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a b s t r a c t

This paper considered a six-phase (asymmetrical) induction motor, kept 30� phase displacement be-
tween two set of three-phase open-end stator windings configuration. The drive system consists of four
classical three-phase voltage inverters (VSIs) and all four dc sources are deliberately kept isolated.
Therefore, zero-sequence/homopolar current components cannot flow. The original and effective power
sharing algorithm is proposed in this paper with three variables (degree of freedom) based on syn-
chronous field oriented control (FOC). A standard three-level space vector pulse width modulation
(SVPWM) by nearest three vectors (NTVs) approach is adopted to regulate each couple of VSIs. The
proposed power sharing algorithm is verified by complete numerical simulation modeling (Matlab/
Simulink-PLECS software) of whole ac drive system by observing the dynamic behaviors in different
designed condition. Set of results are provided in this paper, which confirms a good agreement with
theoretical development.
Copyright © 2015, Karabuk University. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For the past 30 years the technology of multi-phase machines
had proved that they are predominant solution over their classical
three-phase ac machines counterpart [1e3]. In specific by
increased reliability, redundant structure, reduced torque ripple,
increased torque density, fault tolerability, and reduced per-phase
of inverter rating [2]. Furthermore, for any m-phase machines
(m > 3) only two currents are sufficient to control the torque/flux
independently, even if with reduced performance [2]. Multi-phase
configurations, in particular six-phase machines, are the foremost
choice for high power (low voltage/high current) applications,
where two adjacent windings are spatially shifted by 60� (sym-
metrical type) [3] or by 30� (asymmetrical or dual three-phase
type) [4e11].
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Literatures are focused on modeling/controlling of six-phase
(asymmetrical/symmetrical) machines with indirect/direct, syn-
chronous/stationary field oriented control (FOC), direct torque
control (DTC) [6e9], pulse width modulations (PWMs) techniques
[12e19], parallel/series operation of multi-phase machines with
single inverter drive [1,2,4], and fault tolerant strategies [19e27].
But kept starving for proper and effective power sharing algorithm
for six-phase ac machine driven by multi-phase ac drive (VSIs).

This paper investigates a six-phase (asymmetrical or dual three-
phase) induction motor with open-end stator windings configu-
ration, as shown by Fig. 1. Priorities in selecting such machines over
symmetrical version are described in Refs. [5,10e12]. The drive
circuit consists of four classical three-phase voltage source in-
verters (VSIs) and each inverter is connected across the open-end of
two three-phase stator windings. The resultant configuration is a
multi-phase invertermotor drive, as shown in Fig. 2. To be noted, all
the four dc sources are completely isolated and the entire circuit is
absolutely free of zero-sequence/homopolar components.

Further, an original power sharing algorithm based on syn-
chronous field oriented control (FOC) was proposed in this paper
with three variables (three degree of freedom) [25,26]. First
er B.V. This is an open access article under the CC BY-NC-ND license (http://
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Fig. 1. Six-phase asymmetrical (quasi) induction motor open-end stator windings.
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variable provides the proper currents sharing between two three-
phase open-end stator windings. Other two provides the proper
voltages sharing between each two inverters of two three-phase
open-end stator windings. Investigation are focused in particular
to dynamic behaviors of the six-phase induction motor
directequadrature (deq) axis components, subjected to balanced/
unbalanced conditions to verify the effectiveness of the theoretical
developments.

2. Six-phase orthogonal space vector transformation

Six-phase orthogonal space vector transformation in sinusoidal
rotating frame is given by [12,16e18,28,29]:

xh ¼ 1
3

h
x1 þ x2a

h þ x3a
4h þ x4a

5h þ x5a
8h þ x6a

9h
i
; (1)
Fig. 2. Configuration of a six-phase asymmetrical (quasi) open-end stator winding motor
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where h ¼ 1, 3, 5 and X1…X6 are variables of voltage or current and
a ¼ exp(jp/6). Now substituting index h in Eq. (1), leads to:8>>>>>>><
>>>>>>>:

x1 ¼ 1
3

h
x1 þ x2aþ x3a

4 þ x4a
5 þ x5a

8 þ x6a
9
i

x3 ¼ 1
3
½ðx1 þ x3 þ x5Þ þ jðx2 þ x4 þ x6Þ�

x5 ¼ 1
3

h
x1 þ x2a

5 þ x3a
8 þ x4aþ x5a

4 þ x6a
9
i
:

(2)

Inverse of Eq. (2) is written as:

8>>><
>>>:

x1 ¼ x3$1þ
�
x1 þ x*5

�
$1

x3 ¼ x3$1þ
�
x1 þ x*5

�
$a4

x5 ¼ x3$1þ
�
x1 þ x*5

�
$a8

;

8>>><
>>>:

x2 ¼ x3$jþ
�
x1 � x*5

�
$a

x4 ¼ x3$jþ
�
x1 � x*5

�
$a5

x6 ¼ x3$jþ
�
x1 � x*5

�
$a9;

(3)

where “*” and “$” denote complex conjugate and scalar product,
respectively. The space vectors x1, x3, x5 lie in the planes d1eq1,
d3eq3, d5eq5 respectively.
2.1. Equivalent two three-phase space vector transformation

For the purpose of simplification in analysis, space vector
transformations given by Eqs. (2) and (3) are split and given as
below:8>><
>>:

xð1Þ1 ¼ x1
xð1Þ2 ¼ x3
xð1Þ3 ¼ x5

;

8>><
>>:

xð2Þ1 ¼ x2
xð2Þ2 ¼ x4
xð2Þ3 ¼ x6:

(4)

The two three-phase space vectors xð1Þ, xð2Þ and zero-sequence
components xð1Þ0 , xð2Þ0 of six-phase machine would be written as:

8>><
>>:
xð1Þ ¼2

3

h
xð1Þ1 þxð1Þ2 a4þxð1Þ3 a8

i

xð1Þ0 ¼1
3

h
xð1Þ1 þxð1Þ2 þxð1Þ3

i ;

8>><
>>:
xð2Þ ¼2

3

h
xð2Þ1 þxð2Þ2 a4þxð2Þ3 a8

i

xð2Þ0 ¼1
3

h
xð2Þ1 þxð2Þ2 þxð2Þ3

i
:

(5)
driven by four customary voltage source inverters (VSIs), one fed on each open-end.
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The relationship between six-phase space vectors and two three-
phase space vectors is obtained by applying Eqs. (4) and (5) to Eq.
(1) and given by:

8>><
>>:

x1 ¼ 1
2

h
xð1Þ þ axð2Þ

i

x*5 ¼ 1
2

h
xð1Þ � axð2Þ

i ; x3 ¼ xð1Þ0 þ jxð2Þ0 : (6)

Inverse transformation of Eq. (6) given by:

(
xð1Þ ¼ x1 þ x*5
xð1Þ0 ¼ x3$1

;

8<
: xð2Þ ¼ a�1

�
x1 � x*5

�
xð2Þ0 ¼ x3$j:

(7)

By Eqs. (6) and (7), it is simplified to represent six-phase (asym-
metrical or dual three-phase) open-end stator windings in two
three-phase dimensions [5]. It should be considered that:

� The fundamental components with the harmonics of the order
k ¼ 6 $ n ± 1, (n ¼ 0, 2, 4…) are mapped in x1 (first sub-space
d1eq1).

� k ¼ 6 $ n ± 1, (n ¼ 1, 3, 5…) order harmonics are mapped in x*5
(fifth sub-space d5eq5).

� k ¼ 3 $ n, (n ¼ 0, 1, 2, 3…) order harmonics (homopolar com-
ponents or zero-sequences components) are mapped in the
third sub-space x3 (third sub-space d3eq3).

The multiple space vectors therefore, x1, x3, x
*
5 are orthogonal to

each other in space, i.e. three vectors are independent of each other,
hence first sub-space free of odd harmonics and zero-sequence
components. Therefore, the complete behavior of the six-phase
machine is described by two space vectors x1 and x*5 moving
arbitrarily in space and controlled independently [10e12].

3. Six-phase open-end induction motor drive

In Fig. 1, the sinusoidally distributed stator windings behavior of
the six-phase induction machine is described in stationary refer-
ence frame (Eqs. (5) and (6)) by the following space vectors
equations:

vS1 ¼ RSiS1 þ
d4S1
dt

; 4S1 ¼ LS1iS1 þM1iR1; (8)

0 ¼ RRiR1 � jpum4R1 þ
d4R1
dt

; 4R1 ¼ M1iS1 þ LR1iR1; (9)

vS5 ¼ RSiS5 þ
d4S5
dt

; 4S5 ¼ LS[iS5; (10)

T ¼ 3pM1iS1$jiR1; (11)

where p represents the pole pair, um the rotor speed and the sub-
scripts S, R represents the stator and rotor reference components.
The space vectors currents iS1 and iR1 are responsible for the
magnetic field in the air gap and iS5 does not contribute any air gap
field and produce only leakage flux [5e8,12].

4. Proposed synchronous reference FOC power sharing
algorithm

Fig. 3 depicts the proposed effective power sharing algorithm
actually derived from standard synchronous FOC. The total power is
shared among the four dc sources by three variables (degree of
Please cite this article in press as: S. Padmanaban, et al., Power sharing alg
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freedom) in two developed control strategies. In first one, the
variables kð1Þv , kð2Þv share the voltages between two inverters (VSIH
and VSIL) of two three-phase open-end stator windings. In second
one, the variable ki share the currents between two three-phase
open-end stator windings.

First control strategy deals with voltage sharing, the reference
output voltage of first three-phase open-end stator windings ðvð1ÞÞ
and second three-phase open-end stator windings ðvð2ÞÞ are
determined by the space vectors vS1;ref and v* given by Eq. (6). The
reference voltage vð1Þ is produced by the sum of v

ð1Þ
H and v

ð1Þ
L

reference output voltages by inverters VSIð1ÞH and VSIð1ÞL for first
three-phase open-end windings. Similarly, the reference voltage
vð2Þ is produced by the sum of vð2ÞH and v

ð2Þ
L reference output voltages

by inverters VSIð2ÞH and VSIð2ÞL for second three-phase open-end
windings, then:

vð1Þ ¼ v
ð1Þ
H þ v

ð1Þ
L ; (12)

vð2Þ ¼ v
ð2Þ
H þ v

ð2Þ
L : (13)

By introducing first and second voltage sharing variables say kð1Þv to
Eq. (12), kð2Þv to Eq. (13), then output voltage references are pre-
dicted as

8<
: v

ð1Þ
H ¼ kð1Þv vð1Þ

v
ð1Þ
L ¼

�
1� kð1Þv

�
vð1Þ

;

8<
: v

ð2Þ
H ¼ kð2Þv vð2Þ

v
ð2Þ
L ¼

�
1� kð2Þv

�
vð2Þ:

(14)

Eq. (14) allows their maximum dc bus voltage utilization by the
inverters, the total power developed by the first and second three-
phase open-end stator windings is defined as:

Pð1Þ ¼ Pð1ÞH þ Pð1ÞL ¼ 3
2
vð1Þ$i

ð1Þ
; Pð2Þ ¼ Pð2ÞH þ Pð2ÞL ¼ 3

2
vð2Þ$i

ð2Þ
;

(15)

where Pð1ÞH , Pð1ÞL and Pð2ÞH , Pð2ÞL are the individual powers of inverters

VSIð1ÞH , VSIð1ÞL and VSIð2ÞH , VSIð2ÞL .
By comparing Eqs. (14) and (15), the individual power generated

by each inverters VSIð1ÞH , VSIð1ÞL and VSIð2ÞH , VSIð2ÞL is derived as

8<
: Pð1ÞH ¼ kð1Þv Pð1Þ

Pð1ÞL ¼
�
1� kð1Þv

�
Pð1Þ

;

8<
: Pð2ÞH ¼ kð2Þv Pð2Þ

Pð2ÞL ¼
�
1� kð2Þv

�
Pð2Þ:

(16)

Therefore, the total power of two three-phase open-end stator
windings written in terms of two voltage sharing variables kð1Þv and
kð2Þv from Eqs. (15) and (16) can be summarized as [27e29]:

P¼Pð1ÞþPð2Þ¼
h
Pð1ÞH þPð1ÞL

i
þ
h
Pð2ÞH þPð2ÞL

i
¼3
2

h
vð1Þ$i

ð1Þþvð2Þ$i
ð2Þi

P¼3
2

h�
v
ð1Þ
H þv

ð1Þ
L

�
$i
ð1Þþ

�
v
ð2Þ
H þv

ð2Þ
L

�
$i
ð2Þi

P¼3
2

h�
kð1Þv v

ð1Þ
H þ

�
1�kð1Þv

�
v
ð1Þ
L

�
$i
ð1Þþ

�
kð2Þv v

ð2Þ
H þ

�
1�kð2Þv

�
v
ð2Þ
L

�
$i
ð2Þi

(17)

Both the references ðvð1ÞH and v
ð1Þ
L Þ, ðvð2ÞH and v

ð2Þ
L Þ should be within

the range of obtainable output voltages and they depend solely on
their dc bus voltages. The total reference voltages vð1Þ and vð2Þ

should satisfy if one inverter voltage saturates, the second inverter
should generate the missing quantity of voltage in the corre-
sponding two three-phase open-end stator windings.  
orithm for vector controlled six-phase AC motor with four customary
hnology, an International Journal (2015), http://dx.doi.org/10.1016/



Fig. 3. Complete effective power sharing algorithm with three realizable sharing variables in synchronous field oriented control (FOC).
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Second control strategy deals with proper current sharing be-
tween two three-phase open-end stator windings. The space vector
iS1 stator current which is determined on the basis of torque and
flux commands by Eq. (6) as:

iS1 ¼ 1
2

�
i
ð1Þ þ ai

ð2Þ�
: (18)

Introducing the third variable ki in Eq. (18), leads to:

8>><
>>:

1
2
i
ð1Þ ¼ kiiS1

1
2
ai

ð2Þ ¼ ð1� kiÞiS1:
(19)

Now, from the above expression, the first and second three-phase
open-end stator windings currents i

ð1Þ
and i

ð2Þ
are obtained as:

(
i
ð1Þ ¼ 2kiiS1
i
ð2Þ ¼ 2ð1� kiÞa�1iS1:

(20)

By introducing Eq. (20) in Eq. (7), the space vector stator current i
*
S5

which produces the leakage fluxes is determined as:

i
*
S5 ¼ 1

2

�
i
ð1Þ � ai

ð2Þ� ¼ ð2ki � 1ÞiS1: (21)

Also, Eq. (21) can be rewritten in equivalent deq components as

�
i5d ¼ ð2ki � 1Þi1d
i5q ¼ �ð2ki � 1Þi1q: (22)

The total motor power can be determined as [27e29]:

P ¼ Pð1Þ þ Pð2Þ ¼ 3vS1$iS1 þ 3vS5$iS5: (23)

On the basis of Eq. (7), individual space vectors of two three-
phase open-end stator winding currents and voltages are calcu-
lated as:

8<
: i

ð1Þ ¼ iS1 þ i
*
S5

i
ð2Þ ¼ a�1

�
iS1 � i

*
S5

� ;

(
vð1Þ ¼ vS1 þ v*S5
vð2Þ ¼ a�1

�
vS1 � v*S5

�
:

(24)

By substituting Eq. (24) in Eq. (15) by considering Eq. (21), leads to
predict individual power delivered by the two three-phase open-
end stator windings as:
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Pð1Þ ¼ 3kivS1$iS1 þ 3kiv
*
S5$iS1

Pð2Þ ¼ 3ð1� kiÞvS1$iS1 � 3ð1� kiÞv*S5$iS1:
(25)
In the characteristic equation of motor given by Eqs. (8) and (10),
the space vector v*S5 (generating the leakage flux in the air-gap only)
is negligible in comparison to vS1 (generating the magnetic flux in
the air-gap). Then Eq. (25) can be approximates as:

Pð1ÞykiP; Pð2Þyð1� kiÞP: (26)

It has been proved that the third variable ki introduced in the
power equations is good approximation for current sharing be-
tween two open-end stator windings.

Finally from Eqs. (16) and (26), the expression for individual
power of each inverters and the total power of themotor with three
power sharing variables is given by:

Pð1ÞH yki$k
ð1Þ
v Pð1Þ; Pð2ÞH yki$k

ð2Þ
v Pð2Þ

Pð1ÞL yki$
�
1� kð1Þv

�
Pð1Þ; Pð2ÞL yki$

�
1� kð2Þv

�
Pð2Þ

Pyki$
h
kð1Þv Pð1ÞH þ

�
1� kð1Þv

�
Pð1ÞL

i
þ ð1� kiÞ

$
h
kð2Þv Pð2ÞH þ

�
1� kð2Þv

�
Pð2ÞL

i
:

(27)

Fig. 3 elaborates the complete power sharing algorithm based
on synchronous FOC. The d1eq1 components of the stator currents
which produce the flux and torque in the machine, where d-axis
aligned with the rotor flux, displaced by angle w (rotor flux angle).
The reference values in synchronous rotating frame of flux i1d,ref
and torque i1q,ref producing currents are derived from the flux and
torque commands. Then, d1eq1 components of the reference cur-
rent are directly determined on the basis of the corresponding
d1eq1 components current ratio. The stator voltage space vectors
whose reference values in stationary reference frames vS1;ref and
vS5;ref are determined from PeI (proportionaleintegral) controller
output rotated in rotor flux angle.

Further, standard three-level space vector pulse width
modulation (SVPWM) is adopted to regulate each couple of
inverter (VSIH and VSIL) with two voltage sharing variable to
regulate the output voltages as shown in the same Fig. 3
[13,16e19]. It is defined vS5;ref ¼ 0, the balanced power sharing
by the two three-phase open-end stator windings, i.e. quadru-
pling the power capability of a single VSI with given voltage and
current rating.  
orithm for vector controlled six-phase AC motor with four customary
hnology, an International Journal (2015), http://dx.doi.org/10.1016/



Fig. 4. Behavior of six-phase asymmetrical (quasi) open-end stator windings induction
motor in balanced condition. Characteristic waveform in sequential order: a. Torque
response with respect to step changes (blue-torque, red-step command). [Y-axis scale:
10 N m/div]. b. Torque producing current (first-space) component i1q. [Y-axis scale:
10 A/div]. c. Flux producing current (first-space) component i1d. [Y-axis scale: 10 A/div].
d. Leakage current (fifth-space) components i5q, i5d. [Y-axis scale: 10 A/div]. e. Three-
phase current of first open-end stator windings. [Y-axis scale: 10 A/div]. f. Three-
phase current of second open-end stator windings. [Y-axis scale: 10 A/div]. g. DC
link current of inverter VSIð1ÞH . [Y-axis scale: 10 A/div]. h. DC link current of inverter
VSIð1ÞL . [Y-axis scale: 10 A/div]. i. DC link current of inverter VSIð2ÞH . [Y-axis scale: 10 A/
div]. j. DC link current of inverter VSIð2ÞL . [Y-axis scale: 10 A/div].
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5. Verification with simulation tests

To verify the proposed power sharing FOC algorithm, the com-
plete model of ac motor is implemented in numerical simulation
software (Matlab/Simulink-PLECS) [30] with the parameters taken
from Table 1.

First simulation test deals with balanced condition, obtained by
setting the three power sharing variable as kð1Þv ¼ kð2Þv ¼ 1=2, ki ¼ 1/
2, electro-magnetic torque T ¼ 53.4 N m (rated) and rotor speed
fixed at um ¼ 1440 rpm (rated). Fig. 4(a) shows the step reference
torque command (red color) set to increasing/decreasing between
(50e100-e50)% of rated value. It is observed that actual torque
(blue color) follows the step variations exactly in every 30 ms.

As expected the synchronous reference frame (first space) cur-
rents iq1 (blue color) and id1 (violet color), follow the reference
torque command and the reference rotor flux command, respec-
tively, as shown by Fig. 4(b) and (c). As determined by Eq. (22)
(ki ¼ 1/2), the synchronous reference frame (fifth space) current
iq5 and id5 (leakage components) are null as shown by Fig. 4(d),
which confirms the balanced operation of the ac motor drive.

First (purple color) and second (turquoise color) three-phase
open-end stator windings current have a sinusoidal waveform, as
shown in Fig. 4(e) and (f); they change according to the torque
demand in every 30 ms. It is confirmed that both the two three-
phase (six-phase) stator windings currents have the same ampli-
tude in every 30 ms according to torque demand, and the expected
30� phase displacement between them is also noticeable. Hence,
the balanced currents operation of ac motor drive in the entire
testing period is proved.

Fig. 4(g)e(j) shows the DC link currents of the four inverters
(low-pass filtered by time constant t ¼ 2 ms) VSIð1ÞH (green color),
VSIð1ÞL (red color), VSIð2ÞH (gray color), VSIð2ÞL (orange color). DC link
currents of four VSIs vary equally in amplitude during every 30 ms,
following the behavior given by Eqs. (16), (26) and (27), and
ensuring balanced power operation among the VSIs.

The trajectories of stationary reference frame currents are
shown in Fig. 5 for an additional verification. Where, Fig. 5(a)
confirms the sinusoidal nature of first phase current components
isd1 and isq1, which actually produces the electromagnetic field in
the air-gap and its amplitude depends on torque demands. Fig. 5(b)
shows that the fifth space current components isd5 and isq5 are null,
confirming the balanced operation of the ac motor drive according
to Eq. (21) (ki ¼ 1/2). Fig. 5(c) shows that the third space current
components isd3 and isq3 are practically zero, confirming that the ac
motor drive system is absolutely free of zero-sequence
components.

Second simulation test deals with the verification of first control
strategy, where the stator voltages are effective shared between
each couple of inverters (VSIH and VSIL) of two three-phase open-
end stator windings. The three power sharing variables are set to
kð1Þv ¼ 1=2e1=3, kð2Þv ¼ 1=2e1=3, and ki ¼ 1/2, electromagnetic
torque is T ¼ 53.4 N m (rated) and rotor speed is set to
um ¼ 1100 rpm. To avoid inverters saturation (speed directly
Table 1
Parameters taken for simulation software examination of the ac
motor.

Prated ¼ 8 kW RS ¼ 0.51 U
IS,rated ¼ 16 Arms RR ¼ 0.42 U
VS,rated ¼ 125 Vrms LS1 ¼ 58.2 mH
uS,rated ¼ 2p50 rad/s LR ¼ 58.2 mH
P ¼ 2 (pairs) M1 ¼ 56 mH

DC bus voltage ¼ 155 V
Switching frequency ¼ 5 kHz
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proportional to voltage), the rotor speed um is reduced from
1440 rpm (rated) to 1100 rpm. From Fig. 6(a) it is observed that
actual torque (blue color) exactly follows the set reference torque
command (red color). It also clearly indicates that torque is unaf-
fected by the transient introduced in the two power sharing vari-
able ðkð1Þv ; kð2Þv Þ.

As expected, the synchronous reference frame (first space)
currents iq1 (blue color) and id1 (violet color), follow the reference
torque command and the reference rotor flux command, respec-
tively, as shown by Fig. 6(b) and (c). Also in this test, the synchro-
nous reference frame (fifth space) current iq5 and id5 (leakage
components) are null as shown by Fig. 6(d), as determined by Eq.
(22) (ki ¼ 1/2).

First (purple color) and second (turquoise color) three-phase
open-end stator windings current (purple color) have a sinusoidal
waveform as shown by Fig. 6(e) and (f). Six-phase currents main-
tain equal amplitude in the whole period confirming balanced
current operation according to constant torque; a correct 30� phase
displacement between them is observed. It is noted that currents
are unaffected by the transient created by the two voltage sharing
variables when subjected to a change in their values.

Fig. 6(g)e(j) shows that the DC link currents of four VSIs vary its
values according to Eq. (16). Therefore, it is confirmed that sum of
power delivered by inverters ðVSIð1ÞH and VSIð1ÞL Þ is equal to P(1). In
detail, when kð1Þv ¼ 1=2e1=3 changes its value at 30 ms, VSIð1ÞH
provides only 1/3 of P(1) whereas inverter VSIð1ÞL provides 2/3 of
P(1). Their sum correctly maintains the constant power delivered
to the first three-phase open-end stator winding. Similarly, the
sum of power delivered by inverters ðVSIð2ÞH and VSIð2ÞL Þ is equal to
P(2). In particular when kð2Þv ¼ 1=2e2=3 changes its value at 60 ms,
VSIð2ÞH provides only 2/3 of P(2) whereas inverter VSIð2ÞL provides 1/3
of P(2). Their sum correctly maintains the constant power deliv-
ered to the second three-phase open-end stator winding. Hence
the dc currents of VSIs confirm the effectiveness of first control
strategy, sharing the voltages between inverters (VSIH and VSIL) of 
orithm for vector controlled six-phase AC motor with four customary
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Fig. 5. Response trajectories in stationary reference frame current components. a. is1 vs is1, b. is5 vs is5, c. is3 vs is3. [XeY-axis scale: þ/�10 A/div].
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two three-phase open-end stator windings (according to Eqs. (16)
and (27)).

The trajectories of stationary reference frame currents are
shown in Fig. 7. Fig. 7(a) shows that the first phase current com-
ponents isd1 and isq1, are sinusoidal with steady-state constant
amplitude, depending on the given torque demand. This again
confirms that both torque and motor currents are unaffected from
the transient created by the two voltage sharing variables. Fig. 7(b)
shows that the fifth space current components isd5 and isq5 are zero,
according to Eq. (21) (ki ¼ 1/2). Fig. 7(c) shows that the third space
current components isd3 and isq3 are practically zero, confirming
that the ac motor drive system is absolutely free of zero-sequence
components.

Third simulation test deals with the verification of second
control strategy, where the currents are effectively shared between
two three-phase open-end stator windings. The three power
Fig. 6. Behavior of six-phase asymmetrical (quasi) open-end stator windings induction
motor in first prediction when unbalanced voltage sharing between each couple of
inverters (VSIH and VSIL) condition. Characteristic waveform in sequential order: a.
Torque response with respect to step changes (blue-torque, red-step command). [Y-
axis scale: 10 N m/div]. b. Torque producing current (first-space) component i1q. [Y-axis
scale: 10 A/div]. c. Flux producing current (first-space) component i1d. [Y-axis scale:
10 A/div]. d. Leakage current (fifth-space) components i5q, i5d. [Y-axis scale: 10 A/div]. e.
Three-phase current of first open-end stator windings. [Y-axis scale: 10 A/div]. f. Three-
phase current of second open-end stator windings. [Y-axis scale: 10 A/div]. g. DC link
current of inverter VSIð1ÞH . [Y-axis scale: 10 A/div]. h. DC link current of inverter VSIð1ÞL .
[Y-axis scale: 10 A/div]. i. DC link current of inverter VSIð2ÞH . [Y-axis scale: 10 A/div]. j. DC
link current of inverter VSIð2ÞL . [Y-axis scale: 10 A/div].
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sharing variables are set to kð1Þv ¼ kð2Þv ¼ 1=2, ki ¼ 1/2e1/3e2/3,
electromagnetic torque is T ¼ 38 N m, and rotor speed is set to
um ¼ 1430 rpm (rated). To avoid over-current delivery from in-
verters w.r.t. rated power (torque directly proportional to current),
the torque reference is reduced from 53.4 N m (rated) to 38 N m.
From Fig. 8(a), it is observed that actual torque (blue color) exactly
follows the set reference torque command (red color). It also in-
dicates clearly that torque is unaffected by the transient created by
current sharing variable ki when subjected to a change in its value.

As expected the synchronous reference frame (first space) cur-
rents iq1 (blue color) and id1 (violet color), follows the reference
torque command and the reference rotor flux command as shown
by Fig. 8(b) and (c). Now, the synchronous reference frame (fifth
space) currents iq5 and id5 are null up to first 30 ms, proving the
balanced operation, as shown in Fig. 8(d). Furthermore, the cur-
rents are generated according to Eq. (21) (ki ¼ 1/2e1/3e2/3) at
30 ms and 60 ms, ensuring the proper currents sharing between
two three-phase stator windings, as shown in the same Fig. 8(d).

First (purple color) and second (turquoise color) three-phase
open-end stator windings current (purple color) have a sinusoidal
waveform as shown by Fig. 8(e) and (f). It is observed that until
30 ms both three-phase stator winding currents have the same
amplitude, confirming the balanced operation. Then six-phase
currents share 1/3 and 2/3 of the total current (power) demand at
30ms and 60ms for the reference torque requirement, according to
Eq. (20). Furthermore, it is noticed that the correct 30� phase
displacement is maintained between the two three-phase stator
currents, and the torque is unaffected during the transients of the
current sharing variable.

Fig. 8(g)e(j) shows that DC link current of the four VSIs changes
its value according to Eq. (26), confirming the current sharing be-
tween the two three-phase stator windings. In particular, DC cur-
rents have same amplitude until 30 ms; once the current sharing
variable changes its value ki ¼ 1/2e1/3e2/3 at 30 ms and 60 ms, it
observed that DC currents drops in inverters VSIð1ÞH and VSIð1ÞL are
compensated by increasing DC currents in inverters VSIð2ÞH and
VSIð2ÞL , and vice-versa. It is concluded that the total current remains
always constant as per torque demand.

The trajectories of stationary reference frame currents are
shown in Fig. 9. In particular, Fig. 9(a) shows that the first phase
current components isd1 and isq1 have a sinusoidal waveform, with
constant amplitude at steady-state, depending on the torque de-
mand. This again confirms that the torque is unaffected by the
transient created by the current sharing change. Fig. 9(b) shows the
fifth space current components isd5 and isq5, generated according to
Eq. (22) (ki ¼ 1/2e1/3e2/3). This further confirms that the fifth
space is responsible for the current sharing between two stator 
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Fig. 7. Response trajectories in stationary reference frame current components. a. is1 vs is1, b. is5 vs is5, c. is3 vs is3. [XeY-axis scale: þ/�10 A/div].

Fig. 8. Behavior of six-phase asymmetrical (quasi) open-end stator windings induction
motor in second prediction when unbalanced current sharing between two open-end
stator windings. Characteristic waveform in sequential order: a. Torque response with
respect to step changes (blue-torque, red-step command). [Y-axis scale: 10 N m/div]. b.
Torque producing current (first-space) component i1q. [Y-axis scale: 10 A/div]. c. Flux
producing current (first-space) component i1d. [Y-axis scale: 10 A/div]. d. Leakage
current (fifth-space) components i5q, i5d. [Y-axis scale: 10 A/div]. e. Three-phase current
of first open-end stator windings. [Y-axis scale: 10 A/div]. f. Three-phase current of
second open-end stator windings. [Y-axis scale: 10 A/div]. g. DC link current of inverter
VSIð1ÞH . [Y-axis scale: 10 A/div]. h. DC link current of inverter VSIð1ÞL . [Y-axis scale: 10 A/
div]. i. DC link current of inverter VSIð2ÞH . [Y-axis scale: 10 A/div]. j. DC link current of
inverter VSIð2ÞL . [Y-axis scale: 10 A/div].

Fig. 9. Response trajectories in stationary reference frame current compon
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open-end windings. Fig. 9(c) shows that the third space current
components isd3 and isq3 is practically zero, confirming that the ac
drive system is absolutely free of zero-sequence components.

Finally, it is confirmed from all this numerical simulation tests
that the proposed power sharing algorithm (FOC) is effective,
maintaining the constant power delivered to motor irrespective of
sharing voltage and/or currents among the two three-phase stator
open-end windings.
6. Conclusion

This paper presented an original and effective power sharing
algorithm based on field oriented control (FOC) in synchronous
reference frame for six-phase (asymmetrical) open-end stator
windings motor. Power driver circuit consists of four customary
three-phase voltage source inverters (VSIs), each one connected
across the open-ends of the stator windings to framed multi-phase
inverter drive configuration. The standard three-level space vector
modulation is adopted for each VSI to behave as three-level output
voltage generator. The proposed power sharing algorithm consists
of three variables corresponding to three degrees of freedom in
control. Two variables can share the two voltages between two
inverters of each two three-phase open-end stator windings. The
third variable can share the current between two open-end stator
windings. Detailed investigation are carried out by the imple-
mentation of the complete ac drive model with power sharing
(FOC) algorithm in numerical simulation software, and all the
proposed balanced/unbalanced theoretical developments success-
fully are verified.
ents. a. is1 vs is1, b. is5 vs is5, c. is3 vs is3. [XeY-axis scale: þ/�10 A/div].
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