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With the patent co-inventing data of top 9 ICT firms with the highest patent application in China, this study
establishes the co-inventing network and examines the moderate role of network connectivity, measured by clas-
sifying the individuals into two cohorts: inventors in the largest connected component and inventors in other iso-
lated components. The network stability and innovation output demonstrate strong positive interaction, which is
significant in not only the largest but also other isolated components. The clustering and centrality demonstrate
significant effect on network stability and innovation output in the largest connected component, which is gener-
ally the same as that of extant studies. This impact is not significant in the other isolated components, which con-
firms the moderate role of network connectivity, i.e., fully connected networks constitute the basis for the network
structure to be functioning. However, the significantly positive role of the structural hole is not moderated by the
network connectivity. The contributions and implications of our findings is discussed at the end of this study.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The effect of individual mobility on knowledge transfer, innovation,
and competitive advantage is increasingly becoming an important
domain of research (Gardner, 2005; Harris and Helfat, 1997; Rao and
Drazin, 2002; Song et al., 2003; Sturman et al., 2008; Wezel et al.,
2006). Interorganizational mobility of individuals affects gains or losses
in terms of the competitive advantage and performance outcomes
(e.g., survival, profitability, effectiveness in head-to-head competition)
of organizations that lose individuals (Aime et al., 2010; Phillips,
2002). Therefore, most organizations are trying to curb the mobility
and keep the stability of their employee groups, particularly the high-
performers. Conversely, the employee's performance may also impact
their stability. High-performers usually own high satisfaction with
the current job, which makes them less likely to leave, while low-
performers are more likely to seek outside opportunities. Although
there are reciprocal effects (Shaw et al., 2005a), direct (Glebbeek and
Bax, 2004) and indirect (Shaw et al., 2005b) evidence suggests that
the effect of employee stability on his/her performance is stronger
than the reverse, which may be the main cause that most extant studies
focused on the former. However, extant studies did not clearly examine
to what extent the reciprocal effect is ignorable. Since there is reciprocal
effect, the causal analysis of employee stability and performance should
take it into account from both empirical and theoretical perspectives. As
the employee's performance and stability interact with and function on
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each other, this study will make a comprehensive examination of the
bidirectional causalities, which is one of the main contributions of this
study to extant literatures.

In the context of an organizational network, as the network becomes
more connected, distance between any two nodes diminishes, it is
possible that information can become more democratized (Ahuja
et al., 2012), information can thereby diffuse more quickly, fostering
outcomes such as innovation or creativity (Schilling, 2005; Schilling
and Phelps, 2007). As the inventors' access to the information and
knowledge is to a great extent dependent on the links with each
other, the moderate effect of the network connectivity on the inventor
stability and his/her performance is indispensable. Although the effect
of network structure has been widely discussed by extant studies,
e.g., Ahuja (2000), Nerkar and Paruchuri (2005), Paruchuri (2010),
Cattani and Ferriani (2008), Zhang et al. (2014a), they are mostly
based on the largest connected component within the whole network.
As the disconnected components potentially conflate the influences of
small-world structure and simple connection (Fleming et al., 2007)
and usually take a relatively small ratio compared with the largest com-
ponent (Casper, 2007), most studies focused on the largest component,
while ignored the methods to develop a weighted average across
disconnected components proposed by Schilling and Phelps (2007).
However, besides the largest component, other components, e.g., the
second and third largest, usually own well structured fabric. These
components may also exhibit significant network effect, as the links
constitute the base for inventor communication. Inventors with key
positions may also have advantages in accessing information, and
thereby generate higher innovation output in other smaller compo-
nents. The specific inventive process may lead to the disconnections,
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e.g., pharmaceutical researchers are usually assigned to several groups,
which are making mutually independent researches; technicians
embarking at two different projects within the same firm may also
lead to two isolated components. Obviously, inventors in the largest
component represent only part of the firm's inventive activity. As the
inventors in other components may also be doing important researches,
ignoring these components may lead to a bias of the empirical results. In
this sense, the network effect on network stability and performance,
particularly in the partly connected contexts, deserves a further study.
We will compare the differences of the network effects in the fully
connected networks with that in partly connected networks, which
formulates another main contribution of this study.

Additionally, extant studies provided only evidences that network
connectivity is beneficial by proving that a greater ratio of the largest
connected component positively impact innovation, e.g., Fleming et al.
(2007), Chen and Guan (2010), Zhang et al. (2014b). As the linkages
between individuals are the basic element constituting the network,
greater extent of connectivity may be the key for the network indicators,
e.g., clustering coefficient, centrality, path length, to be functioning on
innovation. However, the moderate role of connectivity is not carefully
examined by extant studies and will be another main job of this study.

The remainder of this study is organized as follows: Section 2 presents
the hypothesis; Section 3 presents the data and methods; Section 4 pro-
vides the empirical results; Section 5 discusses and Section 6 concludes.

2. Hypothesis

Because continuous interaction among members is seen as a valuable
resource for organizations, turnover has been argued to deplete social
capital by damaging firms' internal social fabric (Dess and Shaw, 2001;
Shaw et al., 2005a). Kwon and Rupp (2013) found that turnover
among individuals who occupy key structural and relational network po-
sitions could lead to significant loss of social capital within organizations,
resulting in lower firm performance. Individual turnover has been
viewed as problematic for firm performance, as individuals' participation
in organizational activities has been regarded as a necessary condition
for effective firm functioning (Kwon and Rupp, 2013), and the individ-
uals with more work experience usually generate more productions.
This may be one of the main causes that firms with higher employee
stability usually have higher survival rate (Phillips, 2002; Wezel et al.,
2006). However, this positive reciprocal effect may be attenuated by
the network connectivity, which determines the access of information
and knowledge. For the lack of information and communication, em-
ployees in an isolated network are more likely to leave, while employees
in a connective network have easier access to heterogeneous team,
which is more productive (Hamilton et al.,, 2012) and makes employees
less likely to leave. This gives the following formal hypothesis:

H1. The inventor's network stability positively interacts with his/her
innovation performance, while this positive reciprocal effect will be
attenuated by the disconnected network.

The links described in social networks influence one's propensity to
stay on their job perhaps through a process of job embeddedness
(Holtom et al., 2008), e.g., key individuals usually hold advantageous net-
work position, which bring greater job embeddedness and satisfactions
that make them less likely to flow away (Holtom et al., 2008). The indi-
vidual performance may also be affected by their network positions,
which determine the facilitation of information and knowledge acquisi-
tion. It has been proved that certain network structure, e.g., medium
level clustering and small worldliness, shorter path length would benefit
innovation by facilitating the access of information and knowledge
(Chen and Guan, 2010; Fleming et al., 2007; Zhang et al., 2014b); Indi-
viduals with more structure holes may have lower level innovation
output (Ahuja, 2000). As Ahuja (2000) has noted that the optimal
structure of the network to a great extent depends on the objectives

of the network members, it is necessary to make a further study of
the relationships between the innovation performance and network
position. We discuss the network position from three measurements:
clustering coefficient, structural hole and centrality, which are widely
used and discussed by extant studies in measuring the network
structures.

As the network is becoming more clustered, there is a decline in the
formation of bridging new ties (Gulati et al., 2012). The social structure
is further characterized by self-containment (Gulati et al., 2012), which
makes inventors less likely to change the current state and thereby
more likely to be reliant on the network. However, the innovation per-
formance may be affected by the clustering quite differently. Most stud-
ies have confirmed a middle-level clustered network encourages, but an
extremely low- or high-level clustered network discourages innovation,
e.g., Uzzi and Spiro (2005), Chen and Guan (2010), Fowler (2005), and
Guimera et al. (2005). The role of a more clustered network maybe
two sided: on one hand, it may diffuse knowledge that improves innova-
tion, and on the other hand, it may bring too much common or even neg-
ative information that hamper creativity (Chen and Guan, 2010). Hence
we make the following hypotheses:

H2. (a). The inventor's clustering coefficient positively correlates with his/
her network stability.

H2. (b). There is an inverted ‘U’-shaped relationship between inventor's
clustering coefficient positively impacts his/her innovation performance.

The structural holes are gaps in information flows between alters
linked to the same ego but not linked to each other (Burt, 1992). A struc-
tural hole indicates that the people on either side of the hole have access
to different flows of information (Hargadon and Sutton, 1997). Ego net-
works rich in structural holes imply access to mutually unconnected
partners and, consequently, to many distinct information flows
(Ahuja, 2000). Therefore, inventors rich in structural hole usually have
higher position, which makes them less likely to flow out. However,
the effect of structural hole on innovation performance appears to be
two sided: on one hand, inventors with extensive relations can foster
the development of shared norms of behavior and explicit knowledge-
sharing routines (Ahuja, 2000; Dyer and Noboeka, 2000; Uzzi, 1997;
Walker et al., 1997), which enhances the innovation performance; on
the other hand, the opportunistic actions of the inventor who hold the
structural hole is greater, as his/her partners are not directly linked to
each other (Ahuja, 2000). The contradictory effects may lead to two op-
posing point of views, one of which is selected for proposing hypothesis:

H3. (a). The inventor's ego network rich in structural hole positively
correlates with his/her network stability.

H3. (b). The inventor's ego network rich in structural hole positively
impacts his/her innovation performance.

Network centrality is a commonly used indicator of brokerage within
social networks (Casper, 2007; Wassermann and Faust, 1994). The cen-
trality is measured with three main indicators: betweenness, closeness
and degree centrality, which function on the innovation from different
aspects but finally show similar effect. Researches support a link be-
tween inventors performance and both number of ties and centrality in
networks, with higher performing inventors holding more ties and hav-
ing more network centrality (Burt, 1992; Cross and Cummings, 2004).
Additionally, similar with the role of structural hole, researchers also
believe that inventors with greater centrality will have access to more in-
formation, have more power and greater influence (Chen and Guan,
2010). Therefore, the centrality is more likely to show positive effect on
network stability from the perspective of job embeddedness. The follow-
ing hypotheses are accordingly proposed:

H4. (a). The inventor's network centrality positively correlates with his/her
network stability.
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H4. (b). The inventor's network centrality positively impacts his/her
innovation performance.

The connected network allows any vertex to be reached from any
other vertex by traversing a finite number of edges (Watts, 1999). Net-
work connectivity, which relates to the usefulness of the network in
terms of the number of individuals linked together, may confuse the
above effects and correlations. If inventors with key network position
exit the network, presumably through resignation or retirement, then
connectivity within the network will be lost after ties decay (Casper,
2007). The network effect that passes through the inventor will be
attenuated if the links are removed due to the inventor's quit decision.
Although the network effects may still be significant within any well
structured components, it could not go beyond the boundary of the
components. The mutually isolated effects in a disconnected network
may be quite different from that in connected fully ones. We thereby
propose the following hypothesis:

H5. The network effects (structural hole richness, centrality and clustering
coefficient) on inventor's network stability and innovation performance are
attenuated by the isolation of components.

The largest connected component is the largest set of inventors in a
network who can trace a direct or indirect collaborative path to one an-
other. The largest component usually exhibits inventive small worlds
that consist of clusters of cohesive interaction, linked together by occa-
sional bridging connections (Fleming et al., 2007). Network aggregation
enables greater opportunities for technological brokerage between previ-
ously disconnected technological communities (Burt, 2004; Hargadon,
2003; Stuart and Podolny, 1999), which indicates the advantage of the
largest connected component. In comparison, isolates and small clusters
will be left without access to new ideas and results (Fleming et al.,
2007). As inventors have an incentive to relocate themselves, abandoning
disadvantaged positions to join other positions located in a more success-
ful cluster (Casper, 2007), they are more likely to make a leave in case
they are isolated. Accordingly, the following hypothesis is proposed:

HG6. The largest connected component in the whole network own higher
network stability and innovation performance than that of other partly
connected components.

The theoretical framework is presented in Fig. 1.
3. Data and method
3.1. Data

The patent co-inventing networks provide a rich opportunity to study
the effect of network connectivity because these networks represent a
primary conduit of information for inventors. Therefore, we use patent
co-inventing data in establishing R&D cooperation networks. The charac-
teristics of the R&D cooperation network are to a great extent reflected by
the patent co-inventing network, which is widely used in studying the
flow of information and R&D creativity, e.g., Fleming and Marx (2006),
Fleming et al. (2007), Chen and Guan (2010), Guan and Chen (2012).

We use the patents by the top 9 ICT firms that filed the largest number
of patents for further analysis. These firms are: Huawei, ZTE, Panasonic,
Sony, Intel, Philip, IBM, Samsung and LG. We remove the patents with
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Fig. 1. Theoretical framework and hypotheses.

only one inventor that has no contribution to the network structure,
and keep the patents with two or more inventors, so that a network
with at least two vertices and one edge could be established. To rule out
the case that patents with two or more applicants conflate the network,
as it is almost impossible to verify if the inventor works in the firm, we
omit the patents with over two applicants. However, the patents filed
by the firm and its subsidiaries are kept. We take a three year moving
window! in establishing the dynamic networks. As the patents in our
sample have only one applicant, each firm has a dynamic network that
is mutually independent. As the networks are not totally connected, we
classify the patents into two cohorts: Inventors in the largest connected
component, where any pairs of inventors could reach each other by sev-
eral intermediates, and inventors not in the largest component, where
not all pairs of inventors could reach each other. Since the largest compo-
nent is representative of the whole network by taking the highest weight,
we first focus on the largest component and show the connectivity.

We take the network of Huawei as a special case for further analysis,
which is also representative of other firms' networks. Fig. 2 presents the
evolution of the largest component in the whole network. The network
is becoming more connected before 2008, which is reflected by the
increasing weight (blue curve) and scale (green curve) of the largest
component. The ratio of the second largest to the largest component
has been declining (red curve), which reflects the increasing gap be-
tween the largest and other components, and also an increasing weight
of the largest component and the network connectivity. However, as the
size and weight of largest component drops since 2008 (except the
2012-2014 networks that does not include most patents filed in
2014), the network connectivity slightly declines after 2008. The size
of the largest connected component has been growing as Huawei be-
comes a global telecommunication player. As is shown in Fig. 2, the
number of inventors in the largest component is lower than 40 before
2000, but then grows at a fast pace and reaches a peak during 2006-
2008. Although the number of inventors falls after 2006-2008, it
keeps a smooth trend after 2008-2010. The ratio of the largest compo-
nent to the whole network also increases before 2006-2008, which
suggests a greater connectivity of the network.

Fig. 3 presents the whole 2003-2005 network of Huawei that
includes 235 isolated disconnected components, 3323 inventors and
6019 connections. The largest connected component with the inventors
being orange in Fig. 3 takes 77% inventors and 85% connections. Other
components with other colors have much fewer inventors and connec-
tions than that of the largest component, and for many components
there are only two inventors. We will make an in-depth analysis of
the 2003-2005 network in the following empirical study. Similarly,
other firms' 2003-2005 networks are also selected.

Network stability is to a large extent determined by the stability of
inventors. In the context of innovation, a high ratio of inventor
turnovers from the R&D cooperation network in a short period will lead
to an unstable R&D cooperation network. Therefore, we measure the net-
work stability with the inventing life that inventors embarking at innova-
tion (InventLife). The InventLife is measured by the length of period that
the inventor first appeared and last appeared in the firm's patents. In de-
tail, the InventLife is measured as follows: As the network to be studied is
established with 2003-2005 patents, an inventor is viewed to stay n years
in the network if he/she has been absent from and never appeared in the
R&D cooperation network since 2004 + n + 1, e.g., inventor i left the net-
work in 2009 and stayed 4 years in the network since 2004 (2008-
2004 = 4 years). We take the year 2013 and 2014 as the last observation
years. Inventors that own patents filed in 2013 or 2014 are viewed to be
still in the R&D cooperation network?, and his inventing life data are set to

T Alternate window sizes, e.g., 4 and 5 years, have also been tested and they had little
effect on the results.

2 Asnot all the patents filed in 2013 and 2014 are in our data, we choose these two years
as the last observation years to ensure the accuracy, i.e., inventors absent from the 2013
patents may appear in 2014.
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Fig. 2. Evolution of network connectivity measured by the size of the largest component in Huawei. Note: Not all the patents filed in 2013 and 2014 are included in the SIPO patent database
by the query date 2014.8.30, which leads to a disconnection of the 2012-2014 network and a sharp decline of the size of the largest component.

be censored. Fig. 4 presents the survival curve of the inventing life in the
network: Over 60% inventors in the largest component are still in the
network one year later, while this ratio is <50% for inventors not in the
largest component. In other periods, the survival rates of inventors in
the largest component are also higher than inventors not in the largest
component, which suggests a more stable network relationship in the
largest component than in other components.

3.2. Variables

We classify the inventors into two cohorts: Inventors in the largest
and not in the largest component, so that we could make a comparison
and clarify the impact of network structure on network stability in
different context. Table 1 presents the summary statistics and correla-
tion matrix of variables of the 9 ICT firms:

Innovation Output: Following most extant studies, e.g., Fleming et al.
(2007), Chen and Guan (2010), Zhang et al. (20144, b), innovation
output is measured by the subsequent patenting in SIPO during 2006-

2014. Inventors in the largest component averagely file 10.73 patents,
which is twice of the patent output by other inventors (5.01 patents).

InventLife: Table 1 shows that inventors in the largest component av-
eragely stay 3.64 years in the R&D position of the firm (see InventLife),
which is longer than that of other inventors (3.07 years).

InLargestComponent: A dummy variable that takes 1 if the inventor
is in the largest component and 0 otherwise. A greater weight of largest
component will lead to a higher ratio of inventors taking the value 1,
which suggests that more inventors could reach each other through a
number of intermediates. This variable reflects the network connectivi-
ty by telling that if an inventor is either in the largest connected network
or in other isolated networks.

The network indicators that reflect the inventors' centrality are:
Betweenness centrality, i.e., the extent to which an inventor is located
‘between’ other pairs of inventors; Closeness centrality, i.e., the extent
of the closeness to every other inventors; Degree centrality, i.e., the
number of inventors that an inventor is directly connected with. The
estimation methods of the above three centralities are as follows:

The Largest Connected Component

®. 2

Fig. 3. Innovation network with the patent co-authorship data filed during 2003-2005 in Huawei.
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The betweenness centrality of inventor i is defined as

. o(s,t|i
Betweenness_Centrality; = E Q
< O(s,t)

s#t#IE]

where 0¢(s, t|i) is the total number of shortest paths between s and t that

pass through i, and o (s, t) = >_,0(s, t]i).

The closeness centrality of inventor i is defined as

1
Closeness_Centrality; = =—<——————
Vi Zjeudist(i, h)

where U is the set of all the inventors excluding inventor i, dist(i,j) is the
distance between inventor i and j.

The degree centrality of inventor i is measured by the number of
inventors directly connected with inventor i.

ClusterCoefficient: The clustering coefficient of inventor i. Let T(i)
denote the number of triangles, which is a complete subgraph of order
three, in I into which inventor i falls, and 73(i) the number of connected
triples, which is a subgraph of three vertices connected by two edges, in
I for which the two edges are both incident to i. The clustering coeffi-
cient of inventor j can be expressed as (Kolaczyk, 2009):

Clustering_Coefficient; = T4(j)/73(j)

StructuralHole: The constraint of network connections on inventor,
which is measured with the following formula:

M;
Structural Hole; = 1= " S¢;

k=1
Table 1
Summary statistics and correlation matrix.

All inventors (N = 23,124)
Variable Mean Std. Dev. Min Max 1 2 3 4 5 6 7
1. PatentCount 9.42 1431 1 165
2. InventLife 3.51 2.90 1 10 0.45
3. ClusterCoefficient 0.61 0.40 0 1 0.18 0.11
4, StructuralHole 0.40 0.30 —0.13 0.49 037 0.16 0.09
5. InLargestComponent 0.77 0.42 0 1 0.17 0.08 0.10 0.52
6. BetweenCentrality 0.0011 0.0037 0 0.09 0.45 0.14 —0.23 0.40 0.16
7. CloseCentrality 0.09 0.05 0.0006 0.17 0.26 0.11 0.06 0.62 0.95 0.28
8. DegreeCentrality 3.62 2.57 1 16 0.19 0.03 032 0.71 0.28 0.25 0.36
Inventors in the largest component (N = 17,808)
Variable Mean Std. Dev. Min Max 1 2 3 4 5 6
1. PatentCount 10.73 15.39 1 165
2. InventLife 3.64 2.90 1 10 0.45
3. ClusterCoefficient 0.63 03786 0 1 0.26 0.15
4, StructuralHole 0.49 0.27 —0.0069 0.95 0.36 0.15 0.01
5. BetweenCentrality 0.0014 0.0041 0 0.09 0.45 0.14 —0.31 0.41
6. CloseCentrality 0.11 0.0 0.06 0.17 0.27 0.10 —0.13 0.53 0.42
7. DegreeCentrality 4,01 2.65 1 16 0.16 0.02 0.25 0.68 0.23 0.36
Inventors not in the largest component (N = 4616)
Variable Mean Std. Dev. Min Max 1 2 3 4 5 6
1. PatentCount 5.01 8.48 1 113
2. InventLife 3.07 2.84 1 10 0.47
3. ClusterCoefficient 0.54 0.48 0 1 0.00 —0.04
4. StructuralHole 0.12 0.23 —0.13 0.73 0.22 0.07 0.19
5. BetweenCentrality 2.72e-7 1.70e-6 0 2.19e-5 0.20 0.05 —0.03 033
6. CloseCentrality 0.0012 0.0007 0.0006 0.0036 0.17 0.03 0.53 0.85 033
7. DegreeCentrality 2.33 1.71 1 9 0.11 —0.01 0.61 0.74 0.14 0.89
Productive inventors in the largest component (N = 1503)

Mean Std. Dev. Min Max 1 2 3 4 5 6
1. PatentCount 50.97 23.87 30 165
2. InventLife 6.81 231 1 10 —0.03
3. ClusterCoefficient 043 0.31 0 1 0.22 0.10
4, StructuralHole 0.70 0.22 0 0.95 024 —0.13 —0.42
5. BetweenCentrality 0.0060 0.01 0 0.09 0.29 —0.13 —0.42 0.46
6. CloseCentrality 0.13 0.02 0.07 0.17 0.28 —0.27 —0.30 0.58 0.57
7. DegreeCentrality 5.08 2.88 1 16 0.13 —0.05 0.08 0.55 0.31 034

dx.doi.org/10.1016/j.techfore.2016.09.004

Please cite this article as: Zhang, G., et al., Network stability, connectivity and innovation output, Technol. Forecast. Soc. Change (2016), http://



http://dx.doi.org/10.1016/j.techfore.2016.09.004
http://dx.doi.org/10.1016/j.techfore.2016.09.004

6 G. Zhang et al. / Technological Forecasting & Social Change xxx (2016) XXx-Xxx

where M; is the number of inventors directly connected with inventor i,
and

B;
S = Z'y,»yn if i has neighbors who are directly connected with k
k1 — —1

Y; if i has no neighbors who are directly connected with k

where n denotes i's neighbor® who are directly connected with k, and B;
is the number of i's neighbors who are directly connected with k. y; is
the inverse of the number of i's neighbors, including k., e.g., i has 4
neighbors, then y;=0.25, similar explanation applies to y,. A higher
value of Structure_Hole; indicates a low constraint on inventor i, which
suggests a greater “freedom” inventor i has to withdraw from existing
connections or to exploit structural holes (Nooy et al., 2011). This
index will have a higher value if inventor owns more structural holes
in his/her ego-network.

The largest component has a much different network structure from
that of other components, which is illustrated by the differences of clus-
tering, constraints and centrality: Inventors in the largest component
are more clustered (Clustering_Coefficient: 0.63 > 0.54) and have
more freedom in changing their connections by holding more impor-
tant network positions (Structure_Hole: 0.49 > 0.12), which may be
because inventors in the largest component have more connections
with others (Degree_Centrality: 4.01 > 2.33), removing from or adding
a connection to an inventor does not basically change his/her ego-
network; Inventors in the largest component have greater centrality
(Betweenness_Centrality: 0.0014 > 2.72e-7; Closeness_Centrality:
0.1104 > 0.0012; Degree_Centrality: 4.01 > 2.33), which reflects a more
important intermediate role of inventors in transmitting information.

The characteristics of the firms are controlled by introducing 8
dummy variables that take 1 if the inventor is in the identified firm
and 0 otherwise.

In summary, the network structure of the largest component is
much different from other components by owning a greater clustering,
lower connection constraint and higher centrality. How this would
have impact on the patent output and network stability will be further
studied.

3.3. The model

As the network stability is measured with the survival data, it is
more appropriate to apply the survival model, e.g., Cox, Exponential
and Weibull Model. Similarly, count model like Poisson and Negative
Binomial Model should be applied to innovation output measured
with patent count.

Since we mainly focus on the reciprocal effect between inventor sta-
bility and patent output, they will act both as the dependent and indepen-
dent variables in the above two sets of regressions. We thereby need to
find the instrumental variables (IV) to control for the endogeneity
brought by the reciprocal effect. Since the patent count is believed to
show time unvarying consistency, i.e., inventors who filed large patent
count will keep filing in large number, we use an inventor's pre-2003 pat-
ent count as the instrumental variable of his/her post-2003 patent count.
Similarly, we find a high correlation between pre-2003 and post-2003
inventing life. We thereby use the inventor's pre-2003 inventing life in
the firm as the instrumental variable of his/her post-2003 inventing life.

4. Empirical results

We use the two stage regressions: First, we get the instrumental
variable by regressing the inventor's post-2003 PatentCount on its
pre-2003 value and get the estimated value PatentCount. Similarly, we
get the InventLife's estimated value InventLife; Second, we regress the
InventLife on PatentCount and other potential impact factors, and make

3 Here the “i's neighbor” denotes the vertices with a direct connection with i.

similar regressions with PatentCount being the dependent variable and
InventLife being the instrumental variable.

As the InventLife is the transition data, we regress the InventLife
using the Exponential Survival Model, which allows us to run the Accel-
erated Failure-Time regression in Stata. The Harrell's C index and
Schoenfeld Residual tests the null hypothesis that the rate of the failure,
i.e,, inventor's turnover, remains constant as he/she stays longer in the
network (Proportional Hazard Rate). The test in Table 2 suggests that
the survival model with all inventors and inventors in the largest
component should be based on the fact that a longer time in the
network leads to a greater turnover rate, i.e., the failure accelerates as
the time flows. However, the transition data of inventors not in the
largest component owns a Proportional Hazard Rate in Table 2. As the
survival models are based on the hazard rate, which correlates negatively
with survival period, the parameter estimates should be oppositely
translated, i.e., a negative parameter estimate in Table 2 suggests a
positive impact on the survival period.

As large components usually own well organized structure and may
exhibit greater effects, we assign the inventors in larger components
with greater weight and apply the Weighted Negative Binomial Model
to the patent count. We take the edge counts in the component as the
weight of its inventors.

The patent count demonstrates positive impact on stability in Model
5 - Model 12 in Table 2. Similarly, the positive impact of inventor stabil-
ity on patent count can also be found in Model 5 - Model 12 in Table 3.
This provides evidence for the former half of H1, i.e,, the inventor's net-
work stability positively interacts with his/her innovation performance.
However, the significant parameter estimates in both the largest and
other components suggest that the positive interaction is not attenuated
by the disconnected network, which does not provide evidence for the
latter half of Hyopthesis 1.

The clustering demonstrates a weakly inverted U relationship with
inventor stability in the largest component, i.e., the estimates of
ClusterCoefficient and its square term are only significant at 10% level.
It exhibits similar inverted U effect on patent output in Table 3 in the
largest component. This suggests that the coexistence of knowledge
diffuse that improves innovation and common or even negative informa-
tion that hampers creativity functions on both innovation performance
and network stability. This provides evidence for H2(b), while does not
support H2(a).

The structural hole also demonstrates positive impact on inventor
stability and patent output in the largest component, which provides
evidence for H3(a) and H3(b).

The three measurements of centrality show differing effects. The be-
tweenness and degree centrality show positive impact, while closeness
centrality shows insignificant impact on inventor stability in the largest
component in Table 2. The effects of three centralities on patent output
are basically different, betweenness and closeness centrality show posi-
tive impact, while degree centrality shows insignificant impact in the
largest component in Table 3. This suggests that centralities function on
innovation from multi-perspectives. As there are no significantly negative
effects, the empirical results provide evidence for H4(a) and H4(b).

We may find from Tables 2 and 3 that most network indicators
demonstrate significant effect on the inventor stability and innovation
performance in the largest component, while not significant or the signif-
icance level is reduced in the other mutually disconnected components,
e.g., clustering coefficient, degree centrality, closeness centrality, degree
centrality, which suggests that the disconnected component attenuated
the network effect. However, the structural hole is an exception, which
exhibits positive effect in both largest and other components. H5 is there-
by partly supported, i.e., most but not all the network effects are attenuat-
ed by the isolation.

We may be more concerned with the effect of network connectivity.
As is shown in Model 1 - Model 4 in Table 2, the negative parameter
estimates of InLargestComponent suggests that inventors in the largest
component own lower hazard rate, or conversely greater survival
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Table 2

Impact of network connectivity on network stability with exponential survival model.

Sample All inventors Inventors in the largest component Inventors not in the largest component

Exponential survival model Exponential survival model Exponential survival model
Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12
PatentCount —0.01"**(0.00) —0.00"**(0.00) —0.01"*(0.00) —0.00"**(0.00) —0.01"**(0.00) —0.00"**(0.00) —0.01""*(0.00) —0.00*(0.00) —0.01"*(0.00) —0.00***(0.00) —0.00**(0.00) —0.00***(0.00)
InLargestComponent  —0.02***(0.00) —0.03***(0.00) —0.11"%(0.03) —0.02***(0.00) - - - - - - - -
ClusterCoefficient —0.29(0.30) —0.0.22(0.31) —0.27(0.31) —0.05(0.30) —0.71*%(0.35)  —0.62*(0.37) —0.55%(0.32) —0.55%(0.31) 0.13(0.08) 0.13(0.08) 0.09(0.11) —0.05(0.12)
ClusterCoefficient > 0.24(0.28) 0.11(0.28) 0.28(0.28) 0.10(0.28) 0.60*(0.31) 0.46%(0.28) 0.53%(0.32) 0.47%(0.27) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00)
StructuralHole —0.56"*(0.07) —0.47***(0.08) —0.53"**(0.08) —0.82"**(0.10) —0.59"**(0.09) —0.51"**(0.10) —0.55""*(0.10) —0.84***(0.12) —0.36"*(0.17) —0.30*(0.18) —0.55(0.37) —0.87"**(0.30)
BetweenCentrality —19.68*%(7.56) —15.96*%(7.78) —1.39(8.25)
CloseCentrality 1.39(1.53) 8.01(6.65) 0.56(7.97)
DegreeCentrality —0.04**(0.01) —0.04**(0.01) 0.01(0.48)
Firm Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Constant 1.95"**(0.08) 1.84"*(0.09) 1.91%(0.09) 2.23"%(0.11) 2.06%(0.14) 1.92"%(0.15) 0.40(1.39) 2.33"%(0.16) —1.67*(0.17) —1.61"*(0.1831) —1.91"**(045) —2.27"*(0.3301)
Log Likelihood —31,025 —30,937 —31,020 —30,986 —23,962 —23,894 —23,959 —23,932 —6061 —6060 —6061 —6059
LR Chi2 6516 6690 6524 6593 4976 5111 4980 5035 990 992 990 994
Prob > Chi2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.08 0.09 0.01
No. Obs. 23,124 2124 23,124 23,124 17,808 17,808 17,808 17,808 4616 4616 4616 4616
Proportional-Hazards Assumption Test
Harrell's C Index
Harrell's C 0.59 0.59 0.59 0.59 0.60 0.60 0.60 0.60 0.52 0.52 0.52 0.51
Somers' D 0.19 0.19 0.19 0.19 0.20 0.20 0.20 0.21 0.04 0.04 0.03 0.02
Test based on Schoenfeld Residuals
Df 3 4 4 4 3 4 4 4 2 3 3 3
Chi2 32.53 40.52 33.48 38.81 35.55 39.31 37.77 43.50 0.56 0.60 0.72 0.69
Prob > Chi2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.90 0.87 0.87
Hazard Rate AFT AFT AFT AFT AFT AFT AFT AFT PH PH PH PH

Dependent Variable: InventLife.

Standard Deviation in the Parenthesis.

***, ***: Parameter estimates are significant at 1%, 5% and 10% respectively.
AFT: The option of Accelerated Failure-Time Metric (AFT) is selected in the Stata package.
PH: Proportional Hazard Rate (PH) is used in the Stata package.
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Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Firm Dummies
Constant

1.70°%(0.22)
—15,755
4524

0.00

4616

1.37°(0.31)
—15,753

4529

1.417%(0.13)
—15,705

4624

1.50°(0.12)
—15,755

4524

3.46*+(0.12)
— 53,335
14,839

0.00

—4.49*(0.91)
—52,840
15,830

0.00

3.17°%(0.11)
—53,164
15,181

0.00

3.41%+*(0.10)
—53336
14,838

0.00

2.29%**(0.09)
— 67,534
18,144

0.00

1.90(0.07)
— 66,894
19,423

0.00

2.06***(0.07)
—67,318
18,577

0.00

2.30"*(0.06)
—67,534
18,143

0.00

Log Likelihood

LR Chi2

0.00
4616

0.00

4616

0.00
4616

Prob > Chi2
No. Obs.

23,124 23,124 23,124 17,808 17,808 17,808 17,808

23,124

Note: ***, ** * denote the parameter estimates are significant at 1%, 5% and 10%, respectively;

Dependent Variable: PatentCount.

period, than those not in the largest component. InLargestComponent
exhibits significantly positive effect on patent output in two regressions
in Table 3, while the effect is insignificantly positive in the other two
regressions in Model 1 - Model 4 in Table 3. This provides insufficient
evidence for H6.

As key personnel have greater impact on firm performance and are
believed to be more representative, literatures are more concerned
with their mobility, e.g., Godart et al. (2014), Groysberg et al. (2008),
Kwon and Rupp (2013). We thereby make additional regressions with
the productive inventors in the largest component” to test the robust-
ness of our empirical results. We define inventors with over 30 patents
as the productive inventors.’ The empirical results are presented in
Tables 4 and 5. The structural hole and betweenness centrality exhibits
positive impacts on both stability and patent output. Closeness central-
ity generates positive impact on patent output, while insignificantly
impact stability. The insignificantly negative parameter estimate of the
square term of clustering coefficient in Table 5 also suggests an inverted
U relationship between clustering and paten output, while this inverted
U relationship between clustering and stability is significant in Table 4.
The structural hole richness positively impacts stability in Table 4 and
weakly impacts patent output in Table 5. The closeness and degree cen-
trality demonstrate positive impact on patent output and stability.
These empirical results are generally correspondent with that of all
inventors in the largest component, which confirms the robustness of
our empirical study.

5. Discussions and limitations

Since the firms in our data file more patents in USPTO and EPO, the
networks with only Chinese patents may only be partly representative
of the true network structure, which may lead to a biased empirical
result. However, we may preclude this case by making a comparison
with other relevant literatures: 1st. There is an inverted U relationship
between clustering and patent output, which not only corresponds
with Zhang et al. (2014a, b), Chen and Guan (2010) who used either
the country level or regional level patent co-inventing data, but also cor-
responds with Uzzi and Spiro (2005) who used the Broadway musical
data. However, Fleming et al. (2007) found an insignificant relationship
with the patent co-inventing data; 2nd. The closeness centrality, which
is the inverse of the average path length, contributes positively to the
patent output. This corresponds with Zhang et al. (2014a, b), Chen
and Guan (2010), Fleming et al. (2007); 3rd. The structure hole contrib-
utes positively to patent output, which corresponds with Uzzi and Spiro
(2005) who also used the individual networked data. However, this
contradicts with Schilling and Phelps (2007) who used the inter-firm
data. This may be because the negative effect of the opportunism, as is
summarized by Schilling and Phelps (2007), brought by the structural
holes plays the main role in the inter-firm level network, while the pos-
itive effect of structural hole led explicit inter-individual knowledge-
sharing plays the main role in the inter-individual level network. Similar
differences of the betweenness centrality can also be found in this study
and Schilling and Phelps (2007). As our results are generally similar, or
at least not contradict with extant literatures, particularly the literatures
with the individual networked data, we may conclude that our data is
not biased by the unique characteristics of Chinese patents. Therefore,
the network effect on inventor stability disclosed by this study is also
robust against the single firm sampling.

The network connectivity contributes to both the stability and
innovation output, i.e., inventors in the largest connected component
produce more patents and have a more endurable stay in the firm
than inventors in other isolated components. However, one point that
should be noted is that this connectivity effect is different from that of

4 There are 1503 productive inventors in the largest component, while other compo-
nents have only 172 productive inventors in sum.
5 Other thresholds, e.g., 20 and 40, do not basically change the empirical results.
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Table 4
Impact of Network Structure on the Network Stability of Productive Inventors in the Largest Component.
Model Exponential Survival Model
Model 1 Model 2 Model 3 Model 4

PatentCount —0.01"*%(0.00) —0.01"**(0.00) —0.02*%(0.00) —0.01"*%(0.00)
ClusterCoefficient —0.39%(0.22) —0.33%(0.20) —0.15*(0.09) —0.48*%(0.21)
ClusterCoefficient 2 0.11***(0.00) 0.24**%(0.00) 0.10***(0.00) 0.07***(0.00)
StructuralHole —0.62"*%(0.11) —0.67"*%(0.12) —1.33"%(0.10) —0.82"%(0.21)
BetweenCentrality —6.20"%(1.41)
CloseCentrality —117.12(123.94)
DegreeCentrality —0.03%(0.01)
Firm Dummies Yes Yes Yes Yes
Constant 0.10(1.07) 0.40(1.20) 27.56***(5.44) 0.31(1.13)
Log Likelihood —1621 —1620 —1621 —1620
LR Chi2 71.63 73.79 71.64 73.50
Prob > Chi2 0.03 0.06 0.00 0.06
No. Obs. 1503 1503 1503 1503
Proportional-Hazards Assumption Test
Harrell's C Index
Harrell's C 0.63 0.62 0.65 0.63
Somers' D 0.26 0.24 0.30 0.26
Test based on Schoenfeld Residuals

df 3 4 4 4

Chi2 6.16 6.74 6.51 7.13

Prob > Chi2 0.10 0.15 0.16 0.13

Hazard Rate AFT AFT AFT AFT

Note: ***, ** * denote the parameter estimates are significant at 1%, 5% and 10%, respectively;

Dependent variable: InventLife.
The option of accelerated failure-time metric is selected in the Stata package.

the moderate role in the reciprocal effect between network stability and
innovation output, which exhibit strong positive correlations that are
not attenuated by the disconnected network.

The network effects, e.g., clustering coefficient, betweenness, close-
ness and degree centrality, are attenuated. This suggests an important
role of network connectivity in the network effect. However, the role
of structural hole is significant in both fully connected and partly
connected networks, which suggests a stronger effect of structural
hole than that of other network indicators. As all the above indicators
measure how important or how central the individual is in the network
from different perspectives, e.g., structural hole richness implies the
access to many distinct information flows and the minimization of
redundancy between individuals (Burt, 1992); betweenness centrality
is based upon the perspective that importance relates to where a vertex
is located with respect to the paths between other pairs of vertices;
closeness centrality measures the central position that a vertex be
close to many other vertices (Kolaczyk, 2009); degree centrality

measures are used to estimate the individual’ ability to directly access
to external knowledge for themselves and their direct power and influ-
ence to others in the network (Guan and Chen, 2012), we may thereby
need to pay more attention to the individuals with more structural holes
by assigning them with greater probability that they exhibit greater
effects on innovation.

We may confirm each inventor's inventing life by questionnaire.
However, it may not be realistic as there are tens of thousands of inven-
tors, some of whom may have left the firm even over twenty years ago,
which makes the employee's mobility information not retrievable. In
this study, the individual's inventing life is viewed to be ended if his/
her name does not appear in the patent. This measurement is not
precise as the inventor may either have left the firm or moved to
other positions within the firm. The latter case is not reflected by the
patent information. However, the inventors' latter position may be
less relevant with the innovation, as his/her inventing behavior is not
directly reflected by the patents. Therefore, although it is not precise,

Table 5

Impact of Network Stability on Patent Output of Productive Inventors in the Largest Component.
Model Negative Binomial Model

Model 1 Model 2 Model 3 Model 4

LengthT)fPeriod 0.01(0.01) 0.01(0.01) 0.02%(0.01) 0.01(0.01)
ClusterCoefficient 0.21**(0.10) 0.16%(0.10) 0.18%(0.09) 0.16%(0.10)
ClusterCoefficient 2 —0.11(0.10) —0.07(0.13) —0.09(0.20) —0.004(0.19)
StructuralHole 0.21%(0.12) 0.16(0.15) 0.03(0.16) 0.36*(0.19)
BetweenCentrality 5.78***(3.00)
CloseCentrality 22.78"*(7.33)
DegreeCentrality 0.02%(0.01)
Firm Dummies Yes Yes Yes Yes
Constant 4.48***(0.19) 4.29"*(0.21) —0.70(1.69) 4.60"*(0.21)
Log Likelihood —3474 —3464 —3459 —3473
LR Chi2 1388 1408 1418 1390
Prob > Chi2 0.00 0.00 0.00 0.00
No. Obs. 1503 1503 1503 1503

Note: ***, ** * denote the parameter estimates are significant at 1%, 5% and 10%, respectively;

Dependent variable: PatentCount.
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it is appropriate to measure the inventing life by indexing the first and
the last patents an identified inventor applied.

The weights are taken into account in our model, so that the compo-
nents with greater size and well organized network structure generate
greater effect. However, since we are limited by the Stata package, we
only add the weight in the Negative Binomial Model. An appropriate op-
tion is to add the weight item to both Exponential Survival Model and
Negative Binomial Model. This may make our empirical less efficient.
Therefore, we need to find or develop an additional package that takes
the weight into account in the Exponential Survival Model in our future
research.

6. Conclusions

Our understanding of the impact of network connectivity re-
mains incomplete. This research makes several theoretical and em-
pirical contributions to our understanding of the moderate role of
the network connectivity. Using the patent co-inventing data of top
9 ICT firms that filed the largest number of patents in China, this
study establishes the co-inventing network and examines the mod-
erate role of the network connectivity in the reciprocal effect be-
tween network stability and innovation output, as well as in the
network effects, e.g., clustering, structural hole richness, centrality.
The connectivity exhibits positive effect on both patent output and
network stability. We further confirm that the clustering and centrality
demonstrate significant effect in only the largest connected component,
while not significant in other isolated components. This proves the key
moderate role of network connectivity, which forms the basis for infor-
mation transmission and knowledge spillovers. However, the effect
structural holes richness demonstrate strong effects, which is not atten-
uated by network isolation.

Our study has important policy implications: As the largest com-
ponent plays a major role in the innovation production process in the
whole network, it is necessary to maximize the network connectivi-
ty. However, Fig. 2 shows a declining trend of the size of the largest
component, which should be noted by the firm managers as this
will hamper knowledge spillovers and may be harmful to innova-
tion; The positive interaction between network stability and innova-
tion output suggests that a stable network structure is beneficial.
How to refrain the employees, particularly the high-performers,
from flowing out may always be one of the main focuses of firm man-
agers; Additionally, firm managers should enhance the efficiency of
the network by reducing redundant links and communications,
which may lead to a network structure filled with more structural
holes.
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