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a b s t r a c t 

The problem of finding a resource residing in a network node (the resource location problem ) is a chal- 

lenge in complex networks due to aspects as network size, unknown network topology, and network 

dynamics. The problem is especially difficult if no requirements on the resource placement strategy or 

the network structure are to be imposed, assuming of course that keeping centralized resource informa- 

tion is not feasible or appropriate. Under these conditions, random algorithms are useful to search the 

network. A possible strategy for static networks, proposed in previous work, uses short random walks 

precomputed at each network node as partial walks to construct longer random walks with associated 

resource information. In this work, we adapt the previous mechanisms to dynamic networks, where re- 

source instances may appear in, and disappear from, network nodes, and the nodes themselves may leave 

and join the network, resembling realistic scenarios. We analyze the resulting resource location mecha- 

nisms, providing expressions that accurately predict average search lengths, which are validated using 

simulation experiments. Reduction of average search lengths compared to simple random walk searches 

are found to be very large, even in the face of high network volatility. We also study the cost of the 

mechanisms, focusing on the overhead implied by the periodic recomputation of partial walks to refresh 

the information on resources, concluding that the proposed mechanisms behave efficiently and robustly 

in dynamic networks. 

© 2016 Published by Elsevier B.V. 
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. Introduction 

Random walks are network routing mechanisms which have

een extensively studied and used in a wide range of applica-

ions: physics, mathematics, population dynamics, bioinformatics,

tc. [11,18,24] . Roughly speaking, they choose, at each point of the
∗ Corresponding author. Tel.: +34 91 3726424 (ext. 4911); fax: +34 91 3724049. 

E-mail address: vmlopez.eps@ceu.es (V.M.L. Millán). 
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er grant TIN2011-28347-C02-01. 
2 Supported in part by Ministerio de Economia y Competitividad grant TEC2014- 

5713-R, Regional Government of Madrid (CM) grant Cloud4BigData (S2013/ICE- 

894, co-funded by FSE & FEDER), NSF of China grant 61520106005, and European 

ommission H2020 grants ReCred and NOTRE. 
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ompetitividad under grant REACTIVEMEDIA (TIN2013-41819-R) and by Comunidad 
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oute, the next node uniformly at random among the neighbors of

he current node. 

Among the advantages of random walks when applied to

ommunication networks is the fact they need only local informa-

ion, avoiding the bandwidth overhead necessary in other routing

echanisms to communicate with other nodes. This is especially

seful when there is no knowledge on the structure of the whole

etwork, or when the network structure changes frequently.

or these reasons, random walks have been proposed as a base

echanism for multiple network applications, including network

ampling [9,16] , network resource location [1,10,28,33] , network

onstruction [5,15,19–21] , and network characterization [8,29,32] . 

The emergence of the peer-to-peer (P2P) architecture model

as been proven useful in many applications in recent years.

hile structured P2P systems (e.g., Chord [31] , CAN [27] –Content-

ddressable Network–, Kademlia [23] , etc.) provide efficient search

echanisms, they introduce a significant management overhead.

n turn, unstructured systems have little management overhead

nd, consequently, have been considered in several scenarios (e.g.,

nutella [5,20] , CAP [14] –Cluster-based Architecture for P2P–,

http://dx.doi.org/10.1016/j.comnet.2016.04.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.04.008&domain=pdf
mailto:vmlopez.eps@ceu.es
http://dx.doi.org/10.1016/j.comnet.2016.04.008
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1 A round is a unit of discrete time in which every node is allowed to send a 

message to one of its neighbors. According to this definition, a simple random walk 

of length � would then take � rounds to be computed. 
etc.). For such systems, searching techniques based on flooding, su-

pernodes and random walks have been used. However, it is known

that flooding mechanisms do not scale well [13] , and supernode

systems are vulnerable to supernodes failures (technical problems,

attacks, censorship, etc.). Therefore, random walks have been used

to search for resources held in the nodes of a network (e.g., [5,22] ),

a problem usually known as resource location . The problem con-

sists of finding a node that holds a given resource, the target node ,

starting at some source node . The source node is checked for the

resource: if it is not found locally, the search hops to a random

neighbor, checking that node for the resource. The search proceeds

through the network in this way, until the target node is reached. 

Nevertheless, by using random walks, some nodes may be (un-

necessarily) visited more than once, while other nodes may remain

unvisited for a long time. Avoiding this problem is the main objec-

tive of our study. 

1.1. The Dynamic resource location problem 

In this work, we are concerned with the resource location prob-

lem in networks with dynamic behavior regarding both resources

and nodes. 

In particular, we consider scenarios in which resources are ran-

domly placed in the nodes across the network. Then, on the one

hand, we consider scenarios in which the instances of the re-

sources may appear and disappear from a time instant to another,

maybe at different nodes. On the other hand, we also consider sce-

narios in which the network nodes themselves may also leave and

join the network. 

In these scenarios, all the nodes of the network may launch in-

dependent searches for different resources (e.g., files) at any time,

without the help of a centralized server, and we are interested in

measuring the average performance of searches between any pair

of nodes. 

Our assumptions regarding dynamicity cover a wide range of

scenarios. For instance, in P2P networks nodes represent users,

which may leave and join the network quite often. Also, resources

represent the shared files, which may appear and disappear from

time to time. 

1.2. Contributions 

In this work, we use the technique of concatenating partial

random walks (PWs) to generalize the resource location mecha-

nisms introduced in [17] for static networks to the case of dy-

namic networks. In particular, this paper provides new analytical

models that predict the behavior of the resource location mecha-

nisms in scenarios with dynamic resources and in scenarios with

dynamic nodes, along with new simulation experiments to validate

the analytical results. In addition, a new analysis of the cost of the

mechanisms in these scenarios is provided. We consider the two

versions of the mechanisms proposed in [17] and adapt them to

operate in the dynamic scenarios. In the first version, which we

refer as choose-first PW-RW , the search mechanism first chooses

one of the PWs at random and then checks its associated infor-

mation for the desired resource. In the second version, which we

refer as check-first PW-RW , the search mechanism first checks the

associated resource information of all the PWs of the node, and

then randomly chooses among the PWs with a positive result. It is

clear that there are other choices regarding the search mechanisms

that seem reasonable. However, the ones considered in our study

follow very different approaches (one chooses first, and the other

checks first). Therefore, that will allow us to check the strength of

our approach in very different circumstances. 

Then, we have studied their performance, considering the fol-

lowing aspects: 
• Dynamic resources: We have developed an analytical mean-field

model for both mechanisms when resources are dynamic. Ex-

pressions are given for the corresponding expected search length

(i.e., the expected number of hops taken to find the resource,

averaged over all source nodes, target nodes, and network

topologies) of each mechanism. These expressions provide pre-

dictions as a function of several parameters of the model, such

as the network structure (size and degree distribution), the re-

source dynamics, and those of the mechanisms operation. 

The predictions of the models are validated by simulation ex-

periments in three types of randomly built networks: regular,

Erd ̋os-Rényi, and scale-free. These experiments are also used to

compare the performance of both mechanisms, and to inves-

tigate the influence of the resource dynamics. We have com-

pared the performance of the proposed search mechanisms

with respect to random walk searches. For the choose-first PW-

RW mechanism we have found a reduction in the average

search length with respect to simple random walk ranging from

around 57% to 88%. For the check-first PW-RW mechanism such

a reduction is even bigger, achieving reductions above 90%. 

• Dynamic nodes: We have also considered the case where net-

work nodes may leave and join the network, and have pro-

vided both analytical and experimental results. We have found

a reduction in the average search length with respect to simple

random walks above 94% (using the check-first PW-RW mecha-

nism). 

• Cost: Finally, we have analyzed the cost of the PW-RW mecha-

nisms, defined as the number of messages, taking into account

the cost of searches themselves and the cost of precomputing

the PWs in each recomputation interval. We have provided an-

alytical expressions for the relation between the cost and the

length of the recomputation interval, as well as for the interval

length that minimizes this cost. We have found that the impact

of the precomputation of PWs on the cost is not significant in a

wide range of lengths of the precomputation interval depending

on the dynamic behavior of the network and on the dynamic

behavior of searches. 

.3. Related work 

Da Fontoura Costa and Travieso [6] study the network cover-

ge of three types of random walks: traditional, preferential to

ntracked edges, and preferential to unvisited nodes. Also, Yang

33] studies the search performance of five random walk vari-

tions: no-back (NB), no-triangle-loop (NTL), no-quadrangle-loop

NQL), self-avoiding (SA) and high-degree-preferential self-avoiding

PSA). Self-avoiding walks (SAW) are those that try not to visit

odes that have already been visited. Several variations of this idea

ave been studied, differing in the probability of revisiting a node.

ome examples are: strict SAW, true or myopic SAW, and weakly

AW [4,30] . In [7] , Das Sarma et al. propose a distributed algorithm

o obtain a random walk of a specified length � in a number of

ounds 1 proportional to 
√ 

� . 

López Millán et al [17] propose a mechanism for resource loca-

ion based on building random walks connecting together partial

alks (PW) previously computed at each network node. However,

he mechanisms in [17] are only valid when both nodes and re-

ources have a static behavior, contrary to the approach we follow

n this paper. 

The remainder of this paper is arranged as follows.

ection 2 and 3 respectively present the choose-first PW-RW

nd check-first PW-RW mechanisms in scenarios with dynamic
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Fig. 1. Example of the dynamic behavior of resources. The network is shown at 

t =0 (left hand side), when the PWs are precomputed, and at time t = T (right 

hand side), the end of the PW recomputation interval. The resource instances have 

changed during the interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

esources. Section 4 adapts the previous mechanisms to scenarios

ith dynamic nodes. In Section 6 , the cost of the mechanisms is

valuated in dynamic scenarios. Finally, Section 7 concludes this

aper and provides some future work lines. 

. Choose-first PW-RW with dynamic resources 

Consider a communication network (e.g., the Internet, a wire-

ess ad-hoc network, etc.) that provides full connectivity to the end

ystem entities (e.g., computers, smartphones, etc.) connected to it.

ext, consider a subset of N end system entities which establish

ogical neighboring relations for some purpose (a P2P file sharing

ystem, a social network application, etc.). These end system en-

ities (as the nodes ) and their neighboring relations (as the links )

orm an overlay network on top of the underlying network . 2 The re-

ource location mechanisms described in this paper apply to such

n overlay network (referred to simply as the network ), and we will

ocus on searches for resources in the end system entities (referred

o as the nodes ). 

Each of the N nodes holds a set of resources. We focus on a

iven resource of interest, of which initially there is a number of

nstances randomly placed in many distinct network nodes. Our

esource location problem is defined as finding one of the nodes

hat hold the resource (the one we encounter first, called the target

ode ), starting by a certain node (the source node ). We make no as-

umption on the underlying communication network, focusing on

he number of nodes of the overlay visited to find a resource, as a

easure of search performance. 

In our analysis, for each search, we assume that the source node

s uniformly chosen at random among all nodes in the network.

ikewise, we consider that the instances of the resource have been

andomly distributed throughout the network. The probability that

 given node holds an instance of the resource is denoted by p res .

he expected number of instances of the resource for a given net-

ork is denoted by R = N · p res . 

Resources have a dynamic behavior. If we compared two snap-

hots of the network, one taken at time t =0 and another taken at

ime t =T , we would observe that some of the instances have dis-

ppeared while other new ones have appeared (at different nodes,

n general). More concretely, an instance present in a node dis-

ppears with probability d . Conversely, an instance not initially

resent in a node appears in that node with probability a . We will

se d as an input parameter to characterize resource dynamics. For

 value of d , we will set a so that expectation of the number of

esources ( R ) remains unchanged. This way, our results will iso-

ate the impact of resource dynamics on the search mechanism due

nly to the deterioration of information, discarding the effect of a

ossible increase or decrease on the expected number of resource

nstances. Fig. 1 provides an illustrative example of the dynamic

ehavior of the resources. 

he search mechanism. A search performs a walk from the source

ode to the target node according to the mechanism that is de-

ned below. The search mechanism proposed in this paper, re-

erred to as PW-RW, exploits the idea of efficiently building total

andom walks from partial random walks available at each node of

he network. It comprises two stages: 

1. Partial random walks construction : In an initial stage at time

t =0 , every node i in the network precomputes a set W i of w

random walks before the searches take place, with the initial
2 Note that neighbors in the overlay are not in general neighbors in the underly- 

ng network. Note also that the underlying communication network provides con- 

ectivity between any pair of end system entities, even if they are not neighbors in 

he overlay. 

 

 

 

 

distribution of resource instances in the network. Each of these

partial walks (PW) has length s , starting at i and finishing at a

node reached after s hops. Using the PW-RW mechanisms, the

PWs computed in this stage are simple random walks (i.e., the

next node to be visited is chosen uniformly at random among

the neighbors of the current node). 

During the computation of each PW in W i , node i registers the

resources held by the s first nodes in the PW (from i to the

one before the last node). The last node of the PW is excluded,

being included in the PWs departing from it. In particular, for

each PW computed by i , this node keeps the set of the identi-

fiers of the resources held by the nodes in that PW. In this set,

there is no indication of the particular node or nodes holding

the resource. The registered information will be used by the

searches in stage 2, to decide whether to traverse that PW (if

the resource looked for is found in the set of identifiers), or to

jump over it (if the resource is not found). 

2. The searches : During the interval 0 < t ≤ T , after the PWs are

constructed, searches are performed in the network. We will

consider the system at t =T , in which, as stated above, the

dynamic behavior of resource instances is characterized by d .

Therefore, results obtained will reflect the performance of the

search mechanism in a worst case scenario, since searches exe-

cuted in t < T will see a probability that an instance disappears

less than or equal to d . There is no relation between the inter-

val T , measured in time units, and the hops of a search, other

than the assumption that T is much longer than the duration of

a typical search, as discussed later in this section in paragraph

Resource dynamics . 

A search can be qualitatively described as a sequence of jumps

over PWs, interleaved with some occassional unsuccessful PW

traversals, and finished by the successful traversal of a PW un-

til the target node is visited. Unsuccessful PW traversals are

caused by outdated resource information associated to that PW,

i.e., the resource was in the PW at t = 0 but it has disappeared

at the time of the search. The last PW traversal will be incom-

plete in general, in the sense that its length will be less than or

equal to s , since the search stops when the resource is found. 

We measure the length of searches in hops . Some of these hops

are jumps (over PWs), and other are steps (traversing PWs).

We distinguish between unnecessary steps (in unsuccessful PW

traversals), and final steps (in the last, successful, PW). The def-

inition of the search mechanism and the associated concepts

are illustrated by the example in Fig. 2 , in which PWs of length

s = 6 are used. 

At this point, we emphasize the difference between the search

just defined and the total walk that supports it. Indeed, the

total walk consist of the concatenation of partial walks as de-

fined above. Searches are therefore shorter in length than their
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Fig. 2. An example search: total walk, partial walks, jumps and steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Resource dynamics: query results. 

Resource present in PW 

case t = 0 t = T Query result 

a) no no True Negative (TN) 

b) yes yes True Positive (TP) 

c) no yes False Negative (FN) 

d) yes no False Positive (FP) 

Fig. 3. Resource dynamics: examples of results when a PW precomputed at t =0 is 

queried at t =T . 
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corresponding total walks because of the number of steps saved

in jumps over PWs in which we know that the resource is not

located, although these saving may be reduced by the unneces-

sary steps due to outdated information within PWs. 

More formally, we describe how searches are performed as fol-

lows. Let a search start at a node A . A PW in W A is chosen uni-

formly at random. Its associated resource information collected

in stage 1 is then queried for (any instance of) the desired re-

source. 

• If the query result is negative (i.e., the resource is not in

the set of identifiers associated with that PW), the search

jumps to node B , the last node of that PW. Note that the cur-

rent node and the node to which the search jumps are not

neighbors in the overlay network in general. Jumps there-

fore make use of the underlying communication network.

The process is then repeated at B and the search keeps

jumping in this way while the results of the queries are neg-

ative. 

• If the query result is positive (i.e., the resource is in the set

of identifiers), the search traverses that PW looking for the

resource. It starts checking if the current node has the de-

sired resource. If it does not, the search takes a step to the

next node of the PW, checking again if it has the resource.

The search proceeds through the PW in this way until the

resource is found or the PW is finished. 

– If the resource is found, the search stops. 

– Otherwise (i.e., the search reaches the last node of the

PW without having found the resource in the previous

nodes), it means that the information collected in stage

1 for that PW and the resource of interest is no longer

valid. The search considers that the result is negative,

and the search process is repeated at the last node of

the PW. 

Resource dynamics. Regarding resource dynamics, we realize that

searches are executed based on information collected at t =0 that

may be outdated during the interval 0 < t ≤ T , when the queries

are performed. The duration of the interval ( T ) is assumed to be

much longer than the duration of a typical search, since we are in-

terested in using the PWs computed at t = 0 for as many searches

as possible, with an acceptable degradation of information associ-

ated with those PWs. 3 Therefore, most of the searches take place

within the interval, and only a few start in one interval and finish

in the following interval. The part of those searches in the follow-

ing interval benefits from the newly computed PWs of this inter-

val. Our analysis will consider that all searches take place within

the interval, thus reflecting a worst case situation. Four cases arise

when the information associated with a PW is queried for the re-

source, as is shown in Table 1 and illustrated by Fig. 3 . 
3 A discussion of the optimal duration of the interval is provided in Section 6 . 

l  

s  

r  
A True Negative or TN (case a) occurs when no instances were

resent in the PW at t =0 , and the same holds at t =T . A True Pos-

tive or TP (case b) occurs when one or more instances are present

n the PW at t =0 and one or more instances (not necessarily the

ame ones) are present at t =T . The impact of resource dynam-

cs on the performance of the search mechanism comes from the

alse Negatives (FN) and the False Positives (FP). A FN (case c) occurs

hen there were no instances in the PW at t =0 , but at least one

nstance is present at t =T . It makes the search jump over that PW,

gnoring the new instance(s). An FP (case d) occurs when there

ere one or more instances in that PW at t =0 but all of them

re gone at t =T and there are no new instances at t =T . It makes

he search traverse a whole PW fruitlessly, since no instances are

urrently in that PW. Note that the case when all instances disap-

ear from the PW, but some other instance(s) appears in that PW

s included in the TP case. 

At this point, we note that the performance of the search mech-

nism can be affected by the degradation of the information col-

ected in the PWs. For instance, if all the instances of a given re-

ource disappear and new instances appear in nodes that happen

o be in PWs which did not have the resource at t = 0 , the re-

ource would not be found, since searches would jump over those

Ws due to the (false) negative result of the queries. Therefore,

n order to keep their accuracy, PWs may need to be “refreshed”.

nce the interval is finished, PWs are recomputed at t =T to ac-

uire fresh resource information, and searches from t =T to t =2 T 

ill use the new PWs. In other words, stages 1 and 2 described

bove are repeated with a period T . In Section 6 , we assess the

mpact of this PW recomputation on the overall searches cost. 

he search metrics. In this work, we are interested in the num-

er of hops to find a resource, which is defined as the search

ength . This search length is a random variable that takes differ-

nt values when independent searches are performed. The search

ength distribution is defined as the probability distribution of the

earch length random variable. So, the expected search length , de-

ived from the mentioned distribution, taken over all networks, all
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4 This probability p tp is not to be confused with P tp (note the different case), de- 

fined above as the probability of choosing a PW which returns a TP out of the w 

PWs of the current node. 
ource nodes, and target nodes, is an interesting performance mea-

ure of the searching mechanism in a given network. 

In the next section we provide an analytical model that gives

n estimation of the expected search length of the choose-first PW-

W mechanism. We use a mean-field model and analysis. In this

pproach, instead of computing the search length distribution for

ach network, source node and target node, and then taking ex-

ectations, the analysis itself handles average values. Whereas this

pproach may not accurately reflect some border cases (like some

pecific network topologies), it captures rather accurately the gen-

ral characteristics and metrics of the mechanisms. This fact has

een also confirmed by using simulations. 

.1. Analysis 

Since we have defined the expected search length for any pair

f source and target nodes, the expected length of the search from

he source node is the same as the expected search length from

ny subsequent node in the search. This allows us to write a recur-

ive expression for the expected search length. Consider the search

s at some node i , one of whose PWs is queried for the resource.

he expected search length from i can be written in terms of the

xpected search length from the next node j that will be queried

or the resource, plus the number of hops taken from node i to

ode j . If the result of the query at i was negative (either false or

rue), the search will jump from i to j , adding 1 hop to the search.

f the result was a false positive, the search will traverse the entire

W without finding the resource, adding s hops to the search. Fi-

ally, if the result was a true positive, the search will traverse the

W until the resource is found, adding a number of hops whose

xpected value we call F . These cases occur with probabilities that

e call, respectively: P n , P tp , and P fp . Denoting the expected search

ength using PWs of length s by L s , the resulting recursive expres-

ion is then: 

 s = ( L s + 1) · P n + ( L s + s ) · P fp + F · P tp , (1)

here P n , P tp , and P fp are the probabilities of choosing a partial

alk (out of the w PWs of the node) for which the query for the

esource returns a negative (either a TN or a FN, see Table 1 ), a

P, and an FP result, respectively, with P n + P tp + P fp = 1 . F is the

xpectation of the number of final steps taken when traversing the

ast PW, until an instance of the resource is found (TP). Solving for

 s , we obtain: 

 s = 

1 

P tp 
· (P n + s · P fp ) + F . (2)

The probabilities in Eq. 2 are estimated with the following ex-

ressions: 

P tp = 

w ∑ 

i =1 

w −i ∑ 

j=0 

P (i, j) · i 

w 

, 

 fp = 

w −1 ∑ 

i =0 

w −i ∑ 

j=1 

P (i, j) · j 

w 

, 

P n = 

w −1 ∑ 

i =0 

w −i −1 ∑ 

j=0 

P (i, j) · w − (i + j) 

w 

= 1 − P tp − P fp , (3) 

where P ( i, j ) is the probability that, in the w PWs of a node,

here are i PWs whose queries return a TP result and j PWs that

eturn an FP result: 

 (i, j) = B (w, p tp , i ) · B (w − i, p fp , j) , (4)

where 
• B ( m, q, n ) is the coefficient of the binomial distribution 

B (m, q, n ) = 

(
m 

n 

)
· q n · (1 − q ) (m −n ) , (5)

• p tp is the probability that a given PW at any node returns a TP

result, 4 

• and p fp is the probability that a given PW at any node returns

an FP result, conditioned on the fact that it does not return

a TP. 

Therefore, in order to evaluate the estimation of the expected

earch length given by Eq. 2 , we need to obtain the values of p tp ,

 fp and F . Let us provide them: 

1. The variable p tp has been defined as the probability that a given

PW at any node returns a TP result. This probability can be

easily estimated if we condition it on the fact that the PW (of

length s ) had exactly r instances of the resource at t =0 . Defin-

ing P pw 

( r ) as the probability that a PW has r instances of the

resource, and recalling that R is the expectation of the number

of instances of the resource in the network, we can write: 

p tp = 

min { s, R } ∑ 

r=1 

P pw 

(r) · [(1 − d r ) + d r · (1 − (1 − a ) s −r )] , (6)

where the brackets contain the probability that not all the r in-

stances present at t =0 have disappeared (with probability d )

at t =T or, if they did disappear, at least one instance appeared

(with probability a ) in some of the s − r remaining nodes in

that interval. 

An estimation for P pw 

( r ) can be obtained using the random

properties of a random walk in networks built randomly. In par-

ticular, we consider that the next hop of a random RW can take

it to any of the endpoints in the network (except the endpoints

of the current node since we do not allow self-loops). Then we

estimate P pw 

( r ) as B ( s, p rw 

, r ), where p rw 

is the probability that

the RW visits a node with an instance of the resource in the

next hop. In turn, we estimate this probability as: 

p rw 

= 

R · k 

S − k rw 

· k rw 

− 1 

k rw 

. (7) 

The first fraction in Eq. 7 is the ratio of positive endpoints (the

ones connected to the R nodes that have an instance of the re-

source) and all endpoints in the network ( S = 

∑ 

k k n k ) except

those of the current node. We use the average degree of the

network ( k = 

∑ 

k k n k /N) as an estimation of the degree of a

node that holds the resource (which is assigned or not with

uniform probability p res across the network). Similarly, we use

the expectation of the degree of a node visited by a random

walk as an estimation of the degree of the current node: 

k rw 

= 

∑ 

k 

k · k · n k 

S 
= 

1 

S 
·
∑ 

k 

k 2 · n k . (8)

The second fraction in Eq. 7 corrects the previous ratio taking

into account that, when at a node of a given degree, the proba-

bility of not going backwards (and therefore having the chance

to find the resource) is the probability of selecting any of its

endpoints but the one that connects it with the node just vis-

ited by the walk. With this, the estimation of P pw 

( r ) is: 

P pw 

(r) = 

(
s 
)

· (p rw 

) r · (1 − p rw 

) s −r . (9)
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Table 2 

Choose-first PW-RW with dynamic resources: reduction of the expected 

search lengths relative to RW searches for several d . 

Search length 

d reduction (%) 

0 .0 88 .28 

0 .1 86 .37 

0 .3 81 .23 

0 .5 72 .94 

0 .7 57 .26 
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5 The extreme case of having just one PW is to be avoided because it yields many 

unfinished searches, since it is relatively easy to build walks that are loops that do 

not cover the network. Indeed, if the last node of a PW is a node whose (only) PW 

has been already used in that total walk, it will take the search to the same place 

again, resulting in a never-ending loop. 
2. We have defined p fp as the probability that a given PW at any

node returns an FP result, conditioned on the fact that it does

not return a TP. This conditioning comes from the second bino-

mial coefficient in this equation, which we restrict to the w − i

PWs which we know that do not return a TP, since the ones

that do are accounted for in the first binomial coefficient. In

other words, the second binomial coefficient includes the PWs

that return a TN, a FN or an FP result, and p fp is the probability

that it returns an FP conditioned on that. We can then easily

write an estimation of p fp as: 

p fp = 

1 

1 − p tp 
( 1 − P pw 

(0) − p tp ) , (10)

where we are substracting P pw 

(0) (the probability of cases TN

and FN in Table 1 ), and p tp (the probability of case TP). 

3. An expression for F , the expectation of the number of final

steps taken when traversing the last PW until an instance of

the resource is found, is still needed to be finally able to es-

timate the average search length in Eq. 2 . For this we rely on

F (r) , the expectation of that variable conditioned on there be-

ing r instances of the resource in the PW. Then: 

F = 

1 

1 − P pw 

(0) 
·

min { s, R } ∑ 

r=1 

F (r) · P pw 

(r) . (11)

Note that F is in fact conditioned on there being at least one

instance of the resource in the PW, since it corresponds to a TP

(see Eq. 1 ). This is the reason of the fraction multiplying the

summation in Eq. 11 . 

Now we provide an expression for F (r) as the expectation of

the position of the first resource in the PW (conditioned on

there being r instances of the resource in the PW): 

F (r) = 

s −r ∑ 

i =0 

[ 

i ·
( 

i −1 ∏ 

j=0 

(
1 − r 

s − j 

)) 

·
(

r 

s − i 

)] 

. (12)

Each factor in the product of Eq. 12 is the probability that there

is no instance in the jth position of the PW, conditioned on that

there is no instance in the previous position. The final factor

outside the product is the probability that there is an instance

in the i th position conditioned on there are no instances in the

previous positions. 

2.2. Performance evaluation 

In this section, we apply the model presented in the previ-

ous section to real networks, and we also validate its predictions

with data obtained from simulations. Three types of networks have

been chosen for the experiments: regular networks (constant node

degree), Erd ̋os-Rényi (ER) networks and scale-free networks (with

power law on the node degree). These topologies cover a wide va-

riety of real networks [3] , ranging from communication networks

[2] to Internet [26] and P2P networks [12] . 

A network of each type and size N = 10 4 has been randomly

built with the method proposed by Newman et al. [25] for net-

works with arbitrary degree distribution, setting their average

node degree to k = 10 . Each network is constructed in three steps:

(1) a preliminary network is constructed according to its type; (2)

its degree distribution is extracted, and (3) the final network is ob-

tained feeding the referenced method with that degree distribu-

tion. For each experiment, 10 6 searches have been performed. In

every search, the source node has been chosen uniformly at ran-

dom, and every node in the network has been assigned an in-

stance of the resource looked for with probability p res = 10 −2 at

 =0 . Therefore, the expected number of resource instances present

in the network at t =0 for all searches is R = N · p res = 100 . 
We show the results for scale-free networks, which are espe-

ially interesting since this type of degree distribution is frequently

ound in real networks. Results for regular and ER networks, which

o not differ significantly from scale-free results, are included in

he Appendix for the interested reader. 

.2.1. Expected search length vs. PW length 

Fig. 4 shows the expected search length in a scale-free net-

ork for several values of d (i.e., the resource dynamics). The num-

er of PWs per node is set to w = 5 , although the performance

f the PW-RW mechanism is independent from this parameter, 5 

ince only one PW is used to locate the resource. Model predic-

ions ( Section 2.1 ) are plotted with lines and simulation results

re shown as points. It can be seen that the model provides an

ccurate correspondence with the real data, with larger error for

igher values of d and s . These deviations are discussed further in

ection 2.2.3 . 

All curves show a minimum point, which marks the optimal

W length ( s opt ) and the corresponding optimal expected search

ength ( L opt ). Interestingly, the values of s opt are small and do not

epend heavily on d . According to the analytic data, s opt ranges be-

ween 13 and 15 for all shown curves. 

.2.2. Reduction of the expected search length 

We have compared the performance of the proposed search

echanism for L opt with searches based on simple random walks

RW searches), finding large reductions in the average search

engths. Table 2 shows the relative reductions (%) for several
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alues of d . We can see that the reductions that choose-first PW-

W achieves with respect to RW searches are lower for higher d ,

anging from around 88% in the case when d = 0 to 57% when

 = 0.7. 

.2.3. Deviations of the predictions of the analytical model 

It can be concluded from Fig. 4 that the proposed analytical

odel succeeds in capturing the general behavior of the search

echanism observed in the simulations. There are, however, sig-

ificant deviations that deserve further evaluation and discussion.

e look first at the region of the graphic corresponding to inter-

sting practical scenarios, i.e., values of s close to s opt . For s = 20 ,

elative deviations range between 2.9% ( d = 0 . 0 ) and 7.9% ( d = 0 . 7 ).

e now look at the region for large s , to explore the dependency

f the deviation on the length of the PWs. For s = 300 , relative de-

iations are slightly larger, ranging between 3.6% and 8.2%. 

These deviations may be explained by one aspect of the con-

truction of PWs that is not captured by our analytical model: re-

isits within a PW. That is, when constructing a PW, the next node

isited by the random walk can be one already in that PW. This

ill in general happen for several nodes of the PW, with increas-

ng probability for longer PWs (larger s ). Now consider a search

raversing a PW with revisited nodes. In the calculation of the

robability that a PW contains the resource, our analysis consid-

rs each node of the PW independent from the others, which is

learly not true for a revisited node (which appears more than

nce in the PW but is in fact the same node). This makes our

odel slightly optimistic because it overestimates the probability

f a PW containing the resource, and therefore underestimates the

robability of a query to that PW resulting in a false positive when

esources disappear. This means that there will actually be more

W traversals caused by false positives than expected, increasing

he average search length in simulations. This effect is larger for

igher d when more resources disappear and therefore more than

xpected PWs cause false positive queries, which is in accordance

ith Fig. 4 . 

. Check-first PW-RW with dynamic resources 

This section describes a variation of the mechanism presented

n Section 2 . Suppose the search is currently in a node and it needs

o pick one of the PWs in that node to decide whether to tra-

erse it or to jump over it. Recall from stage 2 under paragraph

The search mechanism” that the original mechanism first chooses

ne of the PWs at random, and then checks its associated informa-

ion for the desired resource, resembling the behavior of a random

alk. The proposed variation, on the other hand, reverses the order

f these tasks. It first checks the associated resource information of

ll the PWs of the node, and then randomly chooses among the

Ws with a positive result, if any (otherwise, it chooses among all

Ws of the node, as the original version). This check-first PW-RW

echanism improves the performance of the original (or choose-

rst PW-RW ) since the probability of choosing a PW with the re-

ource increases, with no extra storage space cost. 

There is another, less important, difference between the algo-

ithms. In the original version, the nodes whose resources were

egistered in the information associated to the PW ranged between

he current node and the one before the last node. In the check-

rst version, the resource information is registered from the first

ode (the next to the current node) to the last node in the PW.

his change slightly improves the performance of the new version,

ince the probability of choosing a PW with the resource increases

lso in the cases where the resource is held by the last node of the

W. The rest of the operation of the mechanism remains the same.
.1. Analysis 

Most of the analysis provided in Section 2.1 is still valid for

heck-first PW-RW . We present here the equations that need to be

odified to reflect the new behavior. That is the case of Eq. 3 for

he probabilities of choosing a PW with a TP, FP and negative re-

ult, respectively. Their counterparts follow. Remember that i and j

epresent the number of PWs of the node that return a TP result

nd an FP result, respectively: 

P tp = 

w ∑ 

i =1 

w −i ∑ 

j=0 

P (i, j) · i 

i + j 
, 

 fp = 

w −1 ∑ 

i =0 

w −i ∑ 

j=1 

P (i, j) · j 

i + j 
, 

P n = P (0 , 0) = 1 − P tp − P fp , (13) 

The expression for the expectation of the number of final steps

aken when traversing the last PW until the resource is found (

q. 11 ) is still valid. It uses F (r) , the expectation of the position

f the first resource in the PW, conditioned on there being r in-

tances of the resource in the PW. Its expression ( Eq. 12 ) needs to

e modified, since the range of nodes whose resources are associ-

ted with the PW has changed from [0 , s − 1] to [1, s ]. The indexes

imits and their use in the expression have been updated as nec-

ssary in the new expression, which completes the analysis of the

heck-first PW-RW mechanism: 

 (r) = 

s −r+1 ∑ 

i =1 

[ 

i ·
( 

i −1 ∏ 

j=1 

(
1 − r 

s − j + 1 

)) 

·
(

r 

s − i + 1 

)] 

. (14) 

.2. Performance evaluation 

For the performance evaluation of the check-first PW-RW , we

se the same scenarios used in the performance evaluation of the

hoose-first PW-RW . As earlier, the corresponding figures for regular

nd ER networks can be found in the Appendix. 

.2.1. Expected search length vs. PW length 

Fig. 5 shows the expected search length in a scale-free network

or several values of d , and for w = 5 . The shape of the curves is

he same as that for the original mechanism ( Fig. 4 ), and the dis-

ussion on the observed deviations of the analytical results given

n Section 2.2.3 is also applicable to this case. 

A substantial decrease in the optimal search length ( L opt ) for

heck-first PW-RW is observed. For example, for d = 0 . 3 , L opt is
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Table 3 

Check-first PW-RW ( w = 5 ) with dynamic resources: reduc- 

tion of the expected search lengths relative to RW searches 

for several d . 

Search length 

d reduction (%) 

0 .0 94 .29 % 

0 .1 93 .44 % 

0 .3 91 .04 % 

0 .5 86 .91 % 

0 .7 78 .68 % 
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6 New nodes with fresh resource instances will become useful from the searches 

point of view when PWs are recomputed at t =T . 
around 11, while it was about 21 for the choose-first PW-RW mech-

anism. The optimal PW length also diminishes, from about 14 to

6 in that case. The expected search length decrease is due to the

fact that the new mechanism checks all the PWs in the node for

the resource and then chooses one only among those with positive

result, increasing the probability of choosing a PW that currently

holds the resource. Following this reasoning, the more PWs in the

node, the higher this probability. It is therefore interesting to ex-

plore the dependency of L and s opt with w . 

Fig. 6 shows the expected search length of the check-first PW-

RW mechanism, for w = 2 , 5 and 10 with d = 0 . 3 . To make the

comparison of performance between both mechanisms easier, a

curve corresponding to choose-first PW-RW has been added to the

graph. As explained above, the performance of the latter is inde-

pendent from w , but it plays a central role in the check-first PW-

RW . The range of the axes of this graph has been restricted to fo-

cus on the area around s opt . For higher s , the curves for the several

w converge. As expected, it is observed that higher w yields lower

L opt , with a value about 8 for w = 10 . Another interesting observa-

tion is that s opt also diminishes for higher w , falling to 4 in this

case. 

These values mean a reduction of about 92% in the expected

search length of simple random walks, with 10 precomputed PWs

of just four nodes. Higher reductions can be achieved, at the ex-

pense of increasing the cost of the computation of the PWs, as an-

alyzed in Section 6 . 

3.2.2. Reduction of the expected search length 

Table 3 is provided as a reference, presenting the reduc-

tions achieved by check-first PW-RW with respect to random walk

searches for w = 5 and several d . We see that reductions range be-

tween 94% and 78%, while those of choose-first PW-RW ranged be-

tween 88% and 57%. That is an additional reduction of about 50%. 
. Choose-first and check-first PW-RW with dynamic nodes 

So far we have analyzed the performance of PW-RW when re-

ource instances dynamically appear in, and disappear from, net-

ork nodes. In this section, we explore the case where network

odes themselves leave and join the network. In our model, we

ssume that at time t =T , some nodes have left the network and

thers have joined it (recall that PWs were computed initially at

ime t =0 ). Nodes that have left the network have a double im-

act on PW-RW: (1) their resource instances are no longer avail-

ble, so the information on the resources in a PW is degraded, and

2) searches will not be able to visit them when following their

Ws. On the other hand, new nodes have no impact on PW-RW:

ince they are not in the previously computed PWs, they will not

e used by searches, even if they hold instances of the resource

ooked for. 6 Therefore, a single parameter l , the probability that a

ode present at t =0 has left at t =T , is enough to evaluate the

mpact on PW-RW performance at t =T . At this time, the expected

umber of resource instances is Np res (1 − l) , in a network with ex-

ected size N(1 − l) . This implies that the expected number of re-

ource instances per node is still p res , which allows a fair compar-

son with the baseline (static) case. The algorithm for the PW-RW

echanisms needs to be adapted for the dynamic nodes scenario.

e call nodes that remain in the network at t =T active nodes .

hen traversing a PW, the walk will visit the first active node at

ach hop. Similarly, when jumping over a PW, the walk will hop to

he last active node in the PW. If no active nodes remain in the PW,

he search will proceed visiting any active neighbor or will stop if

here are none (only searches that find the resource are included

n the performance evaluation results shown later). 

.1. Analysis 

The analytical models in Section 2 and 3 are modified for the

ynamic nodes scenario as follows. The expected length of a PW is

ow s (1 − l) . Therefore, Eq. 2 becomes: 

 s = 

1 

P tp 
· (P n + s (1 − l) · P fp ) + F . (15)

q. 3 for choose-first PW-RW are still valid, and so are their coun-

erpart Eq. 13 for check-first PW-RW . We need to provide a new

ersion of p tp in Eq. 4 , since the reason of information degradation

s now the dynamics of nodes: 

p tp = 

min { s, R } ∑ 

r=1 

P pw 

(r) · (1 − l r ) , (16)

ith P pw 

( r ) given by the original Eq. 9 , which relied on Eqs. 7 and

 . Eq. 10 for p fp can still be used, with the new definition of p tp 

bove. Finally, a new expression for F is needed, since it depends

n the number of active nodes u in the last PW, which is now a

andom variable: 

 = 

s ∑ 

u =1 

F (u ) · P pw 

(u ) , (17)

here F (u ) is the expected number of final steps conditioned on

here being u active nodes in the PW, and P pw 

( u ) is the probability

hat the PW has u active nodes. To obtain the former we rely on

 (u, r) , the expected number of final steps conditioned on there

eing r instances of the resource in a PW with u active nodes: 

 (u ) = 

1 

1 − P pw 

(u, 0) 
·

min { u, R } ∑ 

r=1 

F (u, r) · P pw 

(u, r) , (18)
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Table 4 

Choose-first PW-RW with dynamic nodes: reduction of the 

expected search lengths relative to RW searches for several 

l . 

Search length 

d reduction (%) 

0 .0 88 .28 % 

0 .1 87 .08 % 

0 .3 84 .21 % 

0 .5 80 .21 % 

0 .7 73 .58 % 

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300  350  400
ex

pe
ct

ed
 s

ea
rc

h 
le

ng
th

 (
ho

ps
)

partial walks length (hops)

check-first PW-RW

dynamic nodes

scale-free network

w=5

l=0.7 (simul)
(model)

l=0.5 (simul)
(model)

l=0.3 (simul)
(model)

l=0.1 (simul)
(model)

l=0.0 (simul)
(model)

Fig. 8. Check-first PW-RW ( w = 5 ) with dynamic nodes: expected search length L s 
vs. PW length s for several l in a scale-free network. 

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60

ex
pe

ct
ed

 s
ea

rc
h 

le
ng

th
 (

ho
ps

)

partial walks length (hops)

choose-first / check-first PW-RW

dynamic nodes

scale-free network

l=0.3

choose-first (simul)
(model)

check-first,  w=2 (simul)
(model)

check-first,  w=5 (simul)
(model)

check-first, w=10 (simul)
(model)

Fig. 9. PW-RW with dynamic nodes: expected search length L s vs. PW length s 

for choose-first PW-RW and check-first PW-RW ( w = 2 , 5 , 10 ) in a scale-free network 

with d = 0 . 3 . 

 

a  

f  

c  

7  

t  

l  

t

 

i  

r  

t  

a  

fi  

(  

r

here P pw 

( u, r ) is the probability of a PW with u active nodes hav-

ng r instances of the resource. Now, an estimation for F (u, r) can

e obtained reasoning as for Eq. 12 : 

 (u, r) = 

u −r ∑ 

i =0 

[ 

i ·
( 

i −1 ∏ 

j=0 

(
1 − r 

u − j 

)) 

·
(

r 

u − i 

)] 

. (19) 

he expression for P pw 

( u ) can be obtained as in Eq. 9 : 

 pw 

(u ) = 

(
s 
u 

)
· (p rw,a ) 

u · (1 − p rw,a ) 
s −u , (20)

here p rw, a , the probability that a node visited by a RW is active,

s: 

p rw,a = 

N(1 − l) · k 

S − k rw 

. (21) 

ikewise, the expression for P pw 

( u, r ) is: 

 pw 

(u, r) = 

(
u 

r 

)
· (p rw 

) r · (1 − p rw 

) u −r , (22)

here p rw 

is given by Eq. 7 . 

.2. Performance evaluation 

We look now at the performance of the PW-RW mechanisms in

etworks with dynamic nodes, that operate according to the model

escribed in the previous section. As earlier, the corresponding fig-

res for regular and ER networks can be found in the Appendix. 

.2.1. Expected search length vs. PW length 

Fig. 7 shows results for choose-first PW-RW in a scale-free net-

ork for several values of l , the probability of a node leaving the

etwork. Predictions of the analytical model in Section 4 , plot-

ed as lines, provide accurate estimations for experimental re-

ults, shown as points. The observed deviations are discussed in

ection 4.2.3 . 

The effect of node dynamics is in general very similar to that of

esource dynamics (see Fig. 4 ). We note, however, that s opt slightly

ncreases with l in Fig. 7 , while it slightly decreased for larger d

the probability of a resource instance disappearing) in Fig. 4 . In

ddition, we see that L opt remains lower in the dynamic nodes

ase as l grows, compared to the dynamic resources case for the

ame values of d . Both effects have their origin in the fact that

Ws are effectively shorter in the dynamic nodes case, since some

f their nodes are no longer in the network when searches are per-

ormed. This contributes to shorten the searches, obtaining the op-

imal lengths with originally longer PWs. 
Table 4 shows the reductions in expected search length

chieved by choose-first PW-RW relative to RW searches in scale-

ree networks with dynamic nodes. As for the dynamic resources

ase ( Table 2 ), reductions are similar, ranging in this case between

3% and 88%. Reductions for large l are significantly higher than

hose for large d in the dynamic resources case (about 73% for

 = 0 . 7 vs. about 57% for d = 0 . 7 ). This is explained as above by

he effectively shorter PWs in the dynamic nodes case. 

Fig. 8 shows the results for the check-first PW-RW mechanism

n a scale-free network with dynamic nodes. As in the dynamic

esources case (see Fig. 5 ), both s opt and L opt decrease with respect

o the choose-first mechanism, since the algorithm checks all PWs

vailable at the node for the resource, increasing the probability of

nding it. Fig. 9 shows that both L opt and s opt decrease for larger w

the number of PWs per node), as observed also for the dynamic

esources case (see Fig. 6 ). 
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Table 5 

Check-first PW-RW ( w = 5 ) with dynamic nodes: reduction 

of the expected search lengths relative to RW searches for 

several l . 

Search length 

d reduction (%) 

0 .0 94 .29 % 

0 .1 93 .76 % 

0 .3 92 .48 % 

0 .5 90 .68 % 

0 .7 87 .73 % 
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4.2.2. Reduction of the expected search length 

Finally, Table 5 shows the reductions in expected search length

of check-first PW-RW compared to RW searches. Reduction values

range between 87% and 94%. Again, reductions for high l are larger

than in the dynamic resources case for large d (around 87% for l =
0 . 7 vs. 77% for d = 0 . 7 ). Reductions relative to choose-first PW-RW

are above 51%, slightly larger than for the dynamic resource case. 

4.2.3. Deviations of the predictions of the analytical model 

Figs. 7 and 8 show deviations of the proposed analytical model

with respect to simulation results. These deviations are very sim-

ilar to those for the dynamic resources scenario, discussed in

Section 2.2.3 . For example, deviations of the analytical model for

choose-first PW-RW with dynamic nodes range from 3.2% ( l = 0 . 0 )

to 9.4% ( l = 0 . 7 ) when s = 20 , and from 3.7% to 10.3% when s =
300 . As for the dynamic resources case, these deviations may be

caused by revisits within PWs. Our analytical models do not take

this effect into account, resulting in optimistic predictions (see

Section 2.2.3 ). 

5. Robustness of PW-RW to parameter perturbations 

In this section, we assess the robustness of the proposed mech-

anisms to variations of some of the parameters, relative both to the

network and to the mechanisms themselves. For this, we use the

analytical models defined and validated against simulation results

in the previous sections. The PW-RW mechanisms have two pa-

rameters: the length of the PWs ( s ) and the number of PWs per

node ( w ). The impact of variations of s on the expected search

length has already been shown in Figs. 4 to 9 , revealing the exis-

tence of an optimal length for PWs ( s opt ), which achieves minimum

expected search length. As for w , it is only relevant for check-first

PW-RW , since all the PWs available in the node are checked for the

resource. Figs. 6 and 9 show that the minimum expected search

length (and also s opt ) decreases as w is increased, as expected. 

Regarding network parameters, we have already studied the im-

pact of the dynamics of resources (through d , the probability that

a resource disappears from a node) and of the dynamics of nodes

(through l , the probability that a node leaves the network), observ-

ing that the minimum expected search lengths remain reasonably

low even for high volatility probabilities (see Figs. 4 to 9 ). 

We now investigate the effect of p res , the probability that a

node has an instance of the resource looked for, which in turn

determines the average number of instances in the network. We

write p res as a function of a multiplicative perturbation factor c

for the chosen baseline value (0.01), i.e., p res = 0 . 01 · c. Then we

vary c in the range [0.1, 2] and observe the performance of the

mechamisms in a scale-free network with dynamic resources ( d =
0 . 3 ). We have found that the value of s opt itself varies when p res is

perturbed, ranging from 44 to 10 for choose-first and from 19 to 4

for check-first . We are presented with two options here: calculate

the expected search lengths with s fixed to the s opt correspond-

ing to the baseline p res (14 for choose-first and 6 for check-first ), or
se the actual s opt for each value of p res (in a hypothetical adaptive

W-RW). Fig. 10 compares both cases for choose-first PW-RW (up-

er curves) and check-first PW-RW (lower curves). Expected search

engths grow for c < 1 (as the number of resources decreases be-

ow the baseline), and diminish for c > 1 (as the number of re-

ources increases over the baseline), as expected. More interest-

ng is the fact that the proposed mechanisms (with fixed s ) and

he hypothetical adaptive versions achieve very similar expected

earch lengths in a wide range of c . This suggests that the PW-

W mechanisms are robust to variations of p res , with little perfor-

ance degradation due to the suboptimality of s when p res varies

round a baseline value. Results are similar for networks with dy-

amic nodes, and are not shown here. 

Finally, we have checked that the expected search lengths (and

lso s opt ) do not depend on the network size ( N ), as long as p res

nd the average degree of the network remain unchanged. This is

s expected, since fixing p res means that the number of resource

nstances is proportional to the network size, and fixing the aver-

ge degree means that the number of choices of a random walk to

isit any endpoint in the network (the expected number of neigh-

ors of the current node) remains the same. 

. Cost of the PW-RW mechanisms 

In our proposed searching mechanisms, we assumed that at

ome initial time all network nodes compute a number w of

Ws that are used for an interval of time of length T . After that,

he searches performed in this interval use these PWs, and thus

he cost of their computation must be added to the cost of the

earches themselves. In this section we show that such an increase

s not relevant in the average cost per search, regardless of the

alue of T . 

First, we observe that since the information associated with

hose initial PWs is degraded due to the network dynamics, new

Ws are computed at t =T to capture the current network state.

hese new PWs are then used for another interval of length T ,

nd so on. The election of the length of the PW recomputation

nterval T influences the total cost with two opposite effects. For

onger intervals, more searches share the cost of the computation

f PWs, lowering the cost per search. However, the information

ssociated with the PWs gets more degraded for longer intervals,

ausing longer searches. This suggests the existence of some opti-

al T opt that minimizes the total cost per search. 

To investigate this we use C t , the average total cost per search

or interval length T , as defined in [17] for the static network case,

s the goodness metric to optimize. This total cost, defined as the

umber of messages, takes into account the cost of the average
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earch ( L s messages plus one to notify the source) and the cost

f the computation of each of the w PWs of a node ( s messages

lus one to notify the node), divided by the number of searches b

erformed per node in the interval: 

 t = ( L s + 1) + 

w 

b 
(s + 1) . (23)

In dynamic networks, however, L s varies with time during the

nterval as information progressively degrades, so it needs to be

veraged over T . In addition, since we intend to study the average

otal cost as a function of T , the number of searches per node in

he interval depends on T as b = λT , if we assume that the number

f searches per node per time unit is a constant that we denote λ.

he previous equation then becomes: 

 t (T ) = 

1 

T 

∫ T 

0 

( L s (t) + 1) · dt + 

w 

λT 
(s + 1) . (24)

L s (t) is determined by the stochastic process of deaths that is

overned by μk , the rate of departures of resource instances or

odes when the system is in state k (the number of instances or

odes). A rigorous approach to this problem would require a com-

lete stochastic characterization of the behavior of a system with

 large number of states, and is out of the scope of this work.

or our purpose, we will focus on intervals of length T in which

 relatively small fraction of resources or nodes leave the system,

o that the expected search length does not overly increase. For

hese intervals, we will assume that μ remains constant. This is

learly just an approximation to the behavior of a real system, but

t greatly simplifies the analysis allowing us to draw interesting

ractical conclusions. 

To obtain an estimation of L s (t) under these assumptions, we

rst seek L s (d) , the relation between the expected search length

nd the fraction d of resource instances that disappear. Similarly,

e need to find L s (l) for networks with dynamic nodes. The fol-

owing discussion focuses on the dynamic resources case for con-

iseness. To find L s (d) , which we note is independent from time,

e use the analysis of the PW-RW mechanisms presented in the

revious sections. 

Fig. 11 shows the increments in the expected search length for

he choose-first and check-first PW-RW mechanisms in a scale-free

etwork with dynamic resources (left) and dynamic nodes (right).

ncrements are obtained relative to the expected search length for

he static case (e.g., ( L s (d) − L s (0)) / L s (0) ). We observe that these

ependencies are approximately linear, with a slope α ≈ 2 for

ynamic resources and α ≈ 1 for dynamic nodes. We can then

rite L s (t) ≈ L s (0)(1 + αd(t)) . Now, if μ is the departure rate of
esource instances (or nodes), and assuming it constant for the in-

ervals of interest, we obtain an estimation for the fraction of in-

tances that have disappeared at time t as d ( t ) ≈ μt / N . With all

he above we can rewrite Eq. 24 as: 

 t (T ) = 

1 

T 

∫ T 

0 

(
L s (0) · (1 + α

μ

N 

t) + 1 

)
· dt + 

w 

λT 
(s + 1) 

= 

(
L s (0) + 1 

)
+ 

L s (0) · αμ

2 N 

T + 

w (s + 1) 

λ

1 

T 
. (25) 

A simple calculation on the previous equation allows us to ob-

ain an expression for the interval T opt that minimizes the average

otal cost per search: 

 opt = 

√ 

2 Nw (s + 1) 

L s (0) · αμλ
. (26) 

Figs. 12 and 13 show plots of the average total cost per search

 t ( T ) for the choose-first and check-first PW-RW mechanisms in net-

orks with dynamic resources and with dynamic nodes, respec-

ively, for several values of μ and λ. All curves have a linear be-

avior for large T (where cost is dominated by longer searches),

nd a rapid increase for small T (where cost is dominated by PW

omputation). The minimum cost, marked with a dot, can be found

n the region in between. Interestingly, this intermediate region is

bserved to be quite flat, which allows to reduce the interval T be-

ow T opt with no relevant increase in the average cost per search,

ut with significant reductions in the expected search length (see

ig. 11 ). This also means that the PW-RW mechanisms are not very
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for RW searches and for PW-RW searches, in a regular network with s = 10 and 

several d . 
sensitive to the election of the length T of the recomputation in-

terval, given that the system remains in the intermediate region.

Finally, the plots of C t ( T ) also show that the cost increases for

more volatile networks (higher μ) and decreases for more frequent

searches (higher λ), as it was expected. 

7. Conclusions 

We have proposed a mechanism to locate a desired resource

in randomly built networks with dynamic resource behavior (re-

source instances can appear and disappear) or dynamic node be-

havior (nodes can join and leave the network). The mechanism is

based on building a total walk with partial walks that are precom-

puted as random walks and available at each network node. When

precomputing each partial walk, information on the resources held

by its nodes is stored and associated to it. This information is used

by the searches, so that they can jump over partial walks in which

the desired resource is not located. Two versions of the mechanism

have been described. In the choose-first version, one of the partial

walks at the current node is randomly chosen, and then checked

for the desired resource. In the check-first version, all the partial

walks of the node are checked for the resource, and then one is

randomly chosen among those in which the resource was found.

We have presented an analytical model that predicts the expected

search length achieved by the two versions of the mechanism. Sim-

ulation experiments have been used to validate the model and to

assess the effect of resource and node dynamics. We have found

that the choose-first version achieves large reductions of the aver-

age search length in relation to searches based on simple random

walks. These reductions remain significant even in the face of high

volatility of resources or nodes. The check-first version produces

larger reductions as we increase the number of partial walks pre-

computed at each node (at the corresponding extra cost). Results

have been found to be very similar for networks with different

degree distributions ( k -regular, Erd ̋os-Rényi and scale-free). Finally,

we have analyzed the cost of the PW-RW mechanisms, concluding

that the choice of the length of the PW precomputation interval

does not have a significant impact on the cost in a wide range of

interval lengths. 

An interesting future work line for this study is to measure the

improvement in the search length that can be obtained by using

different strategies to choose one of the partial walks available in

a node. Another possibility to shorten search lengths is to use more

intelligent (and more costly) variations of random walks instead of

simple random walks. 

Appendix A. Choose-first PW-RW with dynamic resources 

This Appendix contains results for regular and ER networks that

complement those given for scale-free networks in the main text,

as well as some additional results. Results for the three network

types are very similar in all cases. 

Figs. A.14 and A.15 show experimental and analytical results

for the expected search length achieved by choose-first PW-RW in

regular and ER networks with dynamic resources, respectively, for

several values of p , the probability of a resource disappearing from

a node. 

• Length distributions and dispersion: 

The use of partial walks also affects the shape of the proba-

bilistic distribution of search lengths. Figs. A .16 and A .17 show

the distributions for simple random walks (RW) searches and

for PW-RW searches, for s = 10 and for several values of d ,

obtained from the experiments with regular and ER networks

with dynamic resources. Instead of the slowly decaying distri-

bution of RWs, the proposed mechanism exhibits search length
distributions that show a maximum frequency for a small

search length and then decay much faster than the random

walk distribution. We also note that the search length for the

maximum frequency (9 in this case) is independent from the

dynamic behaviour of resources ( d ). The search length distribu-

tions of PW-RW have therefore lower standard deviation than

random walk searches. For d = 0 . 3 , for instance, the standard

deviation in regular, ER and scale-free networks are, respec-

tively, 21.06, 21.34 and 21.58. Correspondingly, the mean search

lengths are 23.56, 23.72 and 23.81. As a reference for compari-
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ppendix B. Check-first PW-RW with dynamic resources 

Figs. B.18 and B.19 show the expected search lengths achieved

y check-first PW-RW in regular and ER networks with dynamic re-

ources, respectively, for several values of p . 
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In addition, Fig. B.20 shows the dependency between the ex-

ected search lengths achieved by check-first PW-RW and the num-

er of PWs per node ( w ), in a regular network with dynamic re-

ources. Results for ER networks are very similar. 
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Figs. C.21 and C.22 show the expected search lengths achieved
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Appendix D. Check-first PW-RW with dynamic nodes 

Figs. D.23 and D.24 show the expected search lengths achieved

by check-first PW-RW in regular and ER networks with dynamic

nodes, respectively, for several values of l . 
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Fig. D.23. Check-first PW-RW ( w = 5 ) with dynamic nodes: expected search length 

L s vs. PW length s for several d in a regular network. 
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Fig. D.24. Check-first PW-RW ( w = 5 ) with dynamic nodes: expected search length 
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Finally, Fig. D.25 shows the dependency between the expected

earch lengths achieved by check-first PW-RW and the number of

Ws per node ( w ), in a regular network with dynamic nodes. Re-

ults for ER networks are very similar. 
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