
Towards Secure and Dependable Software-Defined
Networks

Diego Kreutz
kreutz@lasige.di.fc.ul.pt

Fernando M. V. Ramos
fvramos@fc.ul.pt

Paulo Verissimo
pjv@di.fc.ul.pt

LaSIGE/FCUL, University of Lisbon, Portugal

ABSTRACT
Software-defined networking empowers network operators
with more flexibility to program their networks. With SDN,
network management moves from codifying functionality in
terms of low-level device configurations to building software
that facilitates network management and debugging. By
separating the complexity of state distribution from network
specification, SDN provides new ways to solve long-standing
problems in networking — routing, for instance — while si-
multaneously allowing the use of security and dependability
techniques, such as access control or multi-path.
However, the security and dependability of the SDN itself

is still an open issue. In this position paper we argue for
the need to build secure and dependable SDNs by design.
As a first step in this direction we describe several threat
vectors that may enable the exploit of SDN vulnerabilities.
We then sketch the design of a secure and dependable SDN
control platform as a materialization of the concept here
advocated. We hope that this paper will trigger discussions
in the SDN community around these issues and serve as a
catalyser to join efforts from the networking and security &
dependability communities in the ultimate goal of building
resilient control planes.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network Operating Systems

Keywords
Security, Dependability, SDN, Threat Vectors, Controllers

1. INTRODUCTION AND MOTIVATION
Operating and maintaining a computer network is an ar-

duous task. To express the required high-level network poli-
cies, network operators need to configure each individual
network device separately — from a heterogeneous collec-
tion of switches, routers, middleboxes, etc. — using vendor-
specific and low-level commands. In addition to configura-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

tion complexity, networks are dynamic, and operators have
little or no mechanisms to automatically respond to network
events. It is therefore difficult to enforce the required poli-
cies in such a continually changing environment.

With the separation of the control plane from the data
plane that lays the ground to the Software Defined Net-
working paradigm, network switches 1 become simple for-
warding devices and the control logic is implemented in a
logically centralized controller — though in principle physi-
cally distributed [1]. In SDN, the controller is the entity that
dictates the network behavior. The logical centralization of
the control logic in a software module that runs in a stan-
dard server — the network operating system [2] — offers
several benefits. First, it is simpler and less error-prone to
modify network policies through software, than via low-level
device configurations. Second, a control program can auto-
matically react to spurious changes of the network state and
thus maintain the high-level policies in place. Third, the
centralization of the control logic in a controller with global
knowledge of the network state simplifies the development of
more sophisticated network functions. This ability to pro-
gram the network in order to control the underlying data
plane is therefore the crucial value proposition of SDN.

SDN provides new ways to solve age-old problems in net-
working (e.g., routing [3]) while simultaneously enabling the
introduction of sophisticated network policies, such as secu-
rity and dependability. An example is Ethane [4], an SDN
architecture that allows managers to enforce fine-grained ac-
cess control policies. However, the security and dependabil-
ity of the SDN itself has been a neglected topic up to now.
Only very recently has the community started to address
these issues. Porras et al. [5] provided a security enforce-
ment kernel in SDN controllers to allow security based pri-
oritization. By extending the original idea, the same authors
proposed FRESCO [6], a framework to ease the development
and deployment of security applications in SDN. Since many
commercial switches now support the OpenFlow 2 proto-
col [7], this technology has been deployed in a number of
production networks. Security and dependability issues are
therefore becoming a serious concern for the industry [8, 9].

Curiously, the main causes of concern lie in SDN’s main
benefits: network programmability and control logic central-
ization. These capabilities actually introduce new fault and

1In this paper, we use the term switch(es) as an example of
an SDN data plane device.
2The open interface between networking devices and the
controller that is currently the enabler for the most com-
mon materialization of an SDN.

55

attack planes, which open the doors for new threats that
did not exist before or were harder to exploit. Traditional
networks have “natural protections” against what would be
common vulnerabilities in regular IT systems. Namely, the
closed (proprietary) nature of network devices, their fairly
static design, the heterogeneity of software, and the de-
centralized nature of the control plane represent defenses
against common threats. For example, an attack exploiting
a peculiar vulnerability of a specific set of devices from a sin-
gle vendor would potentially harm only part of the network.
This diversity is comparatively smaller in SDNs. A com-
mon standard (e.g., OpenFlow) among vendors and clients
can also increase the risk, by the possible introduction of
common faults in compliant implementations of the pro-
tocols and the control plane software. An attack similar
to Stuxnet [10], a well-designed worm targeting very spe-
cific networked infrastructures, said to have impaired the
operation of hundreds of those devices by modifying their
control programs and configurations automatically, could
have dramatic consequences in a highly configurable and
programmable network. It is more than likely that such
targeted attacks, also called advanced persistent threats [11],
will be developed against SDNs, if the opportunity of success
presents itself.
In summary, as we point out in this paper, SDNs bring a

very fascinating dilemma: an extremely promising evolution
of networking architectures, versus a dangerous increase in
the threat surface. We should preserve the benefits of the
first, by counteracting the dangers of the second. Therefore
we argue, in this position paper, for the need to consider
security and dependability as first class properties of future
SDNs, which should be built into the design from the first
hour and not bolted on.
We continue by describing several threat vectors that may

enable the exploit of SDN vulnerabilities in Section 2. In
Section 3 we investigate the open questions and sketch the
design of a secure and dependable SDN control platform as
an example materialization of the concept here advocated.
In section 4 we conclude the paper.

2. THREAT VECTORS
Software-defined networks have two properties which can

be seen as attractive honeypots for malicious users and a
source of headaches for less prepared network operators.
First, the ability to control the network by means of software
(always subject to bugs and a score of other vulnerabilities).
Second, the centralization of the “network intelligence” in
the controller(s). Anyone with access to the servers that
host the control software can potentially control the entire
network.
In this section we describe the seven main potential threat

vectors we identified in SDNs (Figure 1). Our goal is not to
use these potential problems to claim that software-defined
networks are inherently less secure than current networks.
What we argue is that SDNs pose threats of a different na-
ture that need therefore to be dealt with differently. On the
contrary, if the SDN is properly designed and deployed, we
believe this new network environment will definitely present
a quantum leap in network architecting, not only in func-
tionality but also in resilience.
Threat vector 1: forged or faked traffic flows, which

can be used to attack switches and controllers. This threat
can be triggered by faulty (non-malicious) devices or by a

Figure 1: SDN main threat vectors map

malicious user. An attacker can use network elements (e.g.,
switches, servers, or personal computers) to launch a DoS
attack against OpenFlow switches (e.g., targeting to exhaust
TCAMs) and controller resources. A simple authentication
mechanism could mitigate the problem, but if an attacker
assumes the control of an application server that stores the
details of many users, it can easily use the same authenti-
cated ports and source MAC addresses to inject authorized,
but forged, flows into the network.

Possible solutions: The use of intrusion detection systems
with support for runtime root-cause analysis could help iden-
tify abnormal flows. This could be coupled with mechanisms
for dynamic control of switch behavior (e.g., rate bounds for
control plane requests).

Threat vector 2: attacks on vulnerabilities in swit-
ches, which can easily wreak havoc with the network. One
single switch could be used to drop or slow down packets in
the network, clone or deviate network traffic (e.g., for data
theft purposes), or even inject traffic or forged requests to
overload the controller or neighboring switches.

Possible solutions: The use of mechanisms of software at-
testation, such as autonomic trust management solutions
for software components [12], is a possible mitigating fac-
tor. Mechanisms to monitor and detect abnormal behavior
of network devices can also be useful to defeat this kind of
threats.

Threat vector 3: attacks on control plane commu-
nications, which can be used to generate DoS attacks or
for data theft. As is well-known in the security community,
using TLS/SSL does not per se guarantee secure commu-
nication, and that compromises the controller–device link.
Various papers report the weaknesses of TLS/SSL commu-
nications and its major anchor of trust, the PKI infrastruc-
ture [13]. The security of those communications is as strong
as its weakest link, which could be a self-signed certificate,
a compromised Certificate Authority, or vulnerable applica-
tions and libraries. For instance, there are many man-in-
the-middle vulnerable implementations of SSL being used
in world-wide critical systems [14]. Moreover, the TLS/SSL
model is not enough to establish and assure trust between
controllers and switches. Once an attacker gains access to
the control plane, it may be capable of aggregating enough
power force (in terms of the number of switches under its
control) to launch DDoS attacks. This lack of trust guar-
antees could even enable the creation of a virtual black

56

hole network (e.g., by using OpenFlow-based slicing tech-
niques [15]) allowing data leakage while the normal produc-
tion traffic flows.
Possible solutions: The use of oligarchic trust models with

multiple trust-anchor certification authorities (e.g., one per
sub-domain or per controller instance) is a possibility. An-
other is securing communication with threshold cryptogra-
phy across controller replicas [16] (where the switch will need
at least n shares to get a valid controller message). Addi-
tionally, the use of dynamic, automated and assured device
association mechanisms may be considered, in order to guar-
antee trust between the control plane and data plane devices.
Threat vector 4: attacks on and vulnerabilities in

controllers, which are probably the most severe threats to
SDNs. A faulty or malicious controller could compromise
an entire network. The use of a common intrusion detection
system may not be enough, as it may be hard to find the ex-
act combination of events that trigger a particular behavior
and, more importantly, to label it as malicious. Similarly, a
malicious application can potentially do anything it pleases
in the network, since controllers only provide abstractions
that translate into issuing configuration commands to the
underlying infrastructure.
Possible solutions: Several techniques can be used, such as

replication (to detect, remove or mask abnormal behavior),
employing diversity (of controllers, protocols, programming
languages, software images, etc.), and recovery (periodically
refreshing the system to a clean and reliable state). It is
also important to secure all the sensitive elements inside the
controller (e.g., crypto keys/secrets). Furthermore, security
policies enforcing correct behavior might be mapped onto
those techniques, restricting which interfaces an application
can use and what kind of rules it can generate to program the
network (along the lines of security-based prioritization [5]).
Threat vector 5: lack of mechanisms to ensure

trust between the controller and management appli-
cations, whereby similarly to threat number 3, controllers
and applications lack the ability to establish trusted relation-
ships. The main difference from the referred threat would
lie in the way the certification is made. The techniques used
to certify network devices are different from those used for
applications.
Possible solutions: Mechanisms for autonomic trust man-

agement could be used to guarantee that the application is
trusted during its lifetime.
Threat vector 6: attacks on and vulnerabilities in

administrative stations which, as it is also common in
traditional networks, are used in SDNs to access the network
controller. These machines are already an exploitable tar-
get in current networks, the difference being that the threat
surface as seen from a single compromised machine increases
dramatically in SDNs. It becomes easy to reprogram the
network from a single location.
Possible solutions: The use of protocols requiring double

credential verification (e.g., requiring the credentials of two
different users to access a control server). Also, the use of
assured recovery mechanisms to guarantee a reliable state
after reboot.
Threat vector 7: lack of trusted resources for foren-

sics and remediation, which would allow to understand
the cause of a detected problem and proceed to a fast and
secure mode recovery. In order to investigate and establish
facts about an incident, we need reliable information from

all components and domains of the network. Furthermore,
this data will only be useful if its trustworthiness (integrity,
authenticity, etc.) can be assured. Similarly, remediation
requires safe and reliable system snapshots to guarantee a
fast and correct recovery of network elements to a known
working state.

Possible solutions: Logging and tracing are the common
mechanisms in use, and are needed both in the data and
control planes. However, in order to be effective, they should
be indelible (a log that is guaranteed to be immutable and
secure). Furthermore, logs should be stored in remote and
secure environments.

Table 1: SDN specific vs non-specific threats
Threats Specific

to SDN?
Consequences in SDN

Vector 1 no can be a door for DoS attacks
Vector 2 no but now the impact is potentially

augmented
Vector 3 yes communication with logically

centralized controllers can be
explored

Vector 4 yes controlling the controller may
compromise the entire network

Vector 5 yes malicious applications can now be
easily developed and deployed on
controllers

Vector 6 no but now the impact is potentially
augmented

Vector 7 no it is still critical to assure fast re-
covery and diagnosis when faults
happen

Table 1 summarizes the seven threat vectors and includes
information about its specificity to SDN. As can be observed,
threats number 3, 4, and 5, are not present in traditional
networks. They are specific to SDNs as they arise from the
separation of the control and data planes and the conse-
quent introduction of a new entity in these networks — the
logically centralized controller. On the other hand, threat
vectors 1, 2, 6, and 7 were already present in traditional
networks. However, the impact of these threats may be
potentially augmented — or at least it may be expressed
differently — and as a consequence it may need to be dealt
with dissimilarly.

These seven threats we identified show that the attack sur-
face for SDNs is augmented, when compared to traditional
networks, and that different mitigation techniques need to
be put in place. We believe this offers strong arguments for
the need to consider security and dependability since the
first steps of the design phase. With that motivation, in the
next section we sketch the design of a secure and depend-
able control platform that tries to address several of these
threats.

3. SECURITY & DEPENDABILITY IN SDN
In this section we present some background on security

and dependability and discuss mechanisms and techniques
to be considered on the design of a secure and dependable
control platform.

57

3.1 Background
To the best of our knowledge, none of the SDN controllers

proposed thus far address security and dependability be-
yond using simple authenticated communication channels
and control data replication among controller instances. For
example, no mechanisms are used to assure trusted switch-
controller association (to avoid malicious devices in the net-
work) or to detect, correct or mask faults of system com-
ponents. Moreover, no techniques are used to assure data
integrity and confidentiality in or between controllers.
In a security and dependability perspective, one of the key

ingredients to guarantee a highly robust system is fault and
intrusion tolerance. The two main fault models are crash
and Byzantine (a.k.a., arbitrary faults). Crash fault toler-
ant services support only benign failures such as a crashed
process, operating system or machine, being a narrow sub-
set of the arbitrary model. Byzantine fault tolerant (BFT)
systems are capable of tolerating any abnormal behavior,
i.e., intentional or non-intentional faults, while the service
keeps its correct operation. Faults (e.g., bugs, misconfigu-
rations, attacks) and errors can be masked automatically as
they happen, by using state machine replication [17]. Fur-
thermore, in order to ensure the perpetual and unattended
operation of the system, errors can be removed with self-
healing techniques [18], so that there is never an excessive
number of compromised devices. Both automatic recovery
and perpetual and unattended operation seem to be relevant
objectives in the context of SDNs.
The literature on Byzantine fault tolerance is broad, rang-

ing from large-scale systems [19, 20] to resource-efficient so-
lutions [19, 21, 22]. Nevertheless, BFT alone is not enough
to guarantee a highly available dependable system, needing
self-healing mechanisms as a complement. Techniques such
as proactive-reactive recovery [18], for example, can be used
to assure the system liveness. These techniques rely on the
idea of rejuvenating compromised components (be it by ac-
cidental or malicious faults).
Intrusion-tolerant architectures [23] are a step in the direc-

tion of this automatic security paradigm. Intrusion-tolerant
systems remain working correctly and are capable of assur-
ing properties such as integrity, confidentiality and availabil-
ity, despite the presence of faulty or compromised compo-
nents due to successful attacks.
A secure and dependable control plane helps improve the

overall network resilience [24], which is our final goal. A
resilient system is one that self-adapts to the dynamics of
environment conditions, e.g., one that performs self-healing
in the presence of persistent threats and where protection
parameters, such as number of replicas, length of keys, etc.,
can automatically increase in case of a severe attack.

3.2 Secure and Dependable Control Platform
In this section we present the general design of the secure

and dependable SDN control platform we propose. Figure
2 illustrates a simplified view of the architecture. In the
remainder of this section we briefly introduce and discuss
the several mechanisms which we consider using to address
the threat vectors identified in SDNs.
Replication. One of the most important techniques to

improve the dependability of the system is replication. As
can be seen in figure 2, our controller is replicated, with three
instances in the example. Applications should be replicated
as well. Besides replicated instances of the controller, in the

figure we can observe application B also replicated in all con-
troller instances. This mixed approach ensures tolerance of
both hardware and software faults, accidental or malicious.
Replication makes it possible to mask failures and to isolate
malicious or faulty applications and/or controllers. More-
over, in case of a network partition, application B, with the
proper consistency algorithms, will still be able to program
all network switches, contrary to application A.

Figure 2: Secure & Dependable SDN

Diversity. Another relevant technique to improve the ro-
bustness of secure and dependable systems is diversity [25,
26]. Replication with diverse controllers is a good starting
case. The basic principle behind this mechanism is to avoid
common-mode faults (e.g., software bugs or vulnerabilities).
For example, it is known that off-the-shelf operating sys-
tems, from different families, have few intersecting vulner-
abilities [26], which means that OS diversity constrains the
overall effect of attacks on common vulnerabilities. In SDNs
the same management application could run on different
controllers. This can be simplified by defining a common
abstraction for applications (a northbound API).

Self-healing mechanisms. Under persistent adversary
circumstances, proactive and reactive recovery can bring the
system back to a healthy state, replacing compromised com-
ponents, and keep it working virtually forever. When re-
placing components, it is important that the replacement
be done with new and diverse versions of the components,
whenever possible. In other words, we should explore di-
versity in the recovery process, strengthening the defense
against attacks targeting specific vulnerabilities in a system.

Dynamic device association. If a switch is associated
with a single controller, its control plane does not tolerate
faults. Once the controller fails, the control operation of
the switch fails and the switch will need to associate with
another controller. For this reason, a switch should be able
to dynamically associate with several controllers in a secure
way (e.g., by using threshold cryptography to detect ma-
licious controllers and authentication, which would hinder
man-in-the-middle attacks, for instance). A switch associ-
ated with different controllers would be able to automati-
cally tolerate faults (crash or Byzantine, depending on the
configuration). Other advantages include increasing control
plane throughput (several controllers could be used for load
balancing) and reducing control delay [27] by choosing the
quickest-responding controller.

Increasing the data plane programmability (near or in the
network switches) would be helpful in this respect. Two

58

approaches could be used for this purpose. One option would
be to use general purpose CPUs inside the switch to replace
some of the traditional functionality of custom ASIC, as
in [28]. Another could be to have a proxy element acting on
behalf of the switch. This element could be easily deployed
in a small black box attached to the switch, with a general
purpose micro-computer.
Trust between devices and controllers. Establishing

trust between devices and controllers is an important re-
quirement for overall control plane trustworthiness. Network
devices should be allowed to associate with controllers dy-
namically but without incurring in less reliable relationships.
A simple approach would be to have authenticated white
lists of known trusted devices, kept at controllers. However,
this lacks the flexibility desired in an SDN. Another option
is therefore to trust all switches until its trustworthiness is
questioned. Malicious or abnormal behavior could be re-
ported by other switches or controllers, based on anomaly
or failure detection algorithms. Once the trustworthiness of
a switch or a controller would go below an accepted thresh-
old, the switch would be automatically quarantined by all
devices and controllers.
Trust between applications and controllers soft-

ware. As software components present changing behav-
ior due to aging, exhaustion, bugs, or attacks, a dynamic
trust model as the one proposed in [12] is required. In
this paper the authors propose and demonstrate the feasi-
bility of a model to support autonomic trust management in
component-based software systems. They use a holistic no-
tion of trust to allow a trustor to assess the trustworthiness
of the trustee by observing its behavior and measuring it
based on quality attributes, such as availability, reliability,
integrity, safety, maintainability, and confidentiality. The
proposed model can also be applied to define, monitor, and
ensure the trustworthiness of relationships among system
entities.
Security domains. Isolated security domains are a very

common technique used in different types of systems. For
instance, in operating systems user level applications are not
allowed to access kernel level sub-systems. A recent exam-
ple of effective security domains by design is Chromium [29].
Similarly to operating systems sandboxes, Chromium uses
sandboxes to isolate the rendering engine from the browser
kernel. Thus, most of the attacks will affect only the ren-
dering engine and not the system kernel. Security domains
in SDN control platforms can be explored using techniques
such as sandboxing and virtualization. These techniques
enable the design of strong isolation modes, through well-
defined interfaces that allow minimal (only restricted and
strictly necessary) set of operations and communication be-
tween different domains.
Secure components. These components are one of the

essential building blocks of a secure and dependable system.
Secure elements can be used, for example, to provide trusted
computing bases (TCB) to assure security properties such
as confidentiality. A TCB is a tamper-proof device that
can be used to store sensitive security data (e.g., crypto
private keys) and execute basic operations on it. Thus, even
if the system is compromised, sensitive data will have its
confidentiality assured.
Fast and reliable software update and patching.

As no software is free from bugs (or other vulnerabilities),
fast and reliable software patching and update is essential

to reduce the window of vulnerabilities. Thus, a control
platform should be deployed with mechanisms to assure a
smooth and secure way of doing updates. Solutions as those
proposed in [30] can help in achieving this goal.

To summarize, in Table 2 we identify each of the threat
vectors that may be mitigated with the use of the solutions
and mechanisms explored in this section.

Table 2: solutions to threat vectors
Solution/mechanism Threat vectors

Replication 1, 4, 5, 7
Diversity 3, 4, 6
Self-healing 2, 4, 6
Dynamic switch association 3, 4
Trust between controllers & devices 1, 2, 3
Trust between controllers & apps 4, 5
Security domains 4, 5
Secure components 4, 5, 7
Fast and reliable update & patching 2, 4, 6

The solutions just discussed form the core mechanisms of
what we are considering in our implementation of a secure
and dependable control platform. We nevertheless believe
such designs may benefit from the use of traditional tech-
niques, such as firewalls or intrusion detection systems, and
novel tools to specify and compose packet-forwarding poli-
cies (and updating them in a consistent way) [31] and to
check network-wide invariants in real time [32]. These are in
fact some avenues we are still exploring.

3.3 Security and Dependability by Design
We now advocate security and dependability by design

through an example. Suppose that we have three repli-
cated controllers to keep our network in a healthy state. If
one controller is buggy or gets compromised we still have
two potentially correct controllers. This will be true if con-
trollers are designed in order that they can be easily repli-
cated, are capable of interoperating and providing support
to execute applications across controllers. To achieve these
characteristics, we need common interfaces for controller in-
tegration and interoperation (e.g., three different controllers
working together in a same environment), common north-
bound APIs, and common replication capabilities. In addi-
tion to this, the switches will also need to be able to dynam-
ically associate with more than one controller. Finally, if
we rely on a single controller make for replication, bugs and
abnormal behaviors have a high probability of affecting all
instances in parallel. In this case, diversity helps improve
the robustness of the system. In summary, by applying these
three techniques — replication, diversity, dynamic switch
association — in the design of our system, we are able to
increase its security and dependability from the first hour.

3.4 Related work
Security and dependability of SDN still is a field almost

unexplored, presenting many challenges and opportunities.
There are only a few closely related works, namely [5] and
[6]. Their essential idea is to provide a security kernel (e.g.,
by extending a controller like NOX) capable of ensuring pri-
oritized flow rule installation on switches. Applications are
classified in two types, one for security related applications
and another for all remaining applications. The first type

59

represents specialized programs used to ensure security con-
trol policies in the network, such as to guarantee or restrict
specific accesses to the network or take actions to control
malicious data traffic. Flow rules generated by security ap-
plications have priority over the others. The security ker-
nel is responsible for ensuring this behavior. FRESCO [6] is
an extension of this work that makes it easy to create and
deploy security services in software-defined networks. How-
ever, none of these works fosters or enforces the security of
SDN itself, the goal we are pursuing.

4. CONCLUDING REMARKS
In this paper we argue for the need to consider security

and dependability when designing Software Defined Net-
works. We have presented several threats identified in these
networks as strong arguments for this need, together with a
brief discussion of the mechanisms we are using in building
a secure and dependable SDN control platform.
The novel concepts introduced by SDN are enabling a rev-

olution in networking research. The know-how and good
practices from several communities (databases, program-
ming languages, systems) are being put together to help
solve long-standing networking problems. We hope that this
paper will trigger discussions in the SDN community around
issues related to security and dependability, to serve as a
catalyser of joint efforts in these critical issues.

5. ACKNOWLEDGMENTS
We would like to thank Vinicius Cogo for comments and

the anonymous reviewers for their helpful feedback. This
work is partially supported by the EC, through project Sec-
FuNet FP7-ICT-STREP-288349, by FCT, through project
TRONE CMU-PT/RNQ/0015/2009, and by CNPq, through
grant 202104/2012-5.

6. REFERENCES

[1] T. Koponen et al. “Onix: a distributed control
platform for large-scale production networks”. In:
OSDI. 2010.

[2] N. Gude et al. “NOX: towards an operating system
for networks”. In: Comp. Comm. Rev. (2008).

[3] M. Caesar et al. “Design and implementation of a
routing control platform”. In: NSDI. 2005.

[4] M. Casado et al. “Rethinking Enterprise Network
Control”. In: ACM Trans. on Networking 17.4 (2009).

[5] P. Porras et al. “A security enforcement kernel for
OpenFlow networks”. In: HotSDN. ACM, 2012.

[6] S. Shin et al. “FRESCO: Modular Composable
Security Services for Software-Defined Networks”. In:
Internet Society NDSS. 2013.

[7] N. McKeown et al. “OpenFlow: enabling innovation
in campus networks”. In: Comp. Comm. Rev. (2008).

[8] S. Sorensen. Security implications of software-defined
networks. 2012. url: http://goo.gl/BiXH2.

[9] S. M. Kerner. Is SDN Secure? 2013. url:
http://goo.gl/lPn2V.

[10] D. Kushner. The Real Story of Stuxnet. 2013. url:
http://goo.gl/HIEHQ.

[11] C. Tankard. “Advanced Persistent threats and how to
monitor and deter them”. In: Network Sec. (2011).

[12] Z. Yan and C. Prehofer. “Autonomic Trust
Management for a Component-Based Software
System”. In: IEEE Trans. on Dep. and Sec.
Computing 8.6 (2011).

[13] R. Holz et al. “X.509 Forensics: Detecting and
Localising the SSL/TLS Men-in-the-Middle”. In:
Computer Security. LNCS. 2012.

[14] M. Georgiev et al. “The most dangerous code in the
world: validating SSL certificates in non-browser
software”. In: ACM CCS. 2012.

[15] R. Sherwood et al. FlowVisor: A Network
Virtualization Layer. Tech. rep. Deutsche Telekom
Inc. R&D Lab, Stanford, Nicira Networks, 2009.

[16] Y. G. Desmedt. “Threshold cryptography”. In:
European Trans. on Telecommunications 5.4 (1994).

[17] F. B. Schneider. “Implementing fault-tolerant services
using the state machine approach: a tutorial”. In:
ACM Comput. Surv. 22.4 (Dec. 1990).

[18] P. Sousa et al. “Highly Available Intrusion-Tolerant
Services with Proactive-Reactive Recovery”. In: IEEE
Trans. Parallel Distrib. Syst. 21.4 (2010).

[19] G. Veronese et al. “Efficient Byzantine
Fault-Tolerance”. In: IEEE Trans. on Computers
62.1 (2013).

[20] G. Veronese et al. “EBAWA: Efficient Byzantine
Agreement for Wide-Area Networks”. In: IEEE
HASE. 2010.

[21] R. Kapitza et al. “CheapBFT: resource-efficient
byzantine fault tolerance”. In: ACM EuroSys. 2012.

[22] J. Hendricks, G. R. Ganger, and M. K. Reiter.
“Low-overhead byzantine fault-tolerant storage”. In:
SIGOPS Oper. Syst. Rev. 41.6 (Oct. 2007).

[23] P. Verissimo et al. “Intrusion-tolerant middleware:
the road to automatic security”. In: IEEE Security &
Privacy 4.4 (2006).

[24] J. Korniak. “The GMPLS Controlled Optical
Networks as Industry Communication Platform”. In:
IEEE Trans. on Industrial Informatics 7.4 (2011).

[25] S. Neti, A. Somayaji, and M. E. Locasto. “Software
diversity: Security, Entropy and Game Theory”. In:
7th USENIX HotSec. 2012.

[26] M. Garcia et al. “Analysis of operating system
diversity for intrusion tolerance”. In: Software:
Practice and Experience (2013).

[27] B. Heller, R. Sherwood, and N. McKeown. “The
controller placement problem”. In: HotSDN. 2012.

[28] J. C. Mogul and P. Congdon. “Hey, you darned
counters!: get off my ASIC!” In: HotSDN. 2012.

[29] A. Barth et al. The Security Architecture of the
Chro-mium Browser. Tech. rep. Stanford University,
2008.

[30] J. H. Perkins et al. “Automatically patching errors in
deployed software”. In: ACM SIGOPS SOSP. 2009.

[31] N. Foster et al. “Frenetic: a network programming
language”. In: SIGPLAN Not. (2011).

[32] A. Khurshid et al. “VeriFlow: verifying network-wide
invariants in real time”. In: HotSDN. 2012.

60

