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Evaluating  how  much  heat  is  lost  through  external  walls  is  a key requirement  for  building  energy  simula-
tors  and  is necessary  for quality  assurance  and  successful  decision  making  in  policy  making  and  building
design,  construction  and  refurbishment.  Heat  loss  can be estimated  using  the  temperature  differences
between  the  inside  and  outside  air and  an  estimate  of the  thermal  transmittance  (U-value)  of the  wall.
Unfortunately  the  actual  U-value  may  be different  from  those  values  obtained  using  assumptions  about
the  materials,  their  properties  and the structure  of the  wall  after a cursory  visual  inspection.

In-situ  monitoring  using  thermometers  and  heat  flux plates  enables  more  accurate  characterisation  of
the  thermal  properties  of walls  in  their context.  However,  standard  practices  require  that  the  measure-
ments  are  carried  out  in winter  over a  two-week  period  to significantly  reduce  the dynamic  effects  of the
hermal Mass
ayesian Statistics
eat Transfer

n-situ Measurements

wall’s thermal  mass  from  the  data.
A novel  combination  of  a lumped  thermal  mass  model,  together  with  Bayesian  statistical  analysis  is

presented  to  derive  estimates  of the  U-value  and  effective  thermal  mass.  The  method  needs  only  a  few
days of measurements,  provides  an estimate  of the  effective  thermal  mass  and  could  potentially  be  used
in  summer.

© 2014  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
. Introduction

Energy use in buildings accounts for approximately a third of
lobal primary energy consumption [1], half of which is used for
pace heating and cooling and hot water production. Ambitious
O2 reduction targets have been agreed internationally to miti-
ate climate change [2,3], such as the UK’s commitment to reduce
missions by 80% from 1990 levels by 2050 [4]. Reducing emissions
rom the built environment will be an essential component of these
trategies; forecasts show that the energy demand associated with
uilding use may  grow [1], but that aggressive policy actions could
otentially reduce the energy needs for space heating and cooling
y approximately 47%. Numerous models and software tools have
een developed to simulate the performance and energy demand

f the built environment [5]. Such simulations are used by policy
akers to inform large-scale long-term strategies to cut energy

onsumption in the built environment [6], or by professionals to
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assess the energy performance of dwellings [7–9], and evaluate the
cost-effectiveness of energy-saving measures during retrofitting
or building design. However, some studies have revealed a lower
than expected improvement in energy performance of the build-
ing envelope following retrofitting energy saving measures [10,11],
with significant impact on the cost effectiveness of intervention.

The energy performance of the building envelope may  be accu-
rately estimated for well-characterised systems [10,12]. For walls,
the required parameters include the thickness and in-situ thermal
performance of their constituent layers, whilst inaccuracies in these
quantities (e.g., thermal resistance and thermal mass) are a major
source of uncertainty in the energy performance simulations [12].
However, accurate identification of appropriate thermal properties
and thicknesses can be challenging for existing and new walls [12].
Tabulated values of thermal resistance and mass from the literature
or software libraries are generally used, plus estimated thicknesses
of the expected wall layers, following visual inspection. Significant

inaccuracies can result from simulation outputs utilising published
thermal values, as the range of thermal properties for visually simi-
lar materials can be large [13], for example the thermal conductivity
of concrete ranges from 0.76 to 1.37 W m−1 K−1 [14]. Similarly,

nder the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Nomenclature

R, R1, R2 Thermal resistance or R-Value, m2 K W-1

U-Value Thermal transmittance (=1/RTotal), W m-2 K-1

Tmass, Tint, Text Temperature of the thermal mass, of the air
near the interior and exterior of the surface of the
wall respectively, ◦C

Q Heat flow into the internal surface of the wall, W m-2

C Effective thermal mass of the wall, J m-2 K-1

� Time step duration between successive recordings,
s

p Time step index number. Data recording index. -
P() Probability distribution. -
Hi, D, I Hypothesis (the ith hypothesis), Data and back-

ground Information. -
stat,sys-W,sys-inst,sys+stat Indicates that the error is statistical;

systematic due to wind and moisture; systematic
due to instrumentation; systematic combined with
statistical. -

�W+TM,�W,�TM Uncertainty in the U-value due to wind, mois-
ture and thermal mass; due to wind and moisture
only; due to thermal mass only, W m-2 K-1
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3.1.1. Calculating the thermal properties using assumed material
stimating the internal structure of a wall by visual inspection, or
rom assumptions of the construction, introduces potentially sig-
ificant error into energy performance estimates [15]. In addition
o error in estimating the thickness of layers and their variabil-
ty across a wall, uncertainties include inhomogeneities in the
tructure such as thermal bridges, gaps in the materials and delam-
nation, air movement in cavities, moisture content, and local and
easonal environmental conditions [15–18].

Many errors associated with estimating thermal performance
rom published values and assumptions of wall structure may
e avoided by utilising in-situ measurements to estimate the
ctual thermal properties of building elements. In-situ estimates
f thermal performance may  also form part of construction qual-
ty assurance procedures [15]. The measurement of heat flux
nd nearby air or surface temperatures can be used to esti-
ate the effective thermal mass, thermal resistance (R-value), or

quivalently, thermal transmittance (U-value) [19] of walls. The
ombination of the effective thermal mass, as opposed to the total
hermal mass, and the thermal resistance is analogous to the com-
lex internal thermal admittance as used in frequency domain
nalysis of walls [20]. Such techniques account for uncertainty in
he thermal properties of elements of the wall, their thickness and
tate of conservation [15], but not of inhomogeneities in the wall
onstruction.

The estimation of thermodynamic parameters (i.e. R-value
nd thermal mass) of real building elements from the analy-
is of in-situ measurements is not commonplace, but in recent
ears considerable interest has been shown in such in-situ per-
ormance characterisation [13,15,16,21]. However, steady-state

ethods [22] are time consuming, seasonally bounded [23] and
im to eliminate the effect of thermal mass, rather than charac-
erise it; dynamic methods may  be used to provide more insight
nto building performance, and may  be applied in a wider range
f conditions. Studies have been carried out in outdoor test cells to
nform in-situ dynamic techniques through the PASSYS project and
he PASLINK Network by investigating the thermal performance
f well-known building components under real dynamic condi-

ions [24]. These projects have improved testing procedures and
he development of dynamic analysis methods for thermodynamic
arameter prediction.
uildings 78 (2014) 10–16 11

In this paper we propose a novel combination of a simple
lumped thermal mass model and Bayesian analysis that provides
the opportunity for the wider use of real data to assess the per-
formance of buildings in their environment and the impact of
interventions. The use of lumped capacitance models to infer ther-
modynamic properties of building elements is not new in the field
[25,26]. However, the proposed analysis technique provides some
advantages. Firstly, a significantly shorter measurement campaign
may  be possible in many conditions. Secondly, because Bayesian
analysis is used throughout, the statistical evidence for different
models of heat flow may  be compared. The method also provides
estimates of statistical uncertainties for the inferred parameters
and accounts for relationships between them. Thirdly, it enables
simultaneous characterisation of the effective thermal mass and
the R-value of the element, which is not possible with conventional
steady-state methods. Finally, the presented method utilises a sim-
ple model of the wall using only four unknown parameters, without
the need for additional assumptions on the component’s structure
and performance, unlike many more complicated dynamic models
[25,26]. These parameters may  be fully characterised with the typ-
ically recorded time series of internal and external temperatures,
plus heat flux on the inside face of the building component.

2. Case study and monitoring campaign

The dataset analysed in this paper was collected during the
winter of 2010 by the Building Services Research and Information
Association (BSRIA) as part of a study to investigate the U-values
of walls in occupied domestic properties [21]. Walls at 93 differ-
ent sites across England were monitored and were expected to be
solid (with no cavity or insulation). Measurements were collected
in accordance with ISO 9869:1994 [21,22]. Sensors were ideally
placed on north-facing walls to exclude the impact of solar radi-
ation on the external surface and away from internal sources of
heat [21]. Moreover, sensors were usually placed with reference
to structural features; however, sensor location was compromised
in some cases for the convenience of the occupants [21]. The wall
was instrumented with a heat flux meter (HFM) and thermistor
temperature sensors [22]; the data were averaged over 5 minutes
and recorded by Eltek 401 [27] data loggers. The HFM (Hukseflux
HFP01 [28]) was  placed on the inside surface of the wall. Silicon
grease was used to achieve good thermal contact between the HFM
and the wall surface, while a thin PVC film was  applied to protect
the wall surface. The thermistors were placed in the air near the
internal and external surfaces of the wall. Internally the temper-
ature sensor was  placed as close as possible to the HFM. Surface
mounted thermometers are often used to minimise deviations due
to air movements and wind [29]. However, fixed estimates of the
boundary layer resistances must then be incorporated into U-value
calculation. Appropriately placed air temperature thermometers
can be used to account for real environmental conditions adjacent
to the wall and better reflect the real in-situ U-values.

The data presented in this paper comes from a single wall in a
terraced house, which was typical of all the walls surveyed, it was
approximately 300 mm thick and of brick construction. Measure-
ments of the heat flux, Q, (Fig. 4) and air temperatures, Tint and Text,
(Fig. 5) were made over a 14-day period in February 2010.

3. Theory and calculation

3.1. Conventional methods
properties
Physical measurements of the individual components of the wall

were not made during the survey, however a rough identification
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f the bulk material (brick) and thickness (300 mm)  of the wall
as established. The likely range of R-values for the wall may  be

stimated, assuming [14]:

the brick is solid and the thermal conductivity lies in a typical
range in the literature: from 0.69 to 1.32 W m−1 K−1;
there is a thin layer (10 mm)  of plaster (gypsum) with a thermal
conductivity of 0.48 W m−1 K−1 on the inner surface of the wall;
the internal surface resistance is 0.13 W−1 m2 K;
and the external surface resistance is 0.04 W−1 m2 K.

The calculated R-values range from 0.626 to 0.418 W−1 m2 K,
orresponding to U-values between 1.598 and 2.392 W m−2 K−1.
he thermal mass per unit area of the bricks in the wall was
stimated as 403,200 J m−2 K−1, using a typical brick density of
600 kg m−3 and specific heat capacity of 840 J kg−1 K−1 [14]. Using

 typical density of gypsum of 1440 kg m−3 and a specific heat
apacity of 840 J kg−1 K−1 [14] gives a thermal mass per unit area of
2,096 J m−2 K−1. The total thermal mass per unit area of the wall

s therefore in the region of 415,296 J m−2 K−1.

.1.2. Direct computation: the average method
The average method [22] is a direct computation to estimate

he wall’s R-value. It assumes steady state heat flow where thermal
ass is neglected, as in Eq. (1):

 =
∑

(Tint − Text)/
∑

Q (1)

The duration of the measurement campaign, over which the
ums are performed, must ensure that thermal mass effects are,
n average, zero. Fluctuations in the internal and external air tem-
eratures during and immediately prior to the test will influence
he survey length. ISO 9869 [22] states that surveys can last from a

inimum of three days up to more than seven days. However, mon-
toring periods of around two weeks are commonly used to achieve
atisfactory results [13,23]; for heavyweight constructions, such as
asonry walls, longer periods may  be used. Changes to the direc-

ion of heat flow violate the assumption of steady-state behaviour
nd analysis of periods when such behaviour is likely, such as the
ummer, is not possible with the average method. Measurement
s generally undertaken during periods with a difference between
nternal and external temperatures of equal or greater than 10 ◦C
o decrease the impact of error on the results [16]; therefore the
verage method is typically only used during the winter heating
eason.

.2. Building simulation model

.2.1. Thermal models of the wall
A model of the heat flow is required to apply Bayesian tech-

iques to analyse the in-situ thermal measurements to estimate
he thermal properties of a wall. A unique set of model param-
ters that provide best fit to the heat flux data are determined,
ssuming that the model is a good description of all the physical
rocesses taking place. An analysis of two models is presented in
his paper: a no thermal mass model and a single thermal mass

odel to allow for a comparison between a model incorporating the
verage methodology and a model incorporating a thermal mass.

.2.1.1. The no thermal mass (NTM) model. The average method of
alculating the thermal resistance assumes that over a sufficiently
ong period the thermal mass in the wall has no impact on total

eat flow [22]. A simple model of heat flow through a wall incor-
orating this assumption was developed, the “no thermal mass”
NTM) model, where a homogeneous heat flow through the wall
esults from instantaneous changes in temperature. The predicted
Fig. 1. Schematic diagram, not to scale, showing the electrical equivalent circuit
for  heat transfer through the wall for the STM model and the arrangement of the
thermometers and heat flux plate.

heat flux per unit area (Q) entering the wall at any given time is the
difference in the internal (Tint) and external (Text) temperatures
divided by the thermal resistance parameter, the R-value (R):

Q = (Tint − Text) /R (2)

The NTM model has one unknown parameter, R; estimated
R-values can be substituted into Eq. (2) and combined with tem-
perature measurements to predict the heat flux flowing through
the wall.

3.2.1.2. The single thermal mass (STM) model. The single thermal
mass (STM) model represents the heat flow from the room to the
exterior through a wall containing a lumped thermal mass as illus-
trated by Fig. 1. Heat may  be stored or released from the thermal
mass creating a time shift and a change in amplitude of the response
of the predicted heat flux.

The STM model incorporates four unknown constant parame-
ters:

• the unit area thermal resistance between the internal air and the
thermal mass (R1);

• the unit area thermal resistance between the thermal mass and
the external air (R2);

• the magnitude of the thermal mass per unit area (C);
• the temperature of the thermal mass at the start of the measure-

ments (Tinitial
mass ).

The constant instantaneous heat flow (Qp) from the internal air
to the thermal mass during one time step p is calculated using the
steady state heat flow equation:

Q p =
(

Tp
int − Tp

mass

)
/R1 (3)

The temperature of the thermal mass (Tp
mass) is initialized to

Tinitial
mass . The duration of each time step (�) is the time difference

between readings of the data logger, which for the case study data
is 5 min. In order to calculate the heat flow in the next time step
(p + 1), the heat flow balance forward-difference equation is used
[14]:

C
Tp+1

mass − Tp
mass

�
= Tp+1

int − Tp+1
mass

R1
+ Tp+1

ext − Tp+1
mass

R2
(4)

Rearranging Eq. (4):
Tp+1
mass =

Tp+1
int
R1

+ Tp+1
ext
R2

+ C
Tp

mass
�

1
R1

+ 1
R2

+ C
�

(5)



 and B

t
t
r

3
a
3
t
f
o

p

w
t
o
(
d
p
e
i
n
a
p

fl
e
p
t
f
p
m
i
b
b

m
d
e
t

3
p
t
c
c
b
T
a
o

•

•

•

method [21] of taking the point at which U-values vary by less than
1% over a 24 h period as a simple measure of model stability, the
STM model achieves stability after 3 days, compared to 10 days for
the NTM model (Fig. 2). This definition of stability does not account

Fig. 2. The evolution of estimated U-values as a function of the amount of data used
P. Biddulph et al. / Energy

For any set of parameters R1, R2, C and Tinitial
mass , combined with

ime series data for the internal and external air temperatures,
he heat entering the wall surface time series can be predicted by
epeatedly applying Eqs. (3) and (5).

.2.2. Estimation of the thermal parameters using Bayesian
nalysis
.2.2.1. Bayesian analysis for parameter prediction and model selec-
ion. Bayesian analysis was used to estimate the most likely value
or the unknown NTM model parameter (R) and of the combination
f unknown STM model parameters (R1, R2, C, Tinitial

mass ).
Bayes’ theorem [30] states that:

(Hi|D, I) = p(D|Hi, I)p(Hi|I)
p(D|I) (6)

here p(Hi|D,I) is the posterior probability, the probability dis-
ribution over the parameters of the hypothesis (Hi) given the
bserved data (D) and any previous knowledge about the wall
I); p(D|Hi,I) is the likelihood function, the parameter probability
istribution of obtaining data (D) given the hypothesis (Hi); and
(Hi|I) is the parameter prior probability distribution of the hypoth-
sis. The selection of prior probability distributions of parameters
s discussed in Section 3.2.2.2. p(D|I) is the evidence, which is a
ormalisation factor that is independent of the hypothesis. In the
nalysis presented in this paper the hypotheses (Hi) and their
arameters are either NTM(R) or STM(R1, R2, C, Tinitial

mass ).
The likelihood distribution was calculated using the actual heat

ux measurements and the model predictions assuming Gaussian
rrors. Bayes’ theorem was then used to calculate the posterior
robability distribution by multiplying the prior probability with
he likelihood distributions. The posterior probability distributions
or both models were explored using the CERN MINUIT software
ackage [31], which minimises a chi-squared function to find the
aximum of a distribution over the multi-dimensional surface of

ts parameter space. The position maximum of the posterior gives
est estimates of the parameters values, whilst the error matrix can
e calculated from the covariance matrix.

Bayesian hypothesis testing [30] between the NTM and STM
odels was undertaken using the odds ratio, which uses the prior

istributions, the maximum of the posterior distribution and the
rror matrix to calculate the ratio of the probability of obtaining
he measured data for each model.

.2.2.2. Prior probability distributions. The prior knowledge of
arameters in the NTM and STM models is limited. Ranges of typical
hermal resistance and thermal mass for brick built solid walls were
alculated in Section 3.1.1. However, the structure and materials
omprising the walls monitored in the BSRIA study were identified
y visual inspection and not confirmed through measurement [21].
herefore flat, non-informative prior probability distributions, over

 wide range of reasonable values have been adopted to account for
ur relative ignorance of the thermal properties of the wall:

the unit area thermal resistances, R (from NTM), R1 and R2 (from
STM), are greater than zero and less than an arbitrary large value
of 3.0 W−1 m2 K, more than 4 times the calculated value from
Section 3.1.1;
the effective thermal mass per unit area (C) is greater than zero
and less than an arbitrary large value of 2,000,000 J m−2 K−1, more
than 4 times the expected total thermal mass value from Section
3.1.1;

the initial temperature of the thermal mass (Tinitial

mass ) is greater
than −5 ◦C and less than 30.0 ◦C. This range exceeds the lowest
observed external temperatures and highest internal tempera-
tures, as illustrated by Fig. 5.
uildings 78 (2014) 10–16 13

4. Results and discussion

4.1. R-value (and U-value) estimation and evolution

An R-value of 0.862 ±0.001stat W−1 m2 K was  estimated using
the NTM model over the monitoring period and includes a
correction for the HFM thermal resistance (0.000625 m2 KW−1

[28]), only statistical error is shown, error from other sources
is discussed in Section 4.2. The corresponding wall U-value is
1.161 ± 0.001stat W m−2 K−1, the average method estimate is also
1.16 ± 0.06 W m−2 K−1. The four parameters for the STM model and
statistical errors were estimated to be:

• R1 = 0.228 ± 0.001stat m2 KW−1

• R2 = 0.640 ± 0.001stat m2 KW−1

• C = 224,256 ± 2,500stat J m−2 K−1

• Tinitial
mass = 12.17 ± 0.03stat ◦C

Combining R1 and R2 and subtracting the thermal resistance of
the HFM gives a total R-value of 0.867 ± 0.002stat m2 KW−1, equiv-
alent to a U-value of 1.153 ± 0.002stat W m−2 K−1. As expected the
long term R- and U-values estimated through the NTM and STM
models are similar, although outside the statistical error as they
represent different physical models (without and with thermal
mass). The statistical error is small as it represents the error in the
estimation of the parameters that best fit a large amount of data,
recorded every 5 min  over a 14 day period.

4.2. Evolution of U-values and systematic errors

Fig. 2 shows the evolution of the U-value over time for the
NTM and STM models, as the amount of data collected and used in
the calculation increases. U-value estimates using the NTM model
oscillate on a daily basis, responding to the diurnal temperature
changes, whereas the STM model produces more stable U-value
estimates. Stability in U-value estimates may  be achieved once the
effects of thermal mass have been either accounted for directly
(STM) or indirectly through averaging (NTM). Using the BSRIA
for  the NTM model (dashed line) and the STM model (solid line). The magnitude
of  the statistical error is also shown as a shaded band around each line. This error
reduces to very small values after a very short period of time. The vertical lines
indicate the first time that the previous 24 h of U-values are within ±1% of the
present U-value: 10 days for the NTM model and 3 days for the STM model.
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Fig. 3. Plot of the U-value calculated using just the previous 4 days of measure-
ments. The hatched area indicates the running in period of 4 days. The dashed and
solid curves represent the running 4 day U-value for the NTM and STM models
respectively. The error on the running U-value for both models is very small, only
just  wider than the thickness of the curves and is therefore not shown. The light
grey band with the dashed horizontal line represent the standard deviation and
mean of U-values for the NTM model and the dark grey band and solid horizontal
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describing the observed data may  be obtained. This ratio, the odds
ratio, embodies Occam’s razor and may  be used to select the model
with the greatest likelihood of describing the observed data [30].
The odds ratio for the ability of the STM compared to the NTM
ine  represents the standard deviation and mean of the U-values for the STM model.

or other physical effects that may  cause changes to the estimated
-values over different timescales, such as changes to the wind
lowing across the wall [32], the influence of air movement due to
eating or ventilation systems or to the moisture content of the wall
onstituent materials [33]. The technique developed here may  be
sed to investigate the impact of such physical issues on U-values.

Fig. 3 shows the variation of U-values estimated from 4 day
olling periods, a timespan over which the diurnal thermal mass
ffects should be adequately characterised by the STM model. U-
alues estimated from both the NTM and STM models vary across
he measurement period, with a mean and standard deviation
f 1.149 ± 0.056stat W m−2 K−1 and 1.156 ± 0.030stat W m−2 K−1

espectively. Interpreting deviations in U-value as the effect of ther-
al  mass plus physical changes such as variations in wind and
oisture, the systematic errors associated with U-value estimation
ay  be estimated.
If deviations in the NTM model result from thermal mass

ffects in addition to physical changes such as wind and mois-
ure (�W+TM), whilst deviations in the STM model only result from
hysical changes (�W), the contributions from thermal mass effects
ay  be determined. Assuming statistical independence, thermal
ass deviation (�TM) is estimated (�TM =

√
�2

W+TM − �2
W ) to be

.047 W m−2 K−1, larger than the deviation due to physical changes
primarily wind and moisture) of 0.030 W m−2 K−1. The effect of
hermal mass on the NTM model may  be reduced to less than 1%
y recording data for longer than 10 days.

Instrumentation error is estimated from the accuracy of the
FM measurements (±5% [28]), and the resolution of the ther-
ometer measurements (±0.1 ◦C [27]) to be ±0.051 W m−2 K−1.

ombining error estimates, the most likely U-value for the NTM
odel after the 14 day measurement period U-value is 1.161 ±

.001stat ± 0.030sys-W ± 0.051sys-inst = 1.16 ± 0.06sys+stat W m−2 K−1,
hilst that for the STM model after the 14 day measurement
eriod U-value is 1.153 ± 0.002stat ± 0.030sys-W ± 0.051sys-inst =
.15 ± 0.06sys+stat W m−2 K−1. There are a number of other poten-
ial sources of systematic error that are not quantified in these

rror estimates. These include non-one-dimensional heat flow,
adiation effects on thermometers and heat flux meters, very
ong term changes in wall moisture content and temperature
uildings 78 (2014) 10–16

dependant changes in the thermal properties of the wall. This list
is not exhaustive.

4.3. Comparison of U-values estimates

Calculated U-values based on assumed properties of the wall
studied range from 1.598 to 2.392 W m−2 K−1 (Section 3.1.1),
whereas those estimated by the average method, NTM and STM
models are 1.16 ± 0.06 W m−2 K−1, 1.16 ± 0.06sys+stat W m−2 K−1

and 1.15 ± 0.06sys+stat W m−2 K−1 respectively. In-situ measure-
ments suggest that the thermal performance of the wall is
significantly better (>37%) than revealed by simple calculations,
which could be caused by differences in wall structure or material
properties, neither of which may be identified by visual inspec-
tion. The STM analysis method was used for all the walls in the
BSRIA sample showing a similar difference between U-values esti-
mated from simple calculations and in-situ measurements. The
predicted energy and cost savings associated with interventions in
this property, such as retrofitting with solid wall insulation, could
be significantly over-estimated by the use of the simple calculation
leading to a longer than expected payback period. We  are currently
analysing the full sample of 93 properties to investigate these issues
further.

4.4. Dynamic performance of models

U-value estimates for the NTM and STM models are very simi-
lar after all the data from the full 14 day measurement period are
used. However, Fig. 4 highlights the large differences in dynamic
heat flow predicted by the two  models. The NTM model does not
describe the heat flux data well, having a standard deviation of the
residuals (i.e. differences between the model prediction and mea-
surement) of 4.5 W m−2. The STM model describes the dynamic
heat flow much better than the NTM model, with a standard devi-
ation of residuals of 0.9 W m−2.

Eq. (6) shows that taking the ratio of the posterior probabilities,
p(Hi|D,I) (the probability that the hypothesis (Hi) is true, given the
observed data (D)) obtained through applying different hypotheses
(models), the ratio of the probability of those models accurately
Fig. 4. Measured (solid line) and predicted heat flux using NTM model (dotted line)
and  STM model (dashed line). A reduced time period is shown for clarity.
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ig. 5. Measured internal (solid line) and external (dashed line) air temperatures.
stimated thermal mass temperature predicted by the STM model is shown by the
otted line.

odel to describe the heat flux and temperature data is extremely
arge (102,757) and is partly attributable to the large number of data
oints analysed. Therefore, we can be certain that the STM model
etter characterises the heat flux data than the NTM model, owing
o the addition of the thermal mass.

.5. Wall structure and thermal mass

The STM model, whilst describing the heat flux data well, is a
reatly simplified model from the physical construction and envi-
onment of the actual wall, and subsequently the heat flow through
t. The STM model aggregates the effective thermal mass into a sin-
le point source component, as illustrated by Fig. 1, rather than
he continuum of thermal mass in a real wall. Application of the
TM model therefore yields an effective thermal mass which, in
ombination with the resistances, best describes the heat flux and
emperature data for a heat flux meter placed on the inside surface
f the wall. The thermal mass per unit area estimated through the
TM model is 224,000 ± 19,000sys-stat J m−2 K−1. As expected it is
ignificantly lower than that estimated using the thermal proper-
ies of the constituent components of the wall (415,296 J m−2 K−1,
ection 4.1.1). Fig. 5 shows the predicted thermal mass tempera-
ures: they are closer in magnitude to internal temperatures and
scillate diurnally and, as expected, are out of phase with both
nternal and external temperatures. The properties of the effective
hermal mass were further investigated by using R1 and R2 to esti-

ate the location of the thermal mass as a fraction of the total
esistance of the wall. The unit thermal resistances from the STM
odel R1 = 0.228 W−1 m2 K, R2 = 0.640 W−1 m2 K and the unit inter-

al and external surface resistances 0.13 and 0.04 W−1 m2 K [14]
espectively, were used. Assuming a homogeneous wall 300 mm
ide, the effective thermal mass per unit area is only 40 mm from

he internal surface of the wall (14% of the total thickness of the
all). This highlights that the dynamic internal thermal perfor-
ance of buildings is dominated by thermal masses closely coupled

o the interior air, in addition to sources and sinks of heat, and not
o the whole thermal mass of adjacent materials.

. Conclusions
A new technique for significantly reducing the monitoring
eriod required to estimate the thermal properties of building
lements using in-situ measurements has been presented and com-
ared to the conventional steady-state in-situ method and values
uildings 78 (2014) 10–16 15

calculated using assumed material properties for a case study wall.
Simple physical models of the building element, based on electri-
cal analogy, are combined with Bayesian analysis. The technique
may  be used to estimate thermal properties, including error esti-
mates, and to compare the probability that different models may
have produced the observed data. Two  simple models of the wall
have been compared: a single thermal resistance, no thermal mass
model (NTM) and a two thermal resistance, single thermal mass
model (STM). Further models of the wall could be tested, but the
STM model is the most complex that can be used to find unique
solutions for the parameters without the addition of extra moni-
toring equipment.

The conventional averaging method of estimating U-values from
14 days of in-situ measurements of heat flux, internal and exter-
nal temperatures gives 1.16 ± 0.06 W m−2 K−1, the same as the
equivalent NTM model and Bayesian estimation of the U-value:
1.16 ± 0.06sys+stat W m−2 K−1. The U-value estimated from the STM
model (1.15 ± 0.06sys+stat W m−2 K−1) is very similar to that from
the NTM model; values incorporate estimates of systematic errors.
As expected, the averaging method, the NTM and STM models give
similar results for all 93 walls measured during the BSRIA trials [21].

The STM model accounts for the impact of thermal mass on esti-
mated U-values after three days, compared to 10 days for the NTM
model: a significant reduction to the time required to thermally
characterise the wall. However, estimated U-values continued to
evolve after the values were first stable to within ±1% over 24 h.
The impact of changing heat transfer due to environmental factors,
such as changes to the wind or moisture, were investigated by cal-
culating rolling 4 day U-values with the STM model. Uncertainty
due to varying environmental conditions was estimated from the
standard deviation of these rolling U-values and is the largest con-
tribution to total error; extended monitoring periods may  be used
to characterise the performance of building elements accounting
for changes in environmental factors. The relatively short timescale
required to estimate U- and R-values using this technique makes it
well suited to investigating their potentially significant dependence
on environmental factors such as wind speed [32].

The STM model was able to reproduce the time evolving
heat flux entering the wall from the room more accurately than
the NTM model. The probability that the NTM and STM mod-
els accurately describe this dynamic data was  estimated through
the Bayesian Occam’s factor, providing very strong evidence sup-
porting the inclusion of thermal mass in the STM model. The
effective thermal mass per unit area of the wall was  estimated
to be 224,000 ± 19,000sys-stat J m−2 K−1, compared to that calcu-
lated from published values of approximately 412,000 J m−2 K−1.
The estimated effective thermal mass of the wall is just 40 mm  from
the interior wall surface in this 300 mm thick wall and represents
the apparent thermal mass of the wall from the perspective of the
interior space.

The method presented here, combining physical models and
Bayesian analysis can be used to significantly reduce the moni-
toring period required to estimate U- and R-values, compared to
conventional steady-state methods. The method utilises dynamic
changes in temperature, rather than requiring a consistently high
temperature difference (as for steady state methods). This feature
may  be used to analyse in-situ measurements taken in summer,
albeit with higher uncertainty in results due to a greater influence
of potential systematic errors.

Accurate knowledge of the thermal properties of building ele-
ments is essential to inform the decision making processes at all
levels, when estimating the energy savings and cost effectiveness

of retrofit measures, such as installing insulation. However, a per-
formance gap has been identified in the cost-effectiveness and
energy savings of interventions, based on their expected U-values
[34] and is illustrated by the walls analysed here which exhibited
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ignificantly lower than expected U-values (expected range from
.6 to 2.4 W m−2 K−1, vs measured 1.15 ± 0.06sys+stat W m−2 K−1

or the STM model). The U- and R-value estimation technique
resented may  be used to significantly shorten the monitoring
eriod required per building element, enabling more cases to be
ost-effectively measured and promoting better informed decision
aking. The short timescale of this technique is also well suited to

nvestigating the impact of weather on U-values and the estimation
f effective thermal mass may  inform thermal comfort consider-
tions.
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