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Abstract

The observer-based indirect and direct adaptive fuzzy controllers are developed for a class of SISO uncertain
nonlinear systems. The proposed approaches do not need the availability of the state variables. By designing
the state observer, the adaptive fuzzy systems, which are used to model the unknown functions, can be
constructed using the state estimations. Thus, a new hybrid adaptive fuzzy control method is proposed by
combining the above adaptive fuzzy system with the H∞ control technique. Based on Lyapunov stability
theorem, the proposed adaptive fuzzy control system can guarantee the stability of the whole closed-loop
systems and obtain good tracking performance as well. The proposed methods are applied to an inverted
pendulum system and a chaotic system and achieve satisfactory simulation results.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive control schemes for nonlinear systems via feedback linearization concept have been
employed for decades. The ideas of feedback linearization approaches are to transform a nonlinear
dynamic system into a linear system through state feedback mechanisms. With such transformations,
those well-explored linear control skills can then be applied to meet desired control speci<cations.
Several primitive results and parameter adaptive control schemes have been reported in [9,10]. The
major de<ciency of those approaches is that their good performances are largely relied on exact
cancellation of nonlinear terms, or restricted to conditions that the unknown parameters of nonlinear
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systems are linear. If there exist uncertainties in those nonlinear terms, or the nonlinear terms are
completely unknown, the performance may be awful due to non-exact cancellation. In this study,
we intend to apply fuzzy modeling techniques to cope with the unknowns while employing adaptive
linearization control schemes.

Since Zadeh [19] introduced the fuzzy set theory in 1965, it has received much attention from
various <elds and has also demonstrated nice performance in various applications. One of those
successful fuzzy applications is to model unknown nonlinear systems by a set of fuzzy rules. One
important property of fuzzy modeling approaches is that they are universal approximators [17]. In
other words, fuzzy systems can be used to model virtually any nonlinear systems within a required
accuracy provided that enough rules are given. Based on the universal approximation theorem and
by incorporating fuzzy systems into adaptive control schemes, the stable direct and indirect fuzzy
adaptive controllers are <rst proposed by Wang [15,16]. Afterwards, various adaptive fuzzy control
approaches for nonlinear systems have been developed [1,2,8,11–13,18].
Generally, the direct and indirect adaptive fuzzy control approaches can have nice performance.

However, such approaches are based on the assumption that the state variables of the system are
available for feedback. As pointed out in [3,4,6], for most of the nonlinear systems, state variables are
often unavailable in practice, the above requirement may be too restrictive or does not hold since fre-
quently only an input–output model is available from on-line observations. In this situation, observer-
based fuzzy adaptive controllers are more appealing. Using the state observer, an adaptive fuzzy-
neural controller was proposed by Leu and Wang [7], this approach is only belongs to the category
of indirect adaptive controllers and lacks in the complete stability of the whole closed-loop system.
Furthermore, a prescribed tracking performance cannot be guaranteed. Another type of the observer-
based fuzzy controller was introduced by Tong et al. [14]. Although this kind of adaptive fuzzy
controller can ensure the stability of the closed-loop system and achieve a prescribed tracking per-
formance, it sometimes exhibits a peaking phenomenon in the transient behavior due to the high gain.

The goal of the paper is to present new direct and indirect adaptive fuzzy controllers for a class
of SISO uncertain nonlinear systems, which are called observer-based adaptive fuzzy controllers in
this paper. Like [7,14], our approaches do not need the availability of the state variables, but design
the state observer to estimate them. The Lyapunov stability theorem is used to derive controllers
parameters update laws, which ensure the stability of the closed-loop system and plant output to
achieve the H∞ tracking performance.

The paper is organized as follows. First, the control problems and fuzzy system are introduced
in Section 2. The observer-based indirect adaptive fuzzy controller and stability are proposed in
Section 3. The observer-based direct adaptive fuzzy controller and stability are given in Section 4.
In Section 5, simulation results are illustrated to con<rm the feasibility of the proposed methods.
Finally, conclusion remarks are presented in Section 6.

2. Problem formulation and fuzzy systems

Consider a class of the following SISO nth-order nonlinear system of the form [2,16]:

x(n) = f(x; ẋ; : : : ; x(n−1)) + g(x; ẋ; : : : ; x(n−1))u;

y = x; (1)
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where f and g are unknown continuous functions, x=(x; ẋ; : : : ; x(n−1))∈Rn is the state vector of the
system, u∈R and y∈R are the input and output of the system, respectively.
It is assumed that g(x) �=0 for x in the certain controllability region Ux ⊂R. Without loss of

generality, it is assumed that g(x)¿0. Rewriting (1) in the following form:

ẋ = Ax + B(f(x) + g(x)u);

y = CTx; (2)

where

A =




0 1 0 · · · 0
0 0 1 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0


 ; B =




0
0
...
0
1


 ; C =




1
0
...
0
0


 :

Let ym be a bounded reference signal, e=ym − y the output tracking error, and x̂ the estimate of
x. Denote

y
m
= [ym; ẏm; : : : ; y

(n−1)
m ]T; e = y

m
− x = [e; ė; : : : ; e(n−1)]T;

ê = y
m

− x̂ = [ê; ˙̂e; : : : ; ê(n−1)]T; ẽ = e − ê:

Control objectives: Utilizing fuzzy systems, reference signal ym and the output of the system y
to determine a fuzzy controller and an update law for adjusting the parameter vectors such that the
following conditions are satis<ed:

(i) The closed-loop system is stable and the tracking error converges to zero, i.e., limt→∞ e(t)= 0.
(ii) For a prescribed attenuation level �¿0, the H∞ tracking performance is achieved as below:∫ T

0
ETQE dt 6 ET(0)PE(0) +

1
r
�̃
T
(0)�̃(0) + �2

∫ T

0
w2 dt (3)

where Q=QT¿0, P=PT¿0 are weighing matrixes, ET = [êT; ẽT], r¿0 is an adaptive gain, and �
a prescribed attenuation level.

A fuzzy system consists of four main components: fuzzy rule base, fuzzy inference engine, fuzzi<er
and defuzzi<er [16]. The fuzzy rule base is composed of a collection of IF–THEN inference rules:

Rl: If x1 is Fl
1 and x2 is Fl

1 and · · · and xn is Fl
n Then y is Gl; (4)

where x = (x1; : : : ; xn)T ∈Rn and y∈R are the input and output of the fuzzy system, respectively,
Fl

i and Gl are fuzzy sets in R, l=1; 2; : : : ; M . The fuzzy inference engine performs a mapping from
fuzzy sets in Rn to fuzzy set in R based on the IF–THEN rules in the fuzzy rule base and the
compositional rule of inference. The fuzzi<er maps a crisp point x=(x1; : : : ; xn)T ∈Rn into a fuzzy
set Ax in R. The defuzzi<er maps a fuzzy set in R to a crisp point in R. Since the strategy of
singleton fuzzi<cation, center-average defuzzi<cation and product inference is used, the output of
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the fuzzy system can be formulated as

y =

∑M
j=1 yj

(∏n
i=1 !Fj

i
(xi)

)
∑M

j=1

∏n
i=1 !Fj

i
(xi)

; (5)

where y j is the point at which fuzzy membership function !G j(y j) achieves its maximum value,
and we assume that !G j(y j)= 1. Eq. (5) can be rewritten as

y(x) = �T (x) (6)

�= [y1; y2; : : : ; yM ]T is a parameter vector, and  (x)= [#1(x); : : : ; #M (x)]T is a regressive vector with
the regressor #l(x), which is de<ned as fuzzy basis function

#l =

∏n
i=1 !Fl

i
(xi)∑M

l=1

(∏n
i=1 !Fl

i
(xi)

) : (7)

Two main reasons arise for using the fuzzy system (6) as basic building block of adaptive fuzzy
controllers. First, the fuzzy systems in the form of (6) are proven in [16] to be universal approx-
imators, i.e., for any given real continuous function f on the compact set U , there exists a fuzzy
system (6) such that it can uniformly approximate f over U to arbitrary accuracy. Therefore, the
fuzzy systems (6) are quali<ed for modeling nonlinear systems. Second, the fuzzy systems (6) are
constructed from the fuzzy IF–THEN rules of (3) using some speci<c fuzzy inference, fuzzi<cation,
and defuzzi<cation strategies. Therefore, linguistic information from a human expert can be directly
incorporated into the controller.

3. Observer-based indirect adaptive fuzzy control

According to the de<nition in [15], adaptive fuzzy approaches can be classi<ed as indirect fuzzy
controller and direct fuzzy controller. An indirect fuzzy controller uses fuzzy systems to model the
system plant and a suitable controller is developed for the estimated system. A direct adaptive fuzzy
controller uses fuzzy systems as controllers, it incorporates linguistic fuzzy control rules directly into
the controllers.

The observer-based indirect adaptive fuzzy controller and its stability are discussed in this section.
Suppose the state variable x is known, i.e., it is available for feedback control. Suppose the fuzzy

logic systems f̂(x|�f) and ĝ(x|�g) are in the form of (6), i.e.,

f̂(x|�f) = �Tf (x); ĝ(x|�g) = �Tg  (x): (8)

Using f̂(x|�f) and ĝ(x|�g) to approximate the unknown functions f(·) and g(·), respectively, then
according to the work in paper [2], the following indirect adaptive fuzzy controller is suggested:

u =
1

ĝ(x|�g)
[−f̂(x|�f) + y(n)

m + KT
c e +

1
r
BTPeT] (9)
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Fig. 1. Structure of fuzzy systems.

with the update law for the parameters

�̇f = −&1eTPB (x); (10)

�̇g = −&2eTPB (x)u; (11)

where KT
c = [kc

n ; k
c
n−1; : : : ; k

c
1]

T is the feedback gain vector to make sure that the characteristic poly-
nomial of A − BKT

c is Hurwitz; r is a positive scalar value and P=PT¿0 is the solution of the
following Riccati-like equation:

(A − BKc)TP + P(A − BKc) − PB
(
2
r

− 1
�2

)
BTP = −Q: (12)

It is proved in paper [2] that the closed-loop system is stable and the H∞ tracking performance (3)
is achieved with fuzzy controller (9) and the parameter update laws (10) and (11).

It is noted that Eqs. (9)–(11) contain the variable state vector x, so if x is unknown, then controller
(9), update laws (10) and (11) cannot be used to control nonlinear systems (1). In this situation,
we must <rst design a state observer and obtain the state estimation x̂.

To begin with, taking x̂=(x̂1 x̂2 · · · x̂n)T as the input of fuzzy system, and fuzzy rule base is

Rl : If x̂1 is Fl
1 and x̂2 is Fl

2 and · · · and x̂n is Fl
n

Then y is Gl (l=1; 2; : : : ; M): (13)

Using singleton fuzzi<cation, center-average defuzzi<cation and product inference, we can obtain
fuzzy systems f̂(x̂|�f) and ĝ(x̂|�g) in the form

f̂(x̂|�f) = �Tf (x̂) ĝ(x̂|�g) = �Tg  (x̂): (14)

The structures of fuzzy systems f̂(x̂|�f) and ĝ(x̂|�g) are illustrated by Fig. 1. Design the control
law as

u =
1

ĝ(x̂|�g)
[−f̂(x̂|�f) + y(n)

m + KT
c ê − ua − us]: (15)

where ua is a H∞ robust control term, which is used to compensate for the fuzzy approximation
errors, us a linear combination of the error estimates, which ensures the stability of the whole
closed-loop system. ua and us will be designed later.
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Substituting (15) into (2), after some manipulations, we obtain

ė=Ae − BKT
c ê + Bua + Bus + B[(f̂(x̂|�f) − f(x))

+ (ĝ(x̂|�g) − g(x))u];

e = CTe: (16)

Design the error observer as follows:

˙̂e = Aê − BKT
c ê + K0(e − ê);

ê = CTê; (17)

where KT
0 = [k01 ; k

0
2 ; : : : ; k

0
n ] is the observer gain vector, which is selected to make sure that the

characteristic polynomial of A − K0CT is Hurwitz.
De<ne the observation error ẽ= e − ê. Subtracting (17) from (16) yields

˙̃e = (A − K0CT)ẽ + Bua + Bus + B[f̂(x̂|�f) − f(x) + (ĝ(x̂)|�g) − g(x))u];

ẽ = CTẽ: (18)

De<ne the optimal parameter vector �∗
f, �

∗
g as follows

�∗
f = arg min

�f∈*1

{
sup

x∈U1 ; x̂∈U2

|f(x) − f̂(x̂|�f)|
}

;

�∗
g = arg min

�g∈*2

{
sup

x∈U1 ; x̂∈U2

|g(x) − ĝ(x̂|�g)|
}

; (19)

where *1, *2, U1 and U2 denote the sets of suitable bounds on �f, �g, x and x̂, respectively. We
assume that �f, �g, x and x̂ never reach the boundary of *1; *2; U1, and U2. Also the minimum
approximation error is de<ned as

w=
(
f̂

(
x̂|�∗

f

) − f̂
(
x|�∗

f

))
+

(
f̂

(
x|�∗

f

) − f (x)
)

+
[
(ĝ(x̂|�∗

g) − ĝ(x|�∗
g)) + (ĝ(x|�∗

g) − g(x))
]
u: (20)

Then the observation error dynamic equation (18) can be rewritten as

˙̃e=
(
A − K0CT) ẽ + Bua + Bus + B

[
(f̂(x̂|�f) − f̂(x̂|�∗

f))

+ ((ĝ(x̂|�g) − ĝ(x̂|�∗
g))u+ w

]
;

ẽ = CTẽ: (21)
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From (14) and (20), (21) can be rewritten as

˙̃e = (A − K0CT)ẽ + B
[
�̃
T
f (x̂) + �̃

T
g  (x̂)u+ ua + us + w

]
;

ẽ = CTẽ; (22)

where �̃f = �f − �∗
f and �̃g = �g − �∗

g are the parameter errors.
The output error dynamics of (22) can be given as

ẽ = H (s)
[
�̃
T
f (x̂) + �̃

T
g  (x̂)u+ ua + us + w

]
; (23)

where

H (s) = CT(sI − (A − K0CT))−1B

is a known stable transfer function. In order to use the SPR-Lyapunov design approach [5,7], Eq. (23)
is rewritten as

ẽ = H (s)L(s)
[
�̃
T
f 1(x̂) + �̃

T
g  1(x̂)u+ ua1 + us1 + w1

]
; (24)

where  1(x̂)=L−1(s) (x̂), ua1 =L−1(s)ua, us1 =L−1(s)us and w1 =L−1(s)w. L(s) is chosen so that
L−1(s) is a proper stable transfer function and H (s)L(s) is a proper strictly-positive-real (SPR)
transfer function. Let

L(s)= sm + b1sm−1 + · · · + bm (m = n − 1):

The state-space realization of (24) can be written as

˙̃es = Asẽs + Bs

[
�̃
T
f 1(x̂) + �̃

T
g  1(x̂)u+ ua1 + us1 + w1

]
;

ẽ = CT
s ẽs; (25)

where

ẽs =
[
ẽ ˙̃e · · · ẽ(n−1)]T ; As = A − K0CT;

Bs = [1 b1 · · · bm]T; Cs = [1 0 · · · 0]T:

Assume that P1 and P2 are positive de<nite solutions of the following matrix equations, respectively:

(A − BKT
c )

TP1 + P1(A − BKT
c ) = −Q1; (26)

AT
s P2 + P2As = −Q2;

P2Bs = Cs: (27)

In Eqs. (26) and (27), Q1 and Q2 are the given semi-de<nite positive matrices.
From Eq. (27), we know that ẽTP2Bs =CT

s ẽ= ẽ, while ẽ=ym − y − ê is available for feedback
control, so we de<ne the compensation control terms ua1, us1 and the parameter update laws as

ua1 = −1
r
BT

s P2ẽs = −1
r
ẽ; (28)
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us1 = −KT
0 P1ê; (29)

�̇f = −&1ẽTs P2Bs 1(x̂) = −&1ẽ 1(x̂); (30)

�̇g = −&2ẽTs P2Bs 1(x̂)u = −&2ẽ 1(x̂)u; (31)

where r is a positive scalar value satisfying r = 2�2.
The main result of the observer-based indirect adaptive fuzzy control scheme is summarized in

the following theorem.

Theorem 1. Consider system (1), the adaptive fuzzy control scheme is chosen as (15), (28)–(31). If∫ ∞
0 w2

1(t) dt¡∞, then the whole adaptive fuzzy control scheme guarantees the following properties:

(i) x̂, x, e, ê∈L∞, limt→∞ e=0 and limt → ∞ ẽ=0;
(ii) for a prescribed attenuation level �, the H∞ tracking performance (3) is

achieved.

Proof. Consider the Lyapunov function candidate

V =
1
2
êTP1ê +

1
2
ẽTs P2ẽs +

1
2&1

�̃
T
f�̃f +

1
2&2

�̃
T
g �̃g: (32)

The time derivative of V is

V̇ =
1
2
˙̂e
T
P1ê +

1
2
êTP1 ˙̂e +

1
2
˙̃e
T
s P2ẽs +

1
2
ẽTs P2 ˙̃es

+
1
&1

˙̃�
T

f�̃f +
1
&2

˙̃�
T

g �̃g: (33)

From (17), (25) and by the fact ˙̃�f = �̇f,
˙̃�g = �̇g, the above equation becomes

V̇ =
1
2
êT

[
(A − BKT

C )
TP1 + P1(A − BKT

C )
]
ê +

(
êTP1K0CTẽs + ẽTs P2Bsus1

)

+
1
2
ẽTs (A

T
s P2 + P2AT

s )ẽs + ẽTs P2Bsua1 + ẽTs P2Bsw1

+
(
ẽTs P2Bs�̃

T
f 1(x̂) +

1
&1

�̇
T
f�̃f

)

+
(
ẽTs P2Bs�̃

T
f 1(x̂)u+

1
&2

�̇
T
g �̃g

)
: (34)
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From us1 = − KT
0 P1ê and P2Bs = Cs, we have

ẽTs P2Bsus1 =−ẽTs P2BsKT
0 P1ê

=−ẽTs CsKT
0 P1ê

=−êTP1K0CT
s ẽs: (35)

Applying (28), (30), (31) and (35) to (34) yields

V̇ 6
1
2
êT

[
(A − BKT

C )
TP1 + P1(A − BKT

C )
]
ê

+
1
2
ẽTs (A

T
s P2 + P2AT

s − 2
r
P2BsBT

s P2)ẽs

+ ẽTs P2Bsw1: (36)

Since (A; B) is controllable, and Eq. (25) is SPR, positive de<nite solutions P1 and P2 exist for
matrix equations (26) and (27). Letting r=2�2, we obtain

V̇ 6−1
2
êTQ1ê − 1

2
ẽTs Q2ẽs − 1

2�2 ẽTs P2BsBT
s P2ẽs

+
1
2
(wT

1B
T
s Pẽs + ẽTs P2BT

s w1)

= − 1
2
êTQ1ê − 1

2
ẽTs Q2ẽs +

1
2
�2w2

1

− 1
2

(
1
�
BT

s P2ẽs − �w1

)T (
1
�
BT

s P2ẽs − �w1

)

6−1
2
êTQ1ê − 1

2
ẽTs Q2ẽs +

1
2
�2w2

1 : (37)

Denoting Q=diag[Q1; Q2], ET = [êT; ẽTs ], then the above equation becomes

V̇ 6 −1
2
ETQE +

1
2
�2w2

1 : (38)

Since w1 ∈L2 and via the same argument as [15], we establish that e, ê, x̂, x, u∈L∞, limt→∞ ê=0
and limt→∞ ẽ2 = 0. Therefore, we conclude that limt→∞ e=0 and limt→∞ ẽ=0.

Integrating the above equation from t=0 to T yields

V (T ) − V (0)6 −1
2

∫ T

0
ETQE dt +

1
2
�2

∫ T

0
w2
1 dt: (39)
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Denoting P=diag(P1; P2), since V (T )¿0, (39) implies the following:

1
2

∫ T

0
ETQE dt6

1
2
ET(0)PE(0) +

1
2&1

�̃
T
f(0)�̃f(0)

+
1
2&2

�̃
T
g (0)�̃g(0) +

1
2
�2

∫ T

0
w2
1 dt (40)

Therefore, the H∞ tracking performance (3) is achieved.

4. Observer-based direct adaptive fuzzy control

If g(x) is a known constant, and the state variables are available for feedback control, according
to the works in [2], the following direct adaptive fuzzy controller is suggested:

u = û(x|�) − 1
b
ua; (41)

where û(x|�)= �T (x) is the fuzzy system to directly approximate the following control law:

u(x) =
1
b

[−f(x) + y(n)
m + KT

c e
]
; (42)

ua = −(1=r)BTPe is the H∞ robust term to compensate the fuzzy approximation error.
If the parameter update law is chosen as

�̇ = &eTPB (x): (43)

Then the whole adaptive fuzzy control scheme (41) and (43) can guarantee the stability of the
closed-loop system and achieve the H∞ tracking performance (3).

If the state vector x is not available for feedback control, in this situation, we design direct
adaptive fuzzy controller as

u = û(x̂|�) − ua − us; (44)

where û(x̂|�) is a fuzzy system, which is in the form

û(x̂|�) = �T (x̂) (45)

and ua is a H∞ robust control term to compensate the fuzzy approximation errors, us is a linear
combination of error estimations to ensure the stability of the whole closed-loop system.

Substituting (44) and (45) into (2), after some manipulation, we have

x(n) =f(x) + b(û(x̂|�) − ua − us) − bu∗(x) + bu∗(x);

= y(n)
m + KT

c e − bua − bus + b(û(x̂|�) − u∗(x)) (46)
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or, equivalently

ė = Ae − BKT
c ê + Bb

[
ua + us + (u∗(x) − û(x̂|�))] ;

e = CTe; (47)

where u∗(x)= (1=b)[−f(x) + y(n)
m + KT

c ê].
Design the error state observer as

˙̂e = Aê − BKT
c ê + K0(e − ê);

ê = CTê; (48)

where KT
0 = [k01 ; k

0
2 ; : : : ; k

0
n ] is the observer gain vector, chosen such that the characteristic polynomial

of A − K0CT is a Hurwitz.
De<ne the observation error ẽ= e − ê, and subtracting (48) from (47), yields

˙̃e = (A − K0CT)ẽ + Bb[ua + us + (u∗(x) − u(x|�))];
ẽ = CTẽ: (49)

De<ne the optimal parameter vector �∗ and fuzzy approximation error w as follows:

�∗ = arg min
�∈*

{
sup

x∈U1 ;x̂∈U2

|u∗(x) − u(x̂|�)|
}

; (50)

w = (u∗(x) − û(x|�∗)) + (û(x|�∗) − (û(x̂|�∗)): (51)

Substituting (45) and (51) into (49), we have

˙̃e = (A − K0CT)ẽ + B[b�̃
T
 (x̂) + bua + bus + bw];

ẽ = CTẽ; (52)

where �̃= �∗ − � is the parameter error vector.
Repeating the same manipulations as the above section, Eq. (52) can be rewritten as

˙̃es = Asẽs + Bs[b�̃
T
 1(x̂) + bua1 + bus1 + bw1];

ẽ = CT
s ẽs; (53)

where

ẽs = [ẽ ˙̃e · · · ẽ(n−1)]T As = A − K0CT;

Bs = [1 b1 · · · bm]T; Cs = [1 0 · · · 0]T

and  1(x̂)=L−1(s) (x̂), w1 = L−1(s)w; ua1 = L−1(s)ua, us1 = L−1(s)u.

Assume that P1 and P2 are positive de<nite solutions of the following matrix equations, respec-
tively:

(A − BKT
c )

TP1 + P1(A − BKT
c ) = −Q1; (54)
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AT
s P2 + P2AT

s = −bQ2;

P2Bs = Cs: (55)

Since ẽTP2Bs =CT
s ẽ= ẽ, while ẽ=ym − y − ê is available for feedback control, design ua1, us1 and

the parameter update law as

ua1 = −1
r
BT

c P2ẽs = −1
r
ẽ (56)

us1 = −KT
0 P1ê (57)

�̇ = &ẽTs P2Bs 1(x̂) = &ẽ 1(x̂); (58)

where r is a positive scalar value satisfying r=2�2.
The main result of the observer-based direct adaptive fuzzy control scheme is summarized in the

following theorem.

Theorem 2. In the nonlinear system (1), if the following direct adaptive fuzzy control law is
selected according to (44) and (56)–(58), and

∫ ∞
0 w2

1 dt¡∞, then the whole control scheme guar-
antees the following properties:

(i) x̂, x, e, ê∈L∞, limt→∞ ẽ=0, limt→∞ ẽ=0;
(ii) for a prescribed attenuation level �, the H∞ tracking performance (3) is achieved.

Proof. Consider the Lyapunov function candidate

V =
1
2
êTP1ê +

1
2b

ẽTs P2ẽs +
1
2&

�̃
T
�̃: (59)

The following proof is similar to that of Theorem 1.

5. Simulation results

In this paper, two examples are used to verify the performance of the proposed controllers; one
is an inverted pendulum system and the other is a DuNng forced oscillation system.

Example 1. Indirect adaptive fuzzy control approach. The inverted pendulum system is de<ned as[
ẋ1

ẋ2

]
=

[
0 1

0 0

] [
x1

x2

]
+

[
0

1

]
(f + gu+ d);

y = [1 0]

[
x1

x2

]
; (60)
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Fig. 2. Trajectories of the state estimation errors ê1 (solid line) and ê2 (dash–dotted) with d=0 and �=0:01.

where

f =
mlx2 sin x1 cos x1 − (M + m)g sin x1

ml cos2 x1 − 4
3 l(M + m)

; g =
− cos x1

ml cos2 x1 − 4
3 l(M + m)

;

g = 9:8m=s2, m=0:1 kg, M =1 kg, l=0:5m. The external disturbance d is a square wave with the
amplitude ±1 and the period 2(s). The used reference is ym =(2=30) sin t.

In the implementation, seven fuzzy sets are de<ned over interval [−2=3; 2=3] for both x1 and
x2, with labels N1, N2, N1, Z , P1, P2 and P3, and their membership functions are !N1(xi)= 1=(1 +
exp(5(xi+0:6))), !N2(xi)= exp(−(xi+0:4)2), !N3(xi)= exp(−(xi+0:2)2), !Z(xi)= exp(−x2i ), !P1(xi)
= exp(−(xi − 0:2)2), !P2(xi)= exp(−(xi − 0:4)2) and !P3(xi) = 1=(1 + exp(−5(xi − 0:6))). Select
L(s)= 1=(s + 2). Given the positive matrices Q1 =Q2 =diag[10; 10], feedback and observer gain
vector are chosen as KT

c = [100:10] and KT
0 = [40:700], solving the matrix equation (26) and the <rst

equation of (27), we obtain the positive matrices as

P1 =

[
51 0:05

0:05 0:504

]
; P2 =

[
74 −5

−5 0:46

]
:

The initial values are chosen as x1(0)= x2(0)= 0:2; x̂2(0)= x̂1(0)= 1:5; �f(0)= 0; �g(0)= 0:2I7×1,
and &1 = 70, &2 = 0:5.

In the <rst case, Figs. 2–4 show the results of indirect adaptive output feedback fuzzy control
approach with the external disturbance d=0 and the prescribed attenuation level �=0:01. From
Figs. 2 and 3, we can see that state estimation errors ê1(ê2) and the tracking errors e1(e2) converge
to zero after a few seconds. In the second case, the square wave external disturbance enters system
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Fig. 3. Trajectories of the tracking errors e1 (solid line) and e2 (dash–dotted) with d=0 and �=0:01.
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Fig. 4. Control input u with d=0 and �=0:01.

(60), Figs. 5–7 show the results of indirect adaptive output feedback fuzzy control approach.
Compared Figs. 2 and 3 with 5 and 6, respectively, we can see that the external disturbance aOects
the converging performances of state estimation and output error tracking.
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Fig. 5. Trajectories of the state estimation errors ê1 (solid line) and ê2 (dash–dotted) with d �=0 and �=0:01.
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Fig. 6. Trajectories of the tracking errors e1 (solid line) and e2 (dash–dotted) with d �=0 and �=0:01.
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Fig. 7. Control input u with d �=0 and �=0:01.

To illustrate the H∞ tracking performance of the proposed design algorithm, increase the pre-
scribed attenuation level, i.e., �=0:05, the results are given in Figs. 8–10. From Figs. 4 to 10,
we can conclude that the state estimation errors and the tracking errors can be decreased under the
larger prescribed attenuation level. As expected, Figs. 7 and 10 indicate that the control eOort at a
higher attenuation is observed to be larger than that at low ones.

Example 2. Direct adaptive fuzzy control approach. The DuNng forced oscillation system used
in [2] is

ẋ1 = x2;

ẋ2 = −0:1x2 − x31 + 12 cos t + u+ d;

y = x1; (61)

where the external disturbance d is a square wave with the amplitude ±1 and the period 2(s). The
reference signal is de<ned as ym = sin t.

In this example, the seven fuzzy labels shown in Example 1 are also used for both x1
and x2. Given the positive matrices Q1 =Q2 =diag[10; 10], feedback and observer gain vector are
chosen as KT

c = [2; 1] and KT
0 = [40; 700], solutions of the matrix equation (54) and the <rst
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Fig. 8. Trajectories of the state estimation errors ê1 (solid line) and ê2 (dash–dotted) with d �=0 and �=0:05.
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Fig. 9. Trajectories of the tracking errors e1 (solid line) and e2 (dash–dotted) with d �=0 and �=0:05.
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Fig. 10. Control input u with d �=0 and �=0:05.

equation of (55) are

P1 =

[
17:4 2:5

2:5 7:5

]
; P2 =

[
74 −5

−5 0:46

]
:

Take &=0:5, initial conditions are chosen as x1(0)= x2(0)= 0:2, x̂1(0) = x̂2(0)= 1:5, �(0)= 0.
In the simulation, we take the prescribed attenuation level �=0:01 and the square wave.

Figs. 11–13 show the results of direct adaptive output feedback fuzzy control approach. Figs. 11 and
12 show that state estimation errors ê1(ê2) and the tracking errors e1(e2) converge which occurs at
the starting point within a small bound after a few second. To illustrate H∞ tracking performance,
we increase the prescribed attenuation level �=0:05; the results are given in Figs. 14–16. Comparing
Figs. 11 and 12 with 14 and 15, respectively, we can see that the state estimation errors and the
tracking errors can be decreased under the larger prescribed attenuation level. As expected, Figs. 13
and 16 indicate that the control eOort at a higher attenuation is observed to be larger than that at
low ones.

6. Conclusion

Two adaptive fuzzy controllers, called observer-based direct and indirect adaptive fuzzy controllers
are proposed in this paper. Since the state variables of nonlinear systems are assumed to be unknown,
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Fig. 11. Trajectories of the state estimation errors ê1 (solid line) and ê2 (dash–dotted) with d �=0 and �=0:01.
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Fig. 12. Trajectories of the tracking errors e1 (solid line) and e2 (dash–dotted) with d �=0 and �=0:01.

the state observer is <rst designed to estimate state variables, via which fuzzy control schemes are
formulated. Based on the Lyapunov stability theorem, it is rigorously proved that the stability of
the closed-loop system is assured and the tracking performance is achieved. Application of the
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Fig. 13. Control input u with d �=0 and �=0:01.
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Fig. 14. Trajectories of the state estimation errors ê1 (solid line) and ê2 (dash–dotted) with d �=0 and �=0:05.

proposed approaches to an inverted pendulum system and a chaotic system show a very satisfactory
performance. Compared to the previous approach [2], our approach can achieve the desired H∞
tracking performance without the assumption of the known state variables.
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Fig. 15. Trajectories of the tracking errors e1 (solid line) and e2 (dash–dotted) with d �=0 and �=0:05.
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Fig. 16. Control input u with d �=0 and �=0:05.
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