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Abstract-8hort-term electricity price forecasting has
become a crucial issue in the power markets, since it forms
the basis of maximising profits for the market participants.
This paper presents an extensive review of the established
approaches to electricity price forecasting. It summarizes
the influencing factors of price behaviour and proposes an
extended taxonomy of price forecasting methods. Through
the comparison of different approaches, such as Artificial
Neural Networks (ANNs), Auto Regressive Integrated
Moving Average Models (ARIMA) and Least Square
Support Vector Machine (LSSVM), the hybrid methods
that combine different models in order to offset the
inherent weakness of individual models are highlighted
with regard to the future trend of electricity price
forecasting methodology.

Index Terms-short term electricity price, forecasting
techniques, ANN, ARIMA, LSSVM, hybrid models.

I. INTRODUCTION

Electricity price forecasting has become an important
area of research globally since the introduction of the
deregulated whole-sale electricity markets. All whole
sale market participants, such as generators, power
suppliers, investors and traders, require accurate
electricity price forecasts in order to maximize their
profitability [1-2]. Unlike load forecasting, electricity
price forecasting is much more complex because of the
unique characteristics, uncertainties in operation as well
as the bidding strategies of the market participants.
During the last two decades, many techniques and
models have been developed for forecasting whole-sale
electricity prices, especially for the short-term price
forecasting. This paper reviews established approaches
to electricity price forecasting and provides an insight
into the development of future electricity price
forecasting methods for researchers based in academia
or industry.

The remainder of the paper is organized as follows:
Section II summarizes the influencing factors of price
behavior. An extended taxonomy of price forecasting
methods is proposed in section III. In section IV, the
typical price forecasting approaches, such as ANNs,
ARIMA and LSSVM, are reviewed separately. In
addition, a summary of hybrid methods is introduced

and several accuracy criteria are described. Section V
concludes the paper. Based on comparisons of different
techniques, this paper highlights the main features of
electricity price forecasting methods and indicates the
potential future development of methodologies for
accurate electricity price forecasting.

II. INFLUENTIAL FACTORS OF ELECTRICITY PRICE

Through observation of short-term electricity price
series, power price movements exhibit several seasonal
cycles, mean reversion and spikes [3]. Because
electrical energy can not be stored and needs constant
balance between demand and supply, the price of
electricity is volatile in nature, which causes high risks
to market participants. Moreover, other factors may also
cause the price to change, such as weather conditions
and transmission congestion in the power system. The
main influential factors on electricity prices are
presented in Figure 1.
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Fig. I . Influencing factors of electricity price

For different forecasting models, different inputs are
used to represent factors that are considered to have a
significant impact on electricity price forecasting. Time
series approaches, for example ARIMA and Hidden
Markov Model (HMM), analyze historical data, such as
load, price and fuel cost. ANNs are more flexible and
consider additional factors, such as weather conditions,
unit operation cost, system constraints and so on.
However, based on a recent survey of case studies [4],
including more factors in such models does not
necessarily mean that the predictive results will be
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better. The reason for this is that some additional factors
are also unavailable and may need forecasting as well.
Therefore, the selection of a suitable forecasting
technique with proper input factors is vitally important
for accurately forecasting electricity prices.

III. FORECASTING METHODS CLASSIFICATION

Development of techniques for electricity price
forecast is still an important area in research. Several
papers have proposed taxonomies of the forecasting
methods. There are two categories of forecasting
methods, parametric methods and artificial intelligence
based methods [5]. In [6], the forecasting models are
divided into two groups: traditional models and modem
techniques. Approaches can also be classified in two
sets: time-series and simulations as proposed in
reference [7]. Based on the original tree in [7], an
extended classification of forecasting methods is
presented in Figure 2.

In Figure 2, a new branch of data mining
methodologies has been added to the tree and more
typical forecasting methods are included along with the
survey papers. In this survey, many publications
indicate ANNs have become a more popular approach
for price forecasting. Meanwhile, hybrid models that
combine two or more forecasting methods to overcome
the individual limitations are becoming a novel
direction for researchers [8].

IV. FORECASTING METHODOLOGY

A. Artificial Neural Networks (ANNs)
As a simple, powerful and flexible tool for

forecasting, ANNs have received much attention
recently. Neural Networks are highly interconnected
simple processing units designed to model how the
human brain performs a particular task [9]. Those units,
also called neurons, are arranged in the following

layers: an input layer, one or more hidden layers and an
output layer. The typical structure of an ANN model is
shown in Fig.3. During the training process, neurons in
the input layer pass the raw information onto the rest of
neurons in the other layers, without any processing. The
weights between neurons keep updating according to
supervised learning. Based on the measures of minimal
error between the output produced and the desired
output, the process is repeated until an acceptable error
is reached. This training process is called back
propagation. After the model acquires the knowledge,
new data can be tested for forecasting.

The ANN models could be different with regard to
combinations of different numbers of hidden layers,
different numbers of units in each layer and different
types of transfer function. From the survey, it indicates
that three layer neural networks are commonly chosen
for the models [10-13]. In [6], a four-layer network has
been used for price forecasting.

Neural networks have well-known advantages of
being able to solve undefined relationships between
input and output variables, approximate complex
nonlinear functions and implement multiple training
algorithms. However, neural networks also have the
following disadvantages: the network will not be
flexible enough to model the data well with too few
units, and on the contrary, it will be over-fitting with too
many units.

In order to offset such weakness, different techniques
have been combined with ANNs recently [12-18]. An
ANN model based on a similar day method to forecast
day-ahead electricity price is proposed in [12] and [14].
A feature selection technique, relief algorithm, is
combined with ANNs [13] and particle swarm
optimization is used for ANN training [15]. The
clipping technique for simplifying the relationship
between ANN input and output variables is presented
[16].

Chaotic
Models

[38]-[40]

Electrlcity Price Forecasting Methods

Similar Days [41] [42]
UPLAN-E

Fig. 2. Price forecasting methods classification



Fig.3. Example of the ANNs model

In [17], K-Means clustering method is used to find
clusters for the number of neural networks. The wavelet
and ANN models are fitted together for greater price
forecasting accuracy [18].

(2)

• In the training process, LSSVM uses a set of
linear equations and SVM uses a quadratic
formulation;

• Lagrange multipliers 0; , can be positive or
negative in LSSVM, but must be positive in
SVM.

Suppose {(Xi, Yi)} for i = I to n is a given set of data
points where Xi is the input vector and Yi is the
corresponding output vector that defined by

regression and time series problems, SVM has gained
attention as a novel algorithm with regard to forecasting
electricity prices. The LSSVM is a reformulation of the
standard SVM. There are two main differences between
LSSVM and SVM [30]:

Output layerHiddenlayersInput layer

Where ~ i is slack variables, C is the regularization
constant with regard to the unit cost of errors. Now we
add in Lagrange multipliers a i, and the problem becomes:

Where w is weight vector; b is the bias; rp(xJ is
nonlinear mapping from input space to high
dimensional feature space; . is the form of dot products.
Therefore, the constraints (3) and objective function (4)
ofLSSVM models are defined by

(4)

(3)i = l , .. .. n

Methods for short-term electricity price forecasting
based on SVM and LSSVM approaches are presented in
[29-34]. Genetic algorithms, in combination with
LSSVM, are proposed in [29] and [31]. A probability
classifier and statistical model are employed in
combination with SVM models in [33] and [34],
respectively. In both cases, it has been proven that the
forecasting is more accurate than the original SVM
forecasting.

D. Hybrid Models

The survey has presented established approaches to
electricity price forecasting, as well as the hybrid models
that combine several prediction methods in order to
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In order to solve the computational complexity,
kernel functions, such as polynomial, radial basis and
sigmoid functions, are commonly used to replace rp(xJ.
In particular, the radial basis function is superior to be
considered:

P, = a, + rpIP,-I + Ole ,-I + e , (1)
Where P, is electricity price at time t; a .is the mean of
price at t; rp1 is autoregressive coefficient of the price
series; 01 is moving-average coefficient; e,is a stochastic
value with expectation zero and square error if.ARIMA
models can be reduced to ARMA models through the
pre-processing of the electricity price series. After the
pre-processing, the price series becomes a stationary
time-series such that ARMA models can then be
applied.

Much work has been done on electricity price
forecasting with ARIMA approach [22-25]. In
particular, the ARIMA methods are extended to include
error correction for the worse market conditions with
high price volatility [22]. In [23], techniques that based
on the wavelet transform and ARIMA models are
applied to Spanish power markets in order to improve
the accuracy of price forecasting.

C. Least Square Support VectorMachine (LSSVM)

Support Vector Machine (SVM) was proposed by
Vapnik based on statistical learning theory in 1995. The
original application of SVM is for pattern recognition,
function approximation and regression estimation [29].
As a consequence of the success in solving nonlinear

B. Auto Regressive Integrated Moving Average Model
(ARIMA)

ARIMA models have been applied successfully with
regard to price and load forecasting. Currently, ARIMA
algorithms are also being used to predict short-term
electricity prices.

In spot power markets, market clearing prices (MCP)
can be considered as a non-stationary stochastic time
series with equal time intervals. Based on historical
data, ARMA and ARIMA models are able to describe
the stationary and non-stationary processes separately.

ARMA, the combination of auto-regressive (AR) and
moving-average (MA) models, is defined by



V. CONCLUSIONS

The restructuring of power markets has created an
increasing need to forecast accurate future prices among
the market participants with the purpose of profit
maximization.

Based on a survey of established approaches to
electricity price forecasting, this paper gives an
overview of price forecasting, with a summary of the
influencing factors of price behavior and extended
taxonomy of price forecasting methods. Different
forecasting methods, such as ANN, ARIMA models and
LSSVM, are reviewed separately. The hybrid methods
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Where Yt is the real data at time stage t; Yt' is the forecast
output data at t.

MAPE is frequently used to analyze the error of the
load forecasting results, since it is more robust and easy
to understand [49]. However, the electricity price could
be zero or even negative depending upon the bidding
behaviour in spot power markets. Therefore, the MAPE
is extended to [52]:

MAPE=lf ly,-y:l x 1 0 0 %

n t=1 ~f Y t
n t=1

overcome the disadvantages of the established methods
as highlighted.

As we discussed in the previous section, ANN,
ARIMA and LSSVM models can be combined with the
other models. Meanwhile, different integrated
techniques have also been proposed by many
researchers [44-51]. In [44], an integration of two
machine learning technologies: Bayesian Clustering by
Dynamics (BCD) and SVM is introduced. An efficient
tool for one-step-ahead forecasting that combines
several prediction methods have been checked and
compared for a span of some years [45]. Multivariate
models are compared with that of single models in [46]
and the outcomes show that the forecasting accuracy is
improved. As the efficient data mining techniques,
clustering [47-48] and wavelet analysis [50-51] are
applied on the networks.

From the comparison of different forecasting
approaches, the hybrid models have shown more
advantages and have therefore gained increasing
attention.

E. AccuracyCriteria

To measure the forecast accuracy, we choose from
several indexes, such as Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE):
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