
An Overview of Semantic Web Services

Composition Approaches

Yasmine Charif and Nicolas Sabouret

LIP6 8, rue du Capitaine Scott. 75015 Paris.
{Yasmine.Charif, Nicolas.Sabouret}@lip6.fr

Abstract

In this paper, we are motivated by the problem of semantic web services composition. We first
present a typical example requiring services composition, give a definition of an automated services
composition approach and outline its main requirements. We then discuss existing techniques and
their limitations with regards to those requirements. Finally, we present our proposal for web
services composition based on autonomous services interactions.

Keywords: Semantic Web Services, Composition Approaches, Interaction between Web Services,
Ontologies and Context for Web Services.

1 Introduction

The aim of research efforts around semantic web services is to facilitate au-
tomated handling of web services. Initial web service efforts failed to hold
the promise of automatically interacting, dynamically composed web service.
The reason is that the web service technology stack does not supply sufficient
means for describing web services in a way that supports generic mechanisms
for discovering, composing, and executing web services.

But semantic web and web services are synergistic: the semantic web trans-
forms the web into a repository of computer readable data, while web services
provide the tools for the automatic use of that data. Thus, the concept of
Semantic Web Service (henceforth: SWS) has been established: based on
concise and unambiguous semantic description frameworks for web services
and related aspects, generic inference mechanims shall be developed for han-
dling SWS.

Electronic Notes in Theoretical Computer Science 146 (2006) 33–41

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.11.005

http://www.elsevier.com/locate/entcs

The above issues are being addressed by ongoing work in the area of SWS
[2,3,6]. The overall approach is that by augmenting web services with rich
formal descriptions of their competences, many aspects of their management
will become automatic. Specifically, web service location, composition and
mediation can become dynamic, with software agents able to reason about
the functionnalities provided by different web services, to locate the best ones
for solving a particular problem to automatically compose the relevant web
services to build applications dynamically. [3]

Composition especially is a far from trivial problem: the composition ap-
proach must be automatic (the less manual as possible) and deal with the
partial observability of the services’ internal status, with complex goals ex-
pressing commands, temporal conditions and preferences requirements, and
with heterogeneous results provided by several services.

In this paper, we will discuss some exiting techniques that have been ap-
plied to the SWS composition problem, their limitations with regards to some
main requirements and present our approach.

The rest of the paper is organized as follows. Section 2 provides a motivat-
ing example that illustrates our requirements for SWS composition, and gives a
definition of an automated services composition approach. Section 3 discusses
existing techniques and their limitations with regards to those requirements.
Finally, section 4 presents our dialogical approach for SWS composition, based
on autonomous SWS interactions.

2 Motivating Example

Before summing up the existing approaches dealing with SWS composition,
and in order to realize the value added by every approach, it is helpful to have
realworld example in mind and to map each approach we present in the next
sections to it.

Consider the task of comparing products on the web. In the absence of
automated composition of services, the user invests considerable resources
visiting numerous sites, determining appropriate service providers, entering
his preferences repeatedly, integrating or aligning the different type of results
coming from different sites.

We would prefer that the user enters information once and receives the
expected results from the most appropriate services with minimal additional
assistance. One possible interaction model is given in figure 1.

In this scenario, the user sends a single request, to a service (that we call
Mediator Service), containing the type of the product concerned (for exam-
ple: a camera, domotic apparatus) and the information required about the

Y. Charif, N. Sabouret / Electronic Notes in Theoretical Computer Science 146 (2006) 33–4134

Mediator Service

(Composition)

User

Result:

Reference
Description
Prices
Addresses

Result:
Reference
Delivery date
Description
Price

Result:

Addresses
Reference

Description
Suppliers
Towns

Products Description
& Prices Service

Request:
Type of product
Information required
References sorted

Sorting Identifiers
ServiceAddresses Service

Products Shop
Result:

Identifiers
Sorted idfs

Fig. 1. An interaction model for a comparison service domain.

products (for example: the references, the prices, their description and the
shop addresses where they are sold). As it is unlikely to find the ad hoc ser-
vice solving the user’s requirements, the service he/she interacts with tries to
find several services providing as a result one or more of the needed infor-
mation. Once these services discovered, the mediator would have to compose
the functionalities leading to the needed results and solve their data types
constraints.

We can then give a general definition of the SWS composition task. Com-
posing services into one service, given target functionnalities, implies to dis-
cover the services that provide one or more of the functionnalities required;
retrieve the definition of these specific functionalities (or actions); integrate
them into the result service and solve data types constraints of the concepts
included in the actions definitions. Note that this approach can be opposed to
data integration and query mediation: SWS composition rather focuses on the
services functionnalities and tries to build a chain of actions call that fulfills
the user’s requirements.

To address such a typical example, we require to solve the following main
problems:

• the services discovery and selection, i.e. the user must only have to interact
with a mediator service that is in turn responsible for the services discovery,
selection (following the specified requirements) and composition;

• the composition of specific services competences, i.e. the composition task
must only consider the needed functionalities, not merge the different ser-
vices entirely;

• the heterogeneity of the concepts and the actions definitions handled by the

Y. Charif, N. Sabouret / Electronic Notes in Theoretical Computer Science 146 (2006) 33–41 35

different services;

• to exempt the user of any machine-processable task, i.e. automate the
composition approach.

We will show in the following sections how some existing approaches for web
services composition deal with these problems.

3 Existing Approaches for Web Services Composition

A number of software systems are available to facilitate composition of web
services. Such programs enable a user to manually specify a composition of
programs to perform some task. The composition process itself, that is the
resolution of data types constraints and the effective call of services’ actions,
should be as much automatic as possible. We will see in this section several
approaches for SWS composition and we will discuss their limitations with
regards to our example and its requirements.

3.1 Adapting BPEL4WS for the Semantic Web

BPEL4WS [5] (Business Process Execution Language for Web Services) pro-
vides a notation for describing interactions of web services as business pro-

cesses. Services are integrated by treating them as partners that fill roles in
a BPEL4WS process model.

D.J. Mandell and S. McIlraith propose in [7] a bottom-up approach for
web services interoperation in BPEL4WS: they collect DAML-S [2] (or OWL-
S 1) service profiles into a repository and exploit their semantics to query for
partners based on descriptions of the partners’ desired properties. Then, they
integrate semantic services descriptions querying into BPWS4J 2 (which is
an engine that implements a subset of the features defined in the BPEL4WS
specification). Since the current BPWS4J is not extensible, they construct a
Semantic Discovery Service (SDS) to work within BPWS4J’s perspective as
an aggregator of web services.

The SDS sits between a BPWS4J process and its potential partners. In-
stead of routing requests to previously selected partners, BPWS4J directs
them to the SDS through a locally bound web service interface. The SDS

1 The OWL-S (Ontology Web Language) model (previsouly called DAML-S) attempts to
provide a comprehensive approach to service description. The model has found considerable
uptake by the SWS community and as such has set a certain bar against which any other
proposals are typically compared.
2 The BPWS4J engine consumes a BPEL4WS document and WSDL documents defining
the bindings for the BPEL4WS process and its partners.

Y. Charif, N. Sabouret / Electronic Notes in Theoretical Computer Science 146 (2006) 33–4136

then locates approriate service partners and servers as a dynamic proxy be-
tween the BPWS4J engine and the discovered partners.

In our example of section 2, the SDS could be used to discover and invoke
the several web services that provide the different results required by the
user. However, it does not address the issue of the automated integration
and composition of services functionalities. Indeed, DAML-S, which defines a
clear semantics for services description, is not provided with a tool or a means
for composing dynamically the specific functionalities or actions desired. The
composite process description must be given a priori and cannot be built at

runtime. As such, the user with the BPEL4WS and SDS tools could only
have the sum of results given by all matching services, including nondesired
results. In our example, the user would have the list of suppliers (service 2)
while he/she did not ask for them. Moreover, the results are heterogeneous
since they are directly obtained from the services partners.

3.2 Composition of WSMO-based SWS in IRS-III

Recently, a number of initiatives have started to integrate fully with web
services, to support ecommerce and to take into account the notion of goal
and mediation 3 . The WSMO ontology [6] (Web Service Modeling Ontology)
is one of these initiaves’ related technologies. IRS-III [3] (Internet Reasoning

Service) is a framework and implemented infrastructure which supports the
creation, publication, composition and execution of SWS according to the
WSMO ontology.

D. Sell et al. introduce in [12] a graphical tool developed in Java that
supports users on the definition of dynamic compositions in IRS-III by recom-
manding goals according to the context at each step of a composition. The
generated composition is performed by their Java API for orchestration. Their
approach holds the control of the definition of the composition, but laborious
work such as discovery of services according to the users needs is assumed
by the machine. Moreover, it introduces additional features such as dynamic
invocation of web services in orchestration, control operator and mediation.

Even if such tools can solve our example, they have two main drawback.
First, the user must be a computer specialist, whereas the services composi-
tion solutions are intended to help ordinary users in the web. Second, the
manual steps performed by the user, and the services discovery could be done
automatically.

3 Mediation can be applied at several levels: mediation of data structures; mediation of
business logics; mediation of message exchange protocols; and mediation of dynamic service
invocation.

Y. Charif, N. Sabouret / Electronic Notes in Theoretical Computer Science 146 (2006) 33–41 37

3.3 Integration of OWL-S into IRS-III

F. Hakimpour et al. discuss in [4] that supporting OWL-S will extend the
potential of IRS-III in the sense that the separation of the goal and the web
services can add to the flexibility in defining a composition of tasks.

Indeed, the IRS web service (component) is suitable for representing a
service description as described by Process in OWL-S. However in IRS-III,
the notion of goal refers to a general description of a problem and can be
solved by different web services. A goal describes a problem to be solved and
represents the knowledge required for matching the problem to a set of web
service descriptions presented by providers.

The authors explain how ontologies describing a service in OWL-S specifi-
cation (that uses the ProcessModel for modelling and describing web services) are
mapped to the WSMO ontology (that uses the notion of goal) and translated
to OCML which is in turn suitable to be used by IRS-III.

In our example, F. Hakimpour and al. could recommend to describe the
web services in OWL-S and use IRS-III to compose them. However, the IRS-
III does not perform the services discovery and selection and would constrain
the user to do it manually. Moreover, the services would be composed com-
pletely, whereas we need to capture only some functionalities dynamically
from each service. Finally, this approach as the previous ones is not adapted
for ordinary users of the web.

3.4 Petri Nets and Planification

The main weakness of SWS models is their lack of real operational semantics.
To this purpose, several attempts such as [9] try to use Petri nets to specify
the execution semantics of SWS. However, we believe that the specification
still fails in some important points, namely, the SWS composition must work
at the implementation level, rather than being the implementation of a model.

In an other hand, several other approaches [13] see the problem of auto-
mated web services composition as a software/plan synthesis problem or a
plan execution problem. To tackle the composition task as a plan synthe-
sis problem, they perform planning using predefined available services as the
building blocks of a plan.

However, as most of the previous approaches, these techniques does not
address the problem of the services automatic discovery and selection and
would actually compose the services entirely rather than integrating their
relevant functionalities.

Y. Charif, N. Sabouret / Electronic Notes in Theoretical Computer Science 146 (2006) 33–4138

4 A Dialogical Approach for SWS Composition

We propose in ou approach to implement Active SWS (henceforth ASWS),
able to interact with ordinary human users and other services, and capable of
reasoning about their actions at runtime so as to compose autonomously and
automatically.

In our approach, the user interacts with a mediator ASWS that behaves
as an agent and asks him for a set of requirements R = {r0, ..., rn}. These
requirements are expressed using our specific request model [10] that is capable
of representing high level user’s questions such as “I’d like you to display, given

a product, the products references, descriptions, and prices”. This request
model formalizes a request as a sextuple composed of the performative of
the speech act of the request, its subject, objects and date, the type of the
considered functioning, etc.

The mediator then recovers the elements of R (in our example R =
{product reference, product description, product price}) and searches for the
appropriate service that provides as a result one or more of the needed require-
ments ri ∈ R. The available web services must be described using the ASWS
model. This model is the VDL formalism [11], which stands for View Design

Language. VDL is an AI-oriented programming language and an execution
model that confers to the services it models their autonomous, reasoning and
dialogical properties.

In an other hand, every service must be associated to a task ontology
that gathers the description of the outputs rk. A task ontology provides a
vocabulary of the terms used to solve problems associated to tasks that can
belong or not to the same field [8]. The mediator can then search for the
appropriate service using a capability-based discovery (it searches for a service
which has an output rk =ri).

Once the first service selected, corresponding to one of the ri ∈ R, the
mediator asks the service, using a specific interaction model [1] for the action
definition that returns the result ri. Indeed, the VDL language defines within
its interaction model three kinds of basic interactions (among which formal
requests), which are XML based trees, that services can exchange.

When the mediator receives the action definition he asked for, we say that
it “learns” this specific action, it continues with the next requirement. If an
action found for a requirement rj also returns the output ri, its description is
merged with the previously found action description using a specific algorithm
[1].

As a consequence, the user interacts with a mediator service (an ASWS)
that collects (or learns) the actions that enables it to satisfy the user’s require-

Y. Charif, N. Sabouret / Electronic Notes in Theoretical Computer Science 146 (2006) 33–41 39

ments. The mediator looks for services returning one or more of the elements
of R and integrates their specific actions definitions removing redundancy and
maintaining coherence.

A demonstration is available on our web page. 4

5 Conclusion

We discussed in this paper existing techniques addressing the problem of se-
mantic web services composition. We first described a typical example and
outlined some main requirements to define an automated approach for ser-
vices composition for ordinary users. We then summed up some techniques
proposing to solve the composition problem and their gaps with regards to
our requirements. We finally presented our proposal based on modeling au-
tonomous services able to compose themselves using interactions.

Our ongoing work on semantic web services composition needs to be de-
velopped. In particular, we want to augment the modelled services with
goal-driven behaviours. Thus, they could take initiatives, for example, to in-
voke a service they know appropriate to solve a certain task, like autonomous
agents do. Moreover, we have made tests only on ASWS (VDL services). We
want to solve heterogeneous services interoperability issues. Since our ser-
vices exchange XML-based messages, they are interoprable with any WSDL-
compatible agent or service. In particular, we want to interoperate with OWL-
S and WSMO-compliant services.

References

[1] Charif, Y. and N. Sabouret, A Model of Interactions about Actions for Active and Semantic
Web Services, in: Proc. Semantic Web Service workshop at 3rd International Semantic Web
Conference (ISWC’04), 2004, pp. 31–46.

[2] David Martin et al., OWL-S: Semantic Markup for Web Services, Technical report, DAML
Organization (2004).

[3] Domingue, J., L. Cabral, F. Hakimpour, D. Sell and E. Motta, IRS-III: A Plateform and
Infrastructure for Creating WSMO-based Semantic Web Services, in: Proc. of the Workshop
on WSMO Implementations (WIW 2004), 2004.

[4] Hakimpour, F., J. Domingue, E. Motta, L. Cabral and Y. Lei, Integration of OWL-S into
IRS-III, in: Proc. of the 1st AKT workshop on Semantic Web Services (AKT-SWS04), 2004.

[5] IBM, Microsoft, SAP, Siebel Systems, Business Process Execution Language for Web Services
Version 1.1, Technical report (2003).

[6] Lauren, H., D. Roman and U. Keller, Web Services Modeling Ontology - Standard (WSMO-
Standard), http://wsmo.org/2004/d2/v0.2/ (2004).

4 http://www-poleia.lip6.fr/∼sabouret/demos/index.html

Y. Charif, N. Sabouret / Electronic Notes in Theoretical Computer Science 146 (2006) 33–4140

http://www-poleia.lip6.fr/~sabouret/demos/index.html

[7] Mandell, D. and S. McIlraith, Adapting BPEL4WS for the Semantic Web: The Bottom-Up
Approach to Web Service Interoperation, in: Proc. of the 2nd International Semantic Web
Conference (ISWC2003), Sanibel Island, Florida, 2003.

[8] Mizoguchi, R., J. Vanwelkenhuysen and M. Ikeda, Task ontology for reuse of problem solving
knowledge, in: Proc. 2nd international conference on building and sharing of very large-scale
knowledge bases, 1995.

[9] Narayanan, S. and S. McIlraith, Simulation, Verification and Automated Composition of Web
Services, in: Proc. of the 11th WWW Conference, 2002, pp. 77–88.

[10] Sabouret, N., A model of requests about actions for active components in the semantic web, in:
Proc. STAIRS 2002, 2002, pp. 11–20.

[11] Sabouret, N., Active Semantic Web Services: A programming model for agents in the semantic
web, in: Proc. EUMAS, 2003.

[12] Sell, D., F. Hakimpour, J. Domingue, E. Motta and R. Pacheco, Interactive Composition of
WSMO-based Semantic Web Services in IRS-III, in: Proc. of the AKT workshop on Semantic
Web Services (AKT-SWS04), 2004.

[13] Traverso, P. and M. Pistore, Automated Composition of Semantic Web Services into Executable
Processes, in: Proc. of the 3rd International Semantic Web Conference, Hiroshima, Japan
(ISWC’04), 2004, pp. 380–394.

Y. Charif, N. Sabouret / Electronic Notes in Theoretical Computer Science 146 (2006) 33–41 41

	Introduction
	Motivating Example
	Existing Approaches for Web Services Composition
	Adapting BPEL4WS for the Semantic Web
	Composition of WSMO-based SWS in IRS-III
	Integration of OWL-S into IRS-III
	Petri Nets and Planification

	A Dialogical Approach for SWS Composition
	Conclusion
	References

