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Abstract—Deep packet inspection (DPI), based on regular expressions, is expressive, compact, and efficient in specifying attack
signatures.We focus on their implementations based on general-purpose processors that are cost-effective and flexible to update. In this
paper, we propose a novel solution, called deterministic finite automata with extended character-set (DFA/EC), which can significantly
decrease the number of states through doubling the size of the character-set. Unlike existing state reduction algorithms, our solution
requires only a singlemainmemory access for eachbyte in the traffic payload,which is theminimum.Weperformexperimentswith several
Snort rule-sets. Results show that, compared to DFAs, DFA/ECs are very compact and are over four orders of magnitude smaller in the
best cases; DFA/ECs also have smallermemory bandwidth and run faster.We believe that DFA/ECwill lay a groundwork for a new type of
state compression technique in fast packet inspection.

Index Terms—Deep packet inspection (DPI), regular expression, deterministic finite automata (DFA), extended character-set (EC)

1 INTRODUCTION

DEEP packet inspection (DPI) processes packet payload
content in addition to the structured information in

packet headers. DPI is becoming increasingly important in
classifying and controlling network traffic. Well-known in-
ternet applications of DPI include: network intrusion detec-
tion systems that identify security threats givenbya rule-set of
signatures, content-based traffic management that provides
quality of service and load balancing, and content-based
filtering and monitoring that block unwanted traffic. Due to
their wide application, there is a substantial body of research
work [1]–[5] on high-speedDPI algorithms, inwhich different
automata for single-pass high-speed inspection are proposed
based on either software or hardware implementations.

Traditional packet inspection algorithmshavebeen limited
to comparing packets to a set of strings. Newer DPI systems,
such as Snort [6], [7] and Bro [8], use rule-sets consisting of
regular expressions,which aremore expressive, compact, and
efficient in specifying attack signatures. Hardware-based
approaches exploit parallelism and fast on-chipmemory, and
are able to create compact automata. However, it ismore cost-
effective and flexible to update when small on-chip lookup
engines or general-purpose processors are used together with
automata stored in off-chip commodity memory. In this
paper, we focus on a general-purpose processor approach.

The throughput of the general-purpose processor
approaches is limited by the memory bandwidth of the
processors. Therefore, to improve inspection speed, it is

critical to minimize the number of main memory (off-chip
memory) accesses per byte in the traffic payload. Some im-
plementations of the regular expressions, such as the non-
deterministic finite automata (NFAs), have a nondeterminis-
tic number ofmainmemory accesses per byte.Another critical
issue is reducing the size of the automata stored inmemory in
order to reduce the cost of memory, improving the scalability
for a larger number of rules, and increasing the inspection
speed (with the use of cache memory). While deterministic
finite automata (DFAs) implementations of regular expressions
take only one main memory accesses per byte, they often
require very large memory space to store their transition
tables, which undermines their scalability in real applications.
Therefore, conventional DFA and NFA are not ideal in real
systems.

Recent research efforts have been focused on reducing the
memory storage requirement of DFAs, and they can be
divided into the following categories: (1) reducing the number
of states [1], [9], [10], (2) reducing the number of transitions [2],
(3) reducing the bits encoding the transitions [3], [11], and
(4) reducing the character-set [12]. Unfortunately, all of these
approaches compress DFAs at the cost of increased main
memory accesses. The amount of compression in transition
reduction and character-set reduction is bounded by the size
of the character-set (e.g., the maximum reduction is if
ASCII is used)due to the fact that there is at least one transition
in each state.We focus on state reduction, which is not limited
by the maximum reduction ratio of 256, and we manage to
reduce the storage size of DFAs by up to 4 orders of magni-
tude in our experiment. Moreover, our approach can be
incorporated into the other approaches to achieve further
memory reduction.

This paper proposes a novel state reduction solution, called
deterministic finite automata with extended character-set (DFA/
EC). We first introduce DFA/EC as a general model of DFA.
This general model removes part of each DFA state and
incorporates it with the next input character. This results in
an extended the set of input characters. However, simply
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doing this cannot reduce the size of the transition table since
the increase in the size of the extended character set can be
more significant than thedecrease in thenumber of states.Our
main contribution is an efficient implementation of DFA/EC,
which contains an encoding method. This encoding method
encodes the part of the removedDFA state into a single bit. As
a result, the size of the extended character set merely doubles,
while the number of states drops by orders ofmagnitude. The
main contributions of this paper are summarized as follows:

1. We introduce DFA/EC, a general DFA model that in-
corporates a part of the DFA state into the set of input
characters.

2. We provide an efficient implementation of the inspec-
tion program based on our DFA/EC model, which
results in a compact transition table and a fast inspection
speed.

3. We prove that DFA/EC is equivalent to DFA.
4. We perform an extensive evaluation to compare DFA/

EC with related algorithms by using several Snort
rulesets.

Comparedwith existing state reduction algorithms, DFA/
EC significantly increases the inspection speed by keeping the
numberof per-bytemainmemoryaccesses to one,which is the
minimum. The size of our inspection program is also small
enough tobe stored entirely in the cachememory. Evaluations
with several Snort rule-sets demonstrate that DFA/ECs are
very compact and achieve high inspection speed. Specifically,
DFA/ECs are over four orders of magnitude smaller than
DFAs in the best cases; DFA/ECs can even have smaller
memory bandwidth thanDFAs, which is not seen in previous
compression algorithms. The advantages of a DFA/EC are
summarized in the following:

1. A DFA/EC requires only one main memory access for
each byte in the packet payload, while significantly
reducing storage in terms of table size.

2. A DFA/EC is conceptually simple, easy to implement,
and easy to update due to fast construction speed.

3. A DFA/EC can be combined with other compression
approaches to provide a better level of compression.

The rest of this paper is organized as follows. Related
work is briefly covered and compared in Section 2. Section 3
introduces the concept ofDFA/ECwith an example. Section 4
presents the formalmodel ofDFA/ECand itsDFA-equivalence
condition. Section 5 describes an efficient implementation of
DFA/EC and proves its DFA equivalence. Section 6 evaluates
DFA/EC by using the Snort rule-sets and synthetic traffic.

Section 7 concludes the paper. The notations used in this
paper are summarized in Table 1.

2 RELATED WORK

Prior work on regular expression matching at line rate can be
categorized by their implementation platforms into FPGA-
based implementations [13]–[17] and general-purpose pro-
cessors and ASIC hardware implementations [1], [2], [9], [10],
[18], [19]. FPGA implementations exploit high degree of
parallelism, and the achieved high throughput is difficult for
the memory-based approaches. However, FPGAs are not
available in many applications including those already de-
ployed. On the other hand, the general-purpose processor
approaches are often desirable because they provide a higher
degree of flexibility and they allow for frequent update of
rule-sets.

Existing transition table compression techniques based on
general-purpose processors include: (1) DFA state compres-
sion techniques and (2) transition compression techniques.
DFA state compression techniques reduce the number ofDFA
states like MDFA [1], HFA [9], XFA [20]. Transition compres-
sion techniques reduce the number of transitions in each state
such as [2], [18]. Both kinds of techniques
effectively reduce the memory storage but introduce addi-
tional main memory accesses per byte. Note that the two
kinds of compression techniques are perpendicular and can
be combined. Our work in this paper builds upon the area of
DFA state compression.

Delayed Input Deterministic Finite Automata ( ) [2]
uses default transitions to reduce thememory storage require-
ment. If two states have a large number of transitions in
common, the transition table of one state can be compressed
by referring to that of the other state. Unfortunately, when a
default transition is followed, the main memory must be
accessed once more to retrieve the transitions of the referred
state [2], [18].

Using auxiliary variables and devising a compact and
efficient inspection program is challenging and is related to
ourwork. Two seminal papers [9], [20] use auxiliary variables
to represent the “factored out” auxiliary states in order to
reduce the DFA size. However, the auxiliary variables are
manipulated byauxiliaryprogramsassociatedwith each state
or transition, resulting in extra main memory accesses to
obtain the auxiliary programs in addition to the state indexes.
Secondly, H-FA [9] uses conditional transitions that require a

TABLE 1
Notations Used in This Paper
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sequential search. Moreover, the number of conditional tran-
sitions per character can be very large in general rule-sets,
which results in a large transition table and a slow inspection
speed. XFA [20] uses several automata transformations to
remove conditional transitions. However, to preserve seman-
tics, XFA is limited to one auxiliary state per regular expres-
sion, which is unsuitable for complex regular expressions. On
the other hand, DFA/EC uses a compact program to generate
its extended characters, and it requires a single main memory
access for each byte in the payload.

Hybrid-FA [9], [10] prevents state explosion byperforming
partial NFA-to-DFA conversions. The outcome is a hybrid
automaton consisting of a head-DFA and several tail-
automata. The tail-automata can beNFAs or DFAs. However,
maintaining multiple DFA/NFA may introduce a large per-
flow state and scarify the inspection speed. In [10], a character
set is expanded to represent conditional transitions.However,
they used alphabet compression [12] to compress the char-
acter set, which cannot effectively reduce the size of the
expanded character set when there are multiple conditions
on the transitions. Differently, we propose an encoding
method to limit the extended character set to twice the size
of the original character-set, which is the key to making our
DFA/EC model practical.

CompactDFA [3] and HEXA [11] compress the number of
bits required to represent each state, but they are only appli-
cable to exact string matching. Alphabet compression [12]
maps the set of characters in an alphabet to a smaller set of
clustered characters that label the same transitions for a
substantial amount of states in the automaton.

Recent security-oriented rule-sets include patterns with
advanced features, namely bounded repetitions, and back-
references, which add to the expressive power of traditional
regular expressions. However, they are inefficient to be di-
rectly implemeted by pure DFAs [10], [21]. The bounded
repetition, or counting constraint, is a pattern that repeats a
specific number of times. The back-reference [5] is a previous-
ly matched substring that is to be matched again later. DFA/
EC can be extended to support the above features in regular
expressions by using the techniques in [9] and [20]. We omit
these advanced features in this work for simplicity.

3 THE CONCEPTUAL DFA/EC
In this section, we will first review the preliminaries on
automata that is used in packet inspection, i.e., the non-
deterministic finite automata (NFA) and deterministic finite au-
tomata (DFA). We then discuss an example of DFA/EC that
describes our motivation for this paper.

3.1 Preliminaries
A regular expression describes a pattern of strings. Features of
regular expressions that are commonly used in network
intrusion detection systems include exact match strings, char-
acter-sets,wildcards, and repetitions.As an example through-
out this paper, we use a rule-set consisting of two regular
expressions: “. ” and “. ”.
An exactmatch substring, such as “C”, is a pattern that occurs
in the input text exactly as it is. Character-sets, such as
“[E-N]”, match any character between “E” and “N”, and
“ ” is the complement of “[E-N]” that matches any

character not in this range. A wildcard “.” is equal to “ ” and
matches any character. Repetition “ ” matches any strings
with a length from zero to infinity, and repetition “ ”

matches nonempty strings containing characters in “ ”.
For instance, the pattern “ ” matches the
strings “HAT” and “HADST”.

NFAandDFAarepopularpatternmatchingprograms for a
set of one or more regular expressions. Fig. 1 shows the NFAs
accepting the example regular expressions. In NFAs, the
number of states is not greater than the number of characters
in the regular expressions in the rule-set, evenwhen the regular
expressions contain repetitions and character-sets. States 0 and
4 are initially active, and a match is reported when any
accepting state, e.g., 3 and 7, is active. In NFAs, multiple states
can be active simultaneously, and multiple main memory
accesses are required to obtain the next transitions for all
active states. The sequence of the sets of active states experi-
enced by the example NFA while matching string “HAT” is:

A DFA can be constructed from a set of NFAs by using the
subset construction routine, in which a DFA state is created to
represent each set of NFA states that can be simultaneously
active in some matching process. Therefore, the number of
DFA states is the number of possible combinations of active
NFA states that can be simultaneously active, which can be
exponential to the number of NFA states. Although, in prac-
tice, indexes are assigned toDFAstates to reduce space,wewill
regard aDFAstate as a set ofNFAstates in this paper. Let be the
set of NFA states, and let be the set of DFA states. We have:
(1) for anyDFAstate , , (2) ( is thepower
setof ), and (3)usually . is
usually true due to the state explosion problem. For example, the
minimal DFA (which is not shown in this paper) constructed
for the example NFA contains 18 states. On the other hand,

because not all combinations of NFA states can be
simultaneously active.

3.2 Motivation and Overview
Differentmethods to resolve the state explosionproblemhave
been proposed in [1], [9], and [20]. The NFA states that
correspond to the repetitions of large character-sets, such as
states 2, 6, and 7 in our example NFA in Fig. 1, cause state
explosion. The explanations are that (1) these states are more
likely to be active, and (2) a frequently active NFA state is
more likely to be active simultaneously with other sets of
states, which consequently increases the number of simulta-
neously active sets of NFA states, i.e., the number of DFA
states. For example, state (0,1,4) is a set of concurrently active
NFA states, and it is a DFA state; the frequently active NFA

Fig. 1. The NFAs for “. ” and “. ”,
respectively.
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state 2, which can be concurrently active with NFA states 0, 1,
and 4, creates another DFA state (0,1,2,4). In Table 2, for each
state in our example NFA (Fig. 1), we show the number of
cases where there exists a DFA state such that

too. In other words, this number shows that the
number of DFA state can be reduced if the NFA state is
removed.

To reduce theDFA size,we propose a novelmethod, called
DFA with extended character-set (DFA/EC). In a DFA/EC, we
select some of the most frequently active NFA states and
incorporate them into the character-set (or the alphabet) of the
DFA to form a slightly larger extended character-set. There is a
main DFA (denoted by ) in a DFA/EC that implements the
rest of the infrequently active NFA states and, therefore, the
main DFA has a small number of states. We call those NFA
states that are selected and incorporated into the character-set
the complementary states (denoted by ); we call the remain-
ing NFA states themain states (denoted by ). As wewill see
in Section 5, we have additional constraints, which exclude
some of the frequently active NFA states from the set of
complementary states in order to enable a single-bit encoding
methodof the complementary states in the extended character
set, and to facilitate an efficient DFA/EC implementation.

While the main DFA implements the main states, we call
the remaining functionality in theDFA/EC the complementary
program, which deals with the complementary states. The
challenge in the design of DFA/EC is in the selection of a
proper implementation such that the complementary pro-
gram is very fast while the main states, , can be imple-
mented by a compact main DFA whose size, , ideally, is
equal to .

In our evaluation (see Section 6), the main DFA of the
DFA/EC is shown to be smaller than its corresponding
conventional DFA by an order of four magnitudes, while the
extended character-set only doubles the size of the original
character-set. When a DFA/EC consumes a byte, the comple-
mentary program generates the extended character-set effi-
ciently by only a few instructions without any main memory
accesses (Section 5).

3.3 A Detailed Illustration of DFA/EC
From the NFAs in Fig. 1, we construct a conceptual DFA/EC,
which is shown in Fig. 2. Since we have not presented how to
select complementary states, we simply assume that the
complementary states are the NFA states 2, 6, and 7. The
main DFA constructed from the main states (i.e., the NFA
states 0, 1, 3, 4, and 5) is shown in Fig. 2(a).

3.3.1 The Structure of a DFA/EC
For clarity, wemake the following simplifications in Fig. 2(a):
(1) in each DFA state, we remove the NFA states 0 and 4 from
the labels of the states, which always exist in any state labels

since states 0 and 4 are always active: state “1” should actually
be labeled with “0,4,1”, state “-” should actually be labeled
with “0,4”, and (2) some transitions to state “-”, “1”, and “5”
are removed. From this example,we can see that theDFA/EC,
which has only 4 states in its main DFA, is very compact
compared to the corresponding conventional DFA (not
shown) that has 18 states.

In our implementation, the extended character-set includes
the original character-set and an extra bit. This extra bit
represents a boolean value, which is encoded from the com-
plementary states. For example, the label “K(T)” on the
transition from state “-” to “3” indicates that the transition
is takenwhen the next byte in the payload is “K” and the extra
bit is true.

We require that the transitions in the main DFA can make
some complementary states active. For example, the transi-
tion labeled by “ ” from states “-” to “5”,
which is taken when the next byte is in the character-set
“[ ” and when the extra bit is either true or false,
makes the complementary state “6” active.

In Fig. 2(b), the complementary states are concepturally
shown as an NFA, which is to be replaced by an efficient
implementation in Section 5. The transition from complemen-
tary state 2, labelledwith “K”, does notmake any state active,
but it sets the extra bit in the extended character-set to true.

3.3.2 How Does a DFA/EC Work?
A DFA/EC maintains two states in runtime: one state for
the main DFA, and an additional state for the complemen-
taryprogram. In the followingdiscussion, the current runtime
state of the main DFA is represented by a DFA state label,
and state of the complementary program is represented by
a set that contains currently active complementary states. In
Fig. 2, the initial DFA/EC states is , where is
the initial state of themainDFA, and is the initial state
of the complementary program, which contains no active
complementary states.

TABLE 2
The Cases of Each NFA State “Duplicating” the DFA States and
the Number of Independent NFA States (Section 5.3) for Each

NFA States in Fig. 1

Fig. 2. The DFA/EC for “. ” and “. ”.

1928 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 8, AUGUST 2014



For each byte in the payload, the DFA/EC functions as
follows. (1) The complementary program calculates the extra
bit for the extended character byusing the next byte and the
current state of the complementary program. (2) The next
state of the main DFA and a label is looked-up by using
the current state of the main DFA and the extended
character , which is composed of the next byte and the
extra bit . (3) The complementary program calculates its next
state by using the its current state , the next byte , and the
label on the main DFA transition .

In Fig. 2(b), the example complementary program is con-
ceptually represented by an NFA. We now illustrate how to
determine the extra bit in the extended character and thenext
state of the complementary program. (a) The extra bit in
the extended character is set by the transition in the comple-
mentary program. In Fig. 2(b), the transition labelled by “K”
set the extra bit to true. The extra-bit is false if it is not set to
true by any transition in the complementary program. (b) The
next state of the complementary program is the union of the
set of complementary states that are activated on the main
DFA transition, and those (represented by label ) that are
activated by the transitions in the complementary program.

Essentially, the execution of DFA/EC is an interactive
process between the main DFA and the complementary
program: the next state of the complementary program is
partially determined by the label on the main DFA transi-
tion determined by and ;while the next state of themain
DFA is partially determined by , which reflects whether
affects . Aswewill see inAlgorithm5.4, these interactions in
DFA/EC can be implemented efficiently by using a single
main memory access and several bit-wise instructions.

3.3.3 A Step-by-Step Example
We will explain how the state of the example DFA/EC
changes when matching a payload of string “ABK”. The
resulting sequence of the DFA/EC states are:

Initially, the state of the main DFA is (-), and the state
of the complementary program is {}. For the first input
character ‘A’, (1) the extra bit is since no complementary
state is active, (2) themainDFA transition,which is labeled by
“ ” and are from states “-” to “1”, is token, and (3) no
transition in the complementary program is token (since no
complementary state is active). Thus, the second DFA/EC
state is “(1){}”.

For the second input character ‘B’, (1) the extra bit is since
no complementary state is active, (2) themainDFA transition,
which is labeled by “ ” and is from states
“1” to “-”, is token, (3) no transition in the complementary
program is token since the current complementary state is
“{}”, and the next state of the complementary program is “{2}”,
where the complementary state “2” is activated by the main
DFA transition token above, whose label ends with a “{2}”.
Alas, the third DFA/EC state is “(-){2}”.

For the third input character ‘K’, (1) the extra bit is set to
since, in the complementary program (Fig. 2), the transition
labeled by “K” is token, and (2) the main DFA transition,
which is labeled by “K(T)” and is from states “-” to “3”, in the

main DFA is token, and (3) the next state of the complemen-
tary program is “{}” since no complementary state is activated
either on the main DFA transition, or by the transition taken
by the complementary program. Thus, the fourth DFA/EC
state is “ ”.

We have illustrated how the main DFA and the comple-
mentary program interact with each other. We will define a
formal model for DFA/EC and will show the equivalence
between DFA/EC and DFA in Section 4. An efficient imple-
mentation of DFA/EC will be presented in Section 5.

4 THE FORMAL MODEL OF DFA/EC
This section presents a formal model of DFA/EC and dis-
cusses the correctness of DFA/EC in terms of its equivalence
to a DFA.

A DFA/EC is a novel model of automata that generalizes
the conventional DFA. We denote as the set of
simultaneously active sets of main states, as the set
of simultaneously active sets of complementary states, as
the original character-set (or alphabet), as the extended
character-set, and as the set of conventional DFA states. For
any state in aDFA, a semantically equivalent DFA/EChas a
corresponding state , such that , , and

.Here, is a state of themainDFA, and is a state
of the complementary program. That is,

is the set of states of the main DFA, and
is the set of states of the com-

plete program. A DFA/EC can be defined by
, with the following functions:

For each byte in the packet payload, a DFA/ECwith
its current state being functions as the following:
(1) Function generates an extended character by
using and . (2)With and , function generates a pair
of partial states, , where is the next state of the main
DFA. (3) With and the original character , function
generates another partial state , and is the next
state of the complementary program.

In our implementation, the transition function of the main
DFA, , is implemented by a transition table; and are
implemented by the complementary program, which only
contains several efficient instructions.

Theorem 1 (The Equivalence between DFA and DFA/
EC). For any DFA, there exists an equivalent DFA/EC.

Proof. If we let be the transition function of a
DFA, we need to prove that for any DFA, there is an
equivalent DFA/EC, as defined by Equation 1. Firstly,
the DFA defined by can be equivalent to
another form of DFA , with

, , and being
transition functions:
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The equivalence holds as long as, for any , there
exist , and , such that

. Here,
we regard and as sets of simultaneously active
NFA states, and is a transition function, which
returns the set of newly active NFA states in that is
activated through transitions from the set of previously
active states on character . Equally, , and

are transition functions that return the sets of newly
active NFA states in that are activated through
transitions from the sets of previously active NFA states in

, , , respectively. Obviously, these functions exist
and can be easily constructedwith theNFA corresponding
to the DFA .

In the following,we are going to construct aDFA/EC in
terms of the functions , and . Since we only
need to prove the existence of such a DFA/EC, we simply
assume that , and we use a trivial function

. Also, we break into two functions:
and . Then, we can

define the functions in DFA/EC as follows:

Recall that for each byte , a DFA/EC updates its state
with the following functions:

Therefore, for a new DFA/EC state :

As a result, for any DFA, there is an equivalent DFA/
EC. ◽

In the above proof, we used trivial definitions for function
and its range , but the size of the extended character-set

can be very large. To reduce and pre-
serve functional equivalence, we can use other definitions for

and , as long as the following equations are true:

Lemma 1 summarizes the conditions when a DFA/EC is
equivalent to a DFA. It will be used in Section 5 to prove the
correctness of the efficient DFA/EC implementation.

Lemma 1 (The DFA/EC–DFA Equivalence Conditions). For
a DFA defined by and its equivalent form

(see Equation 2), and a DFA/
EC defined by , the equivalence
conditions are:

Proof. It follows from the proof of Theorem 1. ◽

5 AN EFFICIENT IMPLEMENTATION

5.1 Overview
We have presented the formal model of DFA/EC, which
removes part of a DFA state and incorporates this part along
with the set of input characters into the extended character set.
However, thismodel does not ensure a reduction in the size of
the transition table. For instance, if we define
and , the increase in the size of the
extended character set can bemore significant than
the decrease in the number of states , i.e., it is always true
that .

This section presents an efficient implementation of DFA/
EC,which contains an encodingmethod. The encodingmeth-
od encodes the complementary state into a single bit so that
the size of the extended character set merely doubles as the
number of states drops by orders of magnitude. Specifically,
we define B, which uses a single bit to
encode the current state of the complementary program,
given the next byte in the payload.

The efficient implementation of DFA/EC consists of (1) a
compact main DFA of size , which requires only
onemainmemory access in its transition table for each byte in
the payload, and (2) a complementary program that is effi-
cient and runswithout table lookup in themainmemory, and,
as a result, no main memory access is required. Here, the
complementary program is very succinct so that, together
with the main DFA lookup program, it can be stored entirely
in the cache memory or in the on-chip memory.

The key challenges in our implementation lie in the selec-
tion of the set of complementary states such that (1) the
number of states of the main DFA is small, (2) we can
encode the complementary state into a single bit, and (3) the
equivalence condition in Theorem 1 holds. This section pro-
vides the solutions to the above challenges.

5.2 Two Constraints on the Complementary States
In order to encode the complementary state into the extra
bit, we put two constraints on the selection of the comple-
mentary states, which are named the conflicting constraint and
the binary constraint. The purpose of these constraints is to
reduce the range of function , which is also the size of the
extended character-set . Otherwise, a large extended char-
acter-set would undermine the advantage of reducing the
number of states in the main DFA.

We define a function , which returns the set of
total characters on all of the transitions froma complementary
state to the main states in . In Fig. 1, for all of the
complementary states 2, 6, and 7, , and

.

Definition 1 (Non-Conflicting Complementary Set). A
complementary set is non-conflicting if

, for any .
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Since all pairs of and are disjoint for
when is non-conflicting, for any , there

is at most one such that . As a result, we can
define a reverse function of as:

With being non-conflicting, we define the extended
character-set as B and function

B as:

where B is the boolean set, ( ) is the
current state of the complementary program, and

is a true function that returns either true or false
( ), depending on whether the enclosed condition is satis-
fied. Here, means that, on character , there is a
transition from a state to some states in .

The underlying idea of the non-conflicting constraint is as
follows. When the current state of the complementary pro-
gram , the current state of themainDFA has a single
next state for each character . When can have
multiple next states , where contains the next
main states that are activated by the current main states in ,
and contains the next main states that are activated by the
current complementary states in . For a given and is
unique. However, with an arbitrarily selected , for a given

can have different elements depending on the current .
Fortunately, under the non-conflicting constraint, for a given
, there can be at most one complementary state in that
has a transition to one or severalmain states, . Thismeans
that, regardless of , for a given if is active, and

otherwise. As a result, for each and , there is no
more than two next states of (i.e., and optionally

), and we can logically regard that the size of the
extended character set is .

Theorem 2 (The Correctness of ). With the set of
complementary states being non-conflicting and as
defined in Equation 5, there exists a function

such that the DFA/EC has an equivalent DFA.

Proof. Following the result of Lemma 1, let
, it is sufficient to prove that

.
Let and .

Then, we only need to prove that
. We define as

Since is non-conflicting, for a given , there is at most
one ( ) transition to a set of one or more
main states. In the case that does not exist,

, and . In the case that

because is the only active complementary state
in that has transitions to some states in on character .
To sum up, re-
gardless of the value of . ◽

For the efficient implementation of DFA/EC, we have
one more constraint on the selection of the complementary
states .

Definition 2 (Binary Complementary Set). A complementary
set is binary if each can transit to at most one other
state in .
Note that the binary constraint is in terms of the transitions

within , while the non-conflicting constraint, defined
previously, concerns transitions from states in to states
in .

5.3 Determine the Complementary States
As discussed in Seciton 3, some NFA states are more likely
to cause state explosion if they are included in a DFA
implementation. To get a compact main DFA, we try to
systematically identify those NFA states and add them to
the set of complementary states . It is inefficient tofind the
optimal that minimizes since it requires the enumera-
tion of all possible combinations of and the calculation
of the corresponding , which has a complexity of

.
In our previous work [22], we proposed a heuristic that

uses scores to determine the candidates in the complemen-
tary states, where the score of each NFA state is based on
the size of the character sets on its incoming transitions. In
this paper, we propose a more precise method to deter-
mine the complementary states, which is named the inde-
pendent-state method.

There are two steps in the selection of the complemen-
tary states. The first step is to estimate the extent to which
each NFA state causes state explosion. The second step is
to determine the complementary states based on the results
in the first step and the two constraints that were intro-
duced in the previous subsection. We start with the
first step.

Definition 3 (Independent NFAStates). Two NFA states are
independent if they can be active independently. Specifically, two
NFA states, and , are independent if there exist three active
sets, and , such that , and
both and .

Algorithm 1 Determine the complementary states

1: the maximum size of

2:

3:

4: define

5: , sorted by decreasing , .

6: for each

7: move from to

8: if ( is the non-conflicting and binary)

9: if return

10: else

11: move from back to
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In otherwords, if twoNFAstates, and , are independent,
can be active or not, regardless of the status of , and vice

versa.On the other hand, if and are not independent, and
either (1) cannot be active at the same time, or (2) one of them

can only be active when the other is active.
Since the number of DFA states depends on the number

of possible combinations of NFA states that can be
active concurrently, thenumber of states of aDFAconstructed
from an NFA depends on the level of independence among
the states in the NFA: (1) if every pair of states in the NFA is
not independent, the size of the DFA equals that of the
NFA, and (2) if every pair of states in the NFA is indepen-
dent, the size of the DFA is , where is the size of
the NFA.

We measure the level of independence of an NFA state
among other NFA states by using the number of times it
appears in a pair of independent states, which we call the
independent number of the state. It is not easy to enumerate all
pairs of independent states directly. Because of this, we first
list all pairs of states that can be concurrently active, and then
remove from them the pairs of states in which one state is
always active while the other state is active.

A pair of NFA states, and , can be concurrently active if
one of the following conditions is true: (1) and are initially
active, (2) has a transition from state on character has a
transition from state also on character , and either or
and can be concurrently active.

A pair of NFA states, and , inwhich one is always active
while the other is active, is a pair of states where one of the
following conditions is satisfied: (1) is always active, or (2)
has transitions to , and for each character onwhich there is a
transition from to , there is also a transition on from to
itself. An always active state is one that is initially active and
has a transition to itself on every character. Note that the
above two conditions are not inclusive, but they covermost of
the cases.

In Table 2, we show the independent number for each state
in the example NFA from Fig. 1. In this table, if we sort the
NFA states in terms of their independent numbers and the
number of cases that each NFA state duplicates the states in
the corresponding DFA, respectively, we will find that the
two resulting lists are the same. This example shows that we
can use the independent number as a good suggestion for the
priority in which each NFA state is selected into the set of
complementary states.

The complementary states selection algorithm is listed
in Algorithm 1. In a nutshell, this algorithm greedily
adds NFA states with large independent numbers into the
set of complementary states , as long as the non-
conflicting constraint and the binary constraint are satisfied.
Considering the non-conflicting constraint, which requires
that two states that have transitions to the states in on the
same characters cannot co-exist in , we divide the inde-
pendent number of each state by the number of ’s transi-
tions to the states in as a penalty for the states that might
potentially exclude a large number of other states from . At
first glance, the non-conflicting constraint may make many
NFA states ineligible to . Fortunately, using the method
above, the non-conflicting constraint excludes few states from

in practical rule-sets with a large number of regular
expressions.

The complexity of the complementary selection algorithm
is , which is the complexity in the calculation of the
independent numbers. The complementary selection algo-
rithm is neglectably fast compared to that of the DFA con-
struction algorithm, , which is a part of the DFA/EC
construction algorithm.

5.4 The Efficient Complementary Program
Recall that in our DFA/EC, defined in Equation 1, function
is implemented by a transition table and a lookup function,
and functions and are implemented by the complemen-
tary program.

We show the implementation of function first, which is
followed by . From Theorem 1, it is required that
for the equivalence of DFA/EC andDFA. Firstly, if the binary
constraint is satisfied, the states in can be arranged such
that, if there is a transition from to , then .
Secondly, we represent the states in with an array of bits,
andweuse the thbit to represent state ,whichmeans that
cannot have transitions to any state in except for .
Thirdly, we can represent the transitions within with two
sets of bit masks, and . For each character

and are the bit masks for . The th bit in
being one means that state has a transition to itself on
character , and the th bit in being onemeans that state

has a transition to state on character . Let be
represented by a bit array with the th bit being one or zero
representing whether state is active; then, the next comple-
mentary states that are activated by the current complemen-
tary states can be calculated by

, where are the bitwise AND, OR,
SHIFT operations, respectively. Clearly, implements
the transitions within .

Similarly, we define another set of bit masks for
different , and the th bit in being one means that
the state has a transition to some main states in on
character . Then, .
The masks , and of the DFA/EC in Fig. 2 are
shown in binary digits in Table 3(b–d), respectively.

Algorithm 2 The DFA/EC simulator

1:

2:

3:

The main DFA, which implements function , contains a
lookup program and a transition table with its two
dimensions being the state indexes of the main DFA and the
extended character-set. Each entry in the transition table is

,where is the nextmainDFA state, and is part of the
next complementary states activated by the current main
states. can be represented by a bit-array, and can also
be represented by an index to save space since the number of

is very limited in practice. The pseudo code for the execu-
tion of a DFA/EC is listed in Algorithm 2, where and
are the new DFA/EC state, and is the extra bit that repre-
sents the value of function . The concatenation is the
extended character created from and .
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Algorithm 3 The construction of the main DFA table

1: the set of conventional DFA states

2: for each ( in )

3:

4: for each ( in )

5:

6:

7:

8:

9:

5.5 The Construction of DFA/EC
The data structures needed to be constructed for a DFA/EC
are: the main DFA table , the sets of bit-masks ,
and . The construction of the main DFA table, which
implements function , as defined in Equation 6, is shown
in Algorithm 3, where we regard each DFA state as a set of
NFA states and assume to be a function that returns the next
set of active NFA states, given the current set of active NFA
states and the next byte. We use all states in a constructed
conventional DFA to determine the possiblemainDFA states,
because not all of the combinations ofmain states in can be
simultaneously active.

The transition table of the main DFA and the masks
, and of our example DFA/EC in Fig. 2 are

shown in Table 3. In Table 3(a), the first column shows the
indexes of the states in the main DFA, the second column
shows the sets of simultaneously active main states repre-
sented by the main DFA states, and all of the remaining
columns are transitions. Each cell in the transition table
consists of three values, which are the results of the functions

, and , respec-
tively. As we can see in Table 3(a), values of
and are represented by indexes, and they are
equal in most cases. Values of are shown in
binary digits, and there are only three different values (i.e.,

, and ). This shows that there is room for
further compression in DFA/ECwith transition compression
techniques [12].

5.6 Overhead in Storage and Computation
Let us first discuss the memory storage requirement and the
memory bandwidth of DFA/EC. The size of the main DFA
table depends on the number of states in the main DFA, the
size of the extended character-set , and the encoded size of
each transition entry, i.e., . Let the number of states in
themainDFAbe ; the bits required to encode the index for

is .Note that the value of
is irrelevant to the value of , and it can ideally be

stored once for each . In practice, we do not have to represent
explicitly as a bit-array of length since the set of all

possible values of , which can be represented by a set of bit-
arrays, denoted by , are very limited in number, and we
can use the index of in to represent . Therefore, the
total size of the transition table is

bits, and the memory bandwidth is
bits. A DFA/EC needs to maintain

its current state, i.e., , which takes
bits.

Secondly, we discuss the computation overhead of DFA/
EC down to the level of individual instructions. From
Algorithm 2, for each byte in the payload, DFA/EC performs
the following instructions: a single access to the transition
table in the main memory, a multiple and an addition
instruction to calculate the offset in the transition table, a
right-shift and a bitwise and instruction to obtain and ,
three instructions to load bit-masks , and
from the on-chip memory or cache, three bit-wise and in-
structions, four bit-wise or instructions, a zero-test instruc-
tion, anda right-shift instruction toobtain and .To sumup,
there are one main memory access and 16 other instructions:
three cache accesses, one integer multiple, one integer addi-
tion, four bit-wise and, four bit-wise or, two right-shift, and
one zero-test.

In general-purpose processor architectures, themainmem-
ory access is often the bottleneckdue to the ever-wideninggap
between the speed of processor and memory. Therefore,
significant speed up of DFA/EC can be expected in multi-
core single-memory platforms and in cheap platforms with
limited cache. DFA/EC can also be implemented in hardware
architecture, such as an FPGA coupled with a memory bank.
The simple logic needed to implement inDFA/ECreduces the
need for LUTs compared to anNFA,which can lead to higher
operating frequencies. The parallelism available in hardware
allows the processing of the instructions inAlgorithm5.4 to be
completed in one memory cycle.

TABLE 3
Tables for the DFA/EC in Fig. 2; Numbers with Subscript Are Binary Numbers
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6 EVALUATION

In our experiment, we endeavored the following efforts:
Firstly, we developed several compilers, which read files of
rules and created the corresponding inspection programs and
the transition tables for DFA,MDFA [1], H-FA [9], and DFA/
EC. Secondly, we extracted rule-sets from the Snort [6], [7]
rules. Thirdly, we developed a synthetic payload generator.
We generate the inspection programs for the rule-sets, mea-
sure their storages, and load themwith the synthetic payloads
to measure their performances.

We compare with DFA andMDFA [1]. MDFA divides the
rule-set into groups and compiles each group into a distinct
DFA. Although our algorithm can be combined with MDFA,
i.e., we can replace the individual DFAs in a MDFA with
DFA/ECs, we compare our algorithm with this widely
adopted algorithm to show the efficiency of our method in
terms of storage, memory bandwidth, and speed. We com-
pare with 2DFA, 4DFA, and 8DFA, which are MDFAs with
2, 4, and 8 paralleled DFAs, respectively.

Since our algorithm is for state compression, we do not
compare our algorithmwith other types of algorithms that are
orthogonal and complementary to our algorithm, such as
transition compression [2] and alphabet compression [12].
We will examine how well DFA/EC can be combined with
them in the future. We do not show the results of H-FA [9]
because, with our rule-sets, it has very large numbers of
conditional transitions per character, which results in signifi-
cant memory requirement and memory bandwidth. We did
not implement XFA [20] because the XFA compiler, which
employs complicated compiler optimization technologies, is
not available.

6.1 Evaluation Settings
Our compilers contain a regular expression compiler. All Perl-
compatible features, except back-references and counters, are
supported. Our compilers output C++ and Java files for
NFAs, DFAs, H-FA, and DFA/ECs. The construction of the
DFA/ECs is as efficient as the construction of DFAs.

We extracted rule-sets from Snort [6], [7] rules.1 Rules in
Snort have been classified into different categories. We adopt
subsets of the rule-set in five categories, such that each rule-
set can be implemented by a single DFA with less than 2GB
of memory. Almost all patterns in our rule-sets contain
repetitions on large character-sets. Since counter-constraints
are not supported, we replace all counter-constraints with.
enclosures.

Each payload file consists of payload streams of 1KB, and
the total size of each payload file is 64MB. To generate a
payload stream for a rule-set, we travel the DFA of the whole
rule-set. We count the visiting times of each state and give
priority to the less-visited states and non-acceptance states.
This traffic generator can simulate malicious traffic [23],
which prevent the DFA from being traveled only its low-
depth states, as it does in normal traffic. We do not show the
results with normal traffic since they result in similar perfor-
mances across all inspection programs, as only a small num-
ber of shallow states are traveled in normal traffic.

6.2 Results on Storage Size
We measure the memory requirement of each inspection
program in terms of (1) the number of states, (2) the number
of transitions, and (3) the bits needed to store the transitions.
Ideally, the number of states determines the number of bits
required to encode a state index. As shown in Table 4, the
number of states in a DFA/EC can be four orders of magni-
tude smaller than that of a DFA, two orders of magnitude
smaller than a 2DFA, an order of magnitude smaller than a
4DFA, and comparable to that of an 8DFA. The significant
reduction is due of the removal of the frequently active
complementary states in DFA/EC, which otherwise causes
the exponential expansion in the number of DFA states.

The number of transitions is the sum of the numbers of
transitions of each state. The number of transitions of each
state is measured by the number of distinguished states it can
transit to. In other words, we measure the minimum possible
number of transitions with the optimal transition encoding
technique, which is not our focus. As shown in Table 6, the
number of transitions of DFA/EC can be four orders of
magnitude smaller than that of a DFA, two orders of magni-
tude smaller than a 2DFA, 3 times smaller than a 4DFA, and
comparable to that of an 8DFA.

Wemeasure the total minimummemory (storage) require-
ment of the transition tables in termsof bits, and the number of
bits is theproduct of thenumberof transitions and thenumber
of bits needed to encode each transition. ForDFA,MDFA, and
DFA/EC, the number of bits needed to encode each transition
are , and ,
respectively. Here, is the set of DFA states, is the set of
DFA states in the th DFA of a MDFA, is the set of main
DFA states of a DFA/EC, and is the set of masks of a
DFA/EC required to implement the transition function .
As shown in Table 7, the transition storage of a DFA/EC can
be four orders of magnitude smaller than that of a DFA, two
orders ofmagnitude smaller than a 2DFA, and 2 times smaller
than a 4DFA.

Finally, we measure the sizes of the per-flow state of the
inspection programs in terms of bits and words. In terms of
bits, the per-flow states for DFA, MDFA, and DFA/EC are

, and , respectively.

TABLE 4
The Total Number of States (Percentage to DFA)

TABLE 5
The Size of the Per-Flow State (Bits)

1. We use the rule-sets released Dec. 2009. We expect that similar
experimental results will be observed using newer rule-sets.
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Here, is thenumber of complementary states in aDFA/EC.
As shown in Table 5, DFA/EC has a small size per-flow state
in terms of both bits and words.

6.3 Results on Memory Bandwidth and Speed
Memory bandwidth is the amount of memory accesses per
byte in the payload, which we measure in terms of bits. The
memory bandwidths of DFA, MDFA, and DFA/EC are

, and , re-
spectively. Fig. 3 shows that thememory bandwidth of DFA/
EC is very close to that of DFA and is much smaller than
MDFAs. Moreover, It is exciting to see that the memory
bandwidth of DFA/EC can even be smaller than DFA in
rule-sets exploit-19 and web-misc-28. Memory bandwidth
suggests the amount of information about a transition that
the inspection program needs to obtain from the transition
table. The reason that DFA/EC sometimes have a smaller
memory bandwidth than DFA is that the complementary
program of a DFA/EC contains some of the transition infor-
mation that otherwise needs to be stored in the transition
table.

In Fig. 4, we show the number of main memory accesses
per KB of payload. DFA/EC and DFA have the minimum
number of main memory accesses, while those of MDFAs
increase in proportional to .

We measure the speed of the inspection programs with
both Java and C++ implementations in a Unix machine with
16GB of 1333 MHz DDR3 memory and a 2.66 GHz Intel Core

i5 CPU. Note that the speeds of the inspection programs
depend on the hardware and software on which they are
implemented. For example, with general-purpose processors
and ASIC hardware, they vary in their amounts of cache or
on-chip memory.

Results are shown in Figs. 5 and 6. In several cases, DFA/
EC is the fastest in both implementations, andDFA/ECcanbe
over 10 times faster than DFA and two times faster than
MDFA in Java.MDFA is fast because of its compact transition
table size and the relatively large amount of cache memory in
our platform.Webelieve thatDFA/ECwill bemore favorable
for the implementations onASIChardware orGPUs that have
less cache memory and more computation resources.

6.4 Summary
Our experiment results show that DFA/EC can be over four
orders ofmagnitude smaller thanDFA in terms of the number
of states and transitions. DFA/EC has a very small memory
bandwidth, even smaller than that ofDFA.DFA/ECalso runs
faster than DFA in a desktop PC.

TABLE 6
The Total Number of Transitions (Percentage to DFA)

TABLE 7
The Transition Storage (Bits/Percentage to DFA)

Fig. 5. Inspection speed (Java) with different rule-sets (milliseconds per
64MB).

Fig. 3. Memory bandwidth (bits) with different rule-sets.

Fig. 4. Memory accesses (times/KB) with different rule-sets.

Fig. 6. Inspection speed (C++) with different rule-sets (milliseconds per
64MB).
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7 CONCLUSION

In this paper, we investigated a general-purpose processor
and regular expressions-based deep packet inspection algo-
rithm, called deterministic finite automata with extended
character-set (DFA/EC). Unlike existing state reduction algo-
rithms, our solution requires only a single main memory
access for each byte in the traffic payload, which is the
minimum. We performed experiments with several Snort
rule-sets and synthetic payloads. Experiment results show
that DFA/ECs are very compact, they are over four orders of
magnitude smaller than a DFA in the best cases, has a smaller
memorybandwidth, and runs faster than aDFA. In the future,
we will study efficient DFA/EC construction algorithms
without using DFA, combine DFA/EC with the existing
transition compression and character-set compression tech-
niques, and perform experiments with more rule-sets.
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