEORY TO THE COUPLE-
STRESS AND CLASSICAL ELASTICITY THEORIES.

SUMMARY AND CONCLUSIONS
The controversial nature of the well-developed theory of mi-

cropolar elasticity is a drawback for this more elaborate and com-
prehensive material model. This controversy is mainly about the
relationships between the micropolar elasticity theory and the
classical elasticity theory and their corresponding material elas-
tic constants. To be specific , the micropolar elastic model with
zero micropolar elastic constants including a zero couple modu-
lus κ , which is traditionally known to coincide with the classical
elastic model, bears (physical) difficulties [8].

One should note that the micropolar couple modulus κ de-
termines the strength of coupling between the displacement and
local rotation fields [14]. Though, simplifying the micropolar
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elasticity for the case κ = 0 is more straightforward, this cor-
responds to a decoupling of the rotational and translational de-
grees of freedom (DOFs) [15]. Therefore, a micropolar elasticity
model with κ = 0 corresponds to an elastic continuum in which
the constitutive particles or cells are free to rotate and indeed in
the presence of a volume moment rotate infinitely (a singularity
occurs in the presence of a volume moment).

This paper presented an alternative approach for a step-by-
step simplification of the micropolar elasticity model to the clas-
sical elasticity model in which letting κ → 0 was not required.
Indeed, it was shown that the micropolar elasticity model with
six elastic constants µ , κ , λ , γ , β , and γ will be simplified to
the couple-stress elasticity model with four elastic constants µ ,
λ , γ , and β provided κ,α → ∞ (and usually ıV → 0). Then let-
ting γ,β , ıV → 0, will further simply the model to the classical
elasticity model with two elastic constants µ and λ .

The presented approach is beneficial as, first, it does not en-
force a zero micropolar couple modulus, and second, it suggests
a sequential relationship between the micropolar, couple-stress,
and classical elasticity models (as shown in Fig. 3). Note that in
the conventional approach the classical and couple-stress elas-
ticity models corresponds to two different simplified cases of
the micropolar elasticity model, respectively where κ → 0 and
κ → ∞. This conventional approach is inconsistent with the fact
that the couple-stress elasticity theory is a generalized form of
the classical elasticity theory [16].

It should be noted that the presented approach and suggested
conditions for recovery of the classical elasticity model from the
micropolar elasticity model are consistent with those suggested
in [17–19] which were obtained from a different point of view,
that is considering the relationships between the structural char-
acteristics of classical and micropolar gyroelastic materials.
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