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Abstract 

 
 
The overall objective of this two part study is to highlight the advanced attributes, 
capabilities and use of stochastic control techniques, and especially Partially 
Observable Markov Decision Processes (POMDPs), that can address the conundrum of 
planning optimum inspection/monitoring and maintenance policies based on stochastic 
models and uncertain structural data in real time. In this second part of the study a 
distinct, advanced, infinite horizon POMDP formulation with 332 states is cast and 
solved, related to a corroding reinforced concrete structure and its minimum life-cycle 
cost. The formation and solution of the problem modernize and extend relevant 
approaches and motivate use of POMDP methods in challenging practical applications. 
Apart from uncertain observations the presented framework can also support uncertain 
action outcomes, non-periodic inspections and choice availability of 
inspection/monitoring types and intervals, as well as maintenance actions and action 
times. It is thus no surprise that the estimated optimum policy consists of a complex 
combination of a variety of actions, which cannot be achieved by any other method. To 
be able to solve the problem we resort to a point-based value iteration solver and we 
evaluate its performance and solution quality for this type of applications. Simpler 
approximate solvers based on MDPs are also used and compared and the important 
notions of observation gathering actions and the value of information are briefly 
discussed.       
 

Keywords: Partially Observable Markov Decision Processes, optimal stochastic 
control, belief space, uncertain observations, structural life-cycle cost, infrastructure 
management. 
 

1. Introduction

This paper complements a companion paper, [1], that provided a thorough 
theoretical background on the use of Markov Decision Processes (MDPs) for 
infrastructure management. As shown in our Part I companion paper the Partially 
Observable case of Markov Decision Processes (POMDPs) provides an excellent 
choice for decision making and asset management under uncertainty, with firm 
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mathematical foundations and superior attributes. POMDPs are capable of describing a 
huge number of realistic situations and can support a diverse range of formulations and 
objective functions, including condition-based, reliability and/or risk-based problems, [1]. 
The optimum life-cycle policies are provided based on stochastic control, probabilistic 
models, uncertain structural data and Bayesian principles. This Part II paper 
emphasizes more on the details of POMDP models and solvers for optimum structural 
inspection and maintenance policies. A detailed application example for a corroding 
reinforced concrete structure is provided and among others the cost-benefit of 
information is naturally incorporated in the formulation. Most quantities and notions 
already defined in Part I, [1], are not defined again in detail in this work and any 
assumptions made in the companion paper are valid in this paper as well. For example, 
in this paper we will again only refer to rewards, since cost can be simply perceived as 
negative rewards.   

Markov Decision Processes have a long, successful history of implementation in risk 
management and minimum life-cycle costing of civil engineering structures, [2]. Perhaps 
the strongest indication of their success and capabilities is their use from different state 
agencies all over the world for asset management of a variety of infrastructures, like 
bridges, transportation networks, pavements, etc., [3-5]. In United States, PONTIS, the 
predominant management system for bridges and other infrastructures, uses MDPs as 
its core optimization tool, [6-8]. PONTIS is currently a registered trademark of AASHTO 
and it is licensed and used by the majority of U.S. state transportation departments and 
other organizations in the U.S. and other countries.  

Although MDPs provide a very strong and versatile mathematical framework for 
asset management they also have some limitations which, at certain occasions, may be 
crucial for the quality of solutions they provide. POMDPs are a much more general tool 
that inherit all the valuable attributes of MDPs and add more. However, POMDPs 
comprise a newer scientific field, open to extensive scientific research currently and not 
as mature as the MDP one. These reasons, in addition to the fact that are much harder 
to be solved adequately for large, complex, realistic problems, has led until now to very 
few works addressing them in the context of optimum inspection and maintenance, in 
comparison to other approaches in this area, [1]. In Madanat & Ben-Akiva [9] a POMDP 
problem with 8 states and a finite horizon of 10 years is solved and in Smilowitz & 
Madanat [10] a problem of just 3 states, concerning a network of highway pavements, is 
presented. Both of these works use a fixed, regular grid and the nearest neighbor 
interpolation-extrapolation rule (enduring all the disadvantages of this method, 
discussed in the Part I paper [1]) and convert the problems into fully observable MDPs, 
which are then solved by dynamic and linear programming, respectively. In Ellis et al. 
[11] and Jiang et al. [12] some finite horizon POMDP problems are analyzed, 
concerning structural degradation of bridge girders due to corrosion and fatigue. The 
maximum size of the state spaces in these two works is 13 and the authors solve the 
problems with an exact algorithm, taking advantage of the small number of states and 
the finite horizon formulation, which in this occasion is computationally beneficial, in 
comparison to an infinite horizon case. Faddoul et al. [13] studied an inspection and 
maintenance problem, regarding a reinforced concrete highway bridge deck, and sought 
optimum policies based on the nearest neighbor method and a 5 state POMDP with a 
horizon length of 20 years. Use of POMDPs in works pertinent to the discussion herein 
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can be further found in [14-17]. The maximum state space size used in these cases is 9, 
[14]. It is apparent that in all these works the POMDP formulation of the problems 
hindered the researchers from describing the system in a more refined way, with larger 
state spaces. In MDP formulations, where solutions can be much more easily found, 
state space sizes in the order of hundreds or thousands are commonly encountered and 
can be even considered small. An example for instance is the work by Robelin & 
Madanat [18] where a bridge deck management problem, formed as a MDP with 840 
states, is solved. The state space in this case consists of the reliability index of the deck 
and history dependent parameters.   

In this paper, we rely on these previously presented works and, efficacious 
approaches, as in [11] and [19], and significantly extend them towards large-scale 
modeling and solution of realistic problems. Utilizing the presented topics in the Part I 
companion paper, a distinct, advanced, demanding infinite horizon formulation is cast 
and solved in this work with non-stationary stochastic phenomena, connection to 
physically based stochastic models and a considerably larger state-space of 332 states. 
Choice availability of different monitoring and maintenance actions, uncertain 
observation and action outcomes and non-periodic structural visits are also incorporated 
in this work. With such an unprecedented formation and variety of unimpeded options 
the estimated optimum policy is a highly complex combination of a range of 
inspection/monitoring types and intervals, and maintenance actions and action times, 
which cannot be achieved by any other method. To be able to solve this challenging 
problem that could not have been solved by techniques in the aforementioned 
references, we resort to point-based solvers, as explained in our companion paper, [1]. 
Point-based methods have been mainly developed in the field of artificial intelligence for 
autonomous robot navigation which is a problem with inherently different characteristics 
from the structural management problem. Among others, uncertainty in usual robot 
navigation problems decreases with time, since the terrain is gradually explored, and 
not the opposite like in structural maintenance, and different observation actions are not 
typically sought during planning. Despite the differences, we demonstrate in this work 
that the point-based value iteration algorithm Perseus, [20], can perform successfully in 
this type of applications, even for difficult problems with larger state-spaces than the 
ones currently described in the maintenance literature. Additional, recent attempts by 
the authors with larger models, with thousands of states, in a finite horizon formulation 
can be seen in [21], where the POMDP mapping to physically based stochastic models 
is also explained in greater detail. Apart from Perseus we also solve the problem with 
simple approximate solvers (MLS, QMDP, [1]) that are directly based on MDPs. Current 
structural management systems (like PONTIS) only rely on MDPs and hence they could 
straightforwardly utilize these methods. We demonstrate differences in performance and 
quality of solution between these methods and Perseus and based on this comparison 
we also shed some extra light to the important notions of observation gathering actions 
and the value of information, which of course implies that more accurate and precise 
inspection/monitoring techniques are self-evidently more expensive than cruder 
inspection/monitoring methods. Compendiously, the current paper provides in detail a 
generic framework that modernizes the way relevant problems are solved today, sets a 
step forward in large-scale modeling, showcases deployment of point-based POMDP 
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methods and motivates their use in a wider variety of problems and practical 
applications.   

The particular application used in this work, in order to demonstrate the suggested 
POMDP framework, its detailed implementation, solution and attributes, relates to a 
corroding reinforced concrete structure. Unfortunately, current non-destructive corrosion 
evaluation techniques are prone to measurement errors and have inherent deficiencies, 
which make it difficult to derive, certain, reliable engineering conclusions based on their 
output, [22-24]. For this reason, a POMDP formulation of the problem is most 
appropriate. A spatial, stochastic, physically based model of steel corrosion in a wharf 
deck reinforced concrete slab is developed in Papakonstantinou & Shinozuka [25]. 
Based on this modeling an infinite horizon, non-stationary POMDP model with yearly 
time-steps and 332 discrete physical states is cast in this work and solved by 
asynchronous dynamic programming and Perseus, [20]. The objective of the application 
is to identify an optimum life-cycle cost policy that can suggest, without any modeling 
restrictions, when and what type of inspection/monitoring and maintenance actions 
should be employed based on the conditions of the deteriorating structure in real time 
[1]. On the whole, 4 different maintenance actions are considered (including doing 
nothing and full replacement of the structure) and 3 different inspection/monitoring 
actions (including no inspection), resulting in a total number of 10 considered, different, 
combined (maintenance – inspection) action choices for the decision-maker. The 
uncertain observation outcomes are categorized in 4 different possible conditions and 
inform the decision-maker about the structural status according to the accuracy and 
precision of the chosen evaluation method. In general, the most important characteristic 
of all the actions for the optimum life-cycle cost policy is their relative to each other 
effectiveness and cost, which are explained in detail in the paper. In the remainder of 
this work, we thoroughly present the POMDP modeling of the problem, emphasizing 
mostly in the do-nothing action, which of course relates to the deterioration process. 
The rewards part of the modeling and the combination of maintenance-inspection 
actions are described as well. In section 3 the point-based value iteration algorithm, 
Perseus, is analyzed, while in section 4 specific implementation details and 
comprehensive results are provided and discussed.         

2. POMDP modeling 

POMDP is a 6-tuple (S, A, P, O, Po, R) where, S, A and O finite set of states, actions 
and possible observations respectively, P state transition probabilities, Po observation 
probabilities modeling the effect of actions and states on observations, and R rewards. 
All these parameters constitute the input of the model and have to be defined 
accordingly.  

2.1.  State transition probabilities for deteriorating structures  

Finding state transition probability matrices for deteriorating structures is not an easy 
task in practice, mainly due to lack of reliable, historical field data. Several different 
ways can be found in the literature addressing this issue, based on time-series 
observations of facility performance states, expert’s judgment or analytical/numerical 
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models. In PONTIS [6] a combination of expert’s judgment with historical data is used 
and transition matrices are refined accordingly whenever new data become available. 
Different regression approaches and techniques in order to calculate transition matrices 
based on field data can be seen in [26-29], while in [12,18] numerical experiments are 
used.  

Based on the probability vector, zt(s), of being in any state of the system, in time t, 
regardless of how this information has been obtained (i.e. numerical data, field 
observations, etc.), the transition matrices P may be found, in certain occasions, using 
the basic equation: 
 

�� �1t t tz z P  (1) 
 
Another, more general, but data demanding method, is to directly calculate the 
transition probabilities by: 
 
� � number of transitions from  to ,

number of data in state  
s sp s s
s

�
� �  (2) 

 
or, even more generally, by hidden Markov model techniques. In many circumstances 
field data do not support the Markovian or lack-of-memory property, e.g. [29], and thus 
non-stationary transition matrices are found, e.g. [30]. In these cases the probability 
density function of duration time in some state of the system, if known, can also be used 
to form the transition matrices, as also shown in the companion paper.  

Fitting transition probability matrices based on historical field data alone requires 
many observations that are rarely available in reality, for identical structures under 
similar deterioration conditions. Unavoidably, samples from a non-homogeneous group 
of structures is often selected, to acquire a statistically acceptable number of data, and 
the difficulty is then rolled over to the formulation of the regression model, correct choice 
of covariates, etc. To make things even more complicated, structures with dissimilar 
maintenance history should not normally be included in the same statistical group and 
the collection process and archiving of reliable field data is currently, in most cases, 
very recent and long term performance of structures is missing. To handle these issues, 
the physically based stochastic corrosion model presented in detail in [25] is utilized in 
this work, in order to formulate the corrosion deterioration transition probability matrices. 
By having a numerical model of deterioration, which can be supported and updated by 
field data, many complications of non-model based approaches, relying on regression 
methods, are avoided.      

  
2.1.1.Non-stationary deterioration transition                    

Following AASHTO [31] the steel corrosion in the 24m by 15.2m wharf deck 
reinforced concrete slab in [25] can be characterized by 4 discrete conditions. In 
condition 1 the spatial extent of damage due to corrosion is less than 10%, in conditions 
2 and 3 it is between 10%-25% and 25%-50% respectively and finally in condition 4 the 
extent of corrosion is over 50%. Results from the continuous stochastic modeling 
revealed that the deterioration phenomenon does not possess the Markovian property 
of independence from history. The same conclusion, based on field data, for 
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deterioration events governed by chemical processes can be found in [29]. 
Consequently, we consider that the deterioration rate is different and generally more 
adverse with every year that passes without maintenance and the state space of the 
problem, for the infinite horizon case, consists of the condition of the structure in each 
different deterioration rate. Based on the state augmentation technique, presented in 
our Part I paper, the combination of structure conditions and different deterioration rates 
results in 332 different total states for this problem, as will be also further explained 
shortly. Adopting the very common assumption for this type of problems that the 
structure can deteriorate only by one condition, utmost, during each year, [1], which was 
also supported by the continuous model results, one representative part of the 332 by 
332 transition probability matrix P for the do-nothing action is formatted as:  
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where a and b represent arbitrary, consecutive deterioration rates and the numbering 
represents the 4 slab conditions mentioned earlier. Thus, the � �a b�P  submatrix shows 
that without any maintenance the only non-zero probabilities are the ones that describe 
the transition of the structure from deterioration rate a to deterioration rate b and from 
condition x to condition x or x+1. In case the structure is already in condition x=4 (extent 
of corrosion over 50%), it will remain in the same condition x=4 with probability 1, if no 
maintenance is performed. Similarly, a � ��b cP  submatrix would describe the transition 
of the structure from deterioration rate b to the subsequent deterioration rate c and from 
condition x to condition x or x+1.    

All parameters of the deterioration matrix were calculated based on Eq. (2) and the 
physically based stochastic model in [25] with yearly intervals, a total time duration of 
100 years and 1000 Monte Carlo model simulations starting from a no damage 
condition. Further details about this procedure can be seen in [21]. In Fig. 1, the 
probabilities of being in any condition, starting from perfect condition, calculated based 
on Eqs. (1) and (2) are compared against the continuous stochastic modeling results. 
The results are in very close agreement and this proves the adequacy of the discrete 
Markov chain formulation, in this application. The physically based stochastic modeling 
results are shown in Fig. 1 both unsmoothed, simply derived from the Monte Carlo 
samples and standard empirical cumulative density function calculations, and 
smoothed, through a standard nonparametric kernel density estimator with a Gaussian 
kernel.  

The deterioration transition matrix could have also been estimated based on semi-
Markov processes principles, as explained in the companion Part I paper, or even Eq. 
(1) in this case. However, since in this application closed form expressions for the 
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functions needed in these approaches were not available and the mapping from the 
continuous stochastic model to the discrete POMDP model is based on Monte Carlo 
simulations, the advantage of using these approaches over Eq. (2) is somewhat lost. 
Anyhow, the acquired mapping with the used method is excellent.  

Based on the choice of the 4 AASHTO conditions and the used physically based 
model, there are no condition transitions from condition 1 until the deterioration rate 
equals 18, (Fig. 1). In other words, the considered structure cannot be damaged by 
corrosion by more than 10% of its extent in the first 18 years after its construction. 
Therefore, the deterioration rates from 1 to 17 are alike and can be combined in one 
deterioration rate for the POMDP modeling. As a result, and given that the simulated 
data from the physically based modeling consider up to 100 years since the initial 
construction, the infinite horizon POMDP case is described by 332 total states, 
consisting of combinations of 83 (100-17) different deterioration rates and 4 slab 
conditions in each rate.  

 
 
 

  
 

 
As also indicated in Fig. 1, none of the simulated 1000 Monte Carlo samples entered 

condition state 3 earlier than 30 or 20 years or condition state 2 earlier than, let’s say 5 
years, and thus there are no evidences of how would the system behave in such 
occasions. It is therefore assumed that it would remain in the same condition state with 
certainty, until a deterioration rate is reached at which its behavior has been 
documented. Provided that the physical based modeling represents reality adequately 
this assumption does not cause significant modeling errors, unless pathogenic cases 
are of interest; such as having deterioration condition level 3 at the first deterioration 
rate, etc. Finally, if the system reaches the last simulated deterioration rate it is 
assumed that it will continue to deteriorate according to that rate level, since 
subsequent, possibly more severe, rates are currently undocumented. The interested 
reader can observe in detail all the necessary parameters that form the very sparse 332 
by 332 deterioration transition matrix in [21].   

2.2. Remaining POMDP parameters (actions, observations, rewards) 

Until now in this paper, the state space of the problem and the deterioration 
transition matrices for the do-nothing action have been presented. The remaining action 
transition matrices, observation matrices and rewards considered in this work do not 
follow the same detailed level just presented for the do-nothing action and although 
representative, for the considered problem, are nonetheless arbitrary and mostly serve 
the mathematical requirements of the formulation.  

 For the current example, apart from the do-nothing action, three more maintenance 
actions are considered. The easiest to describe is the replacement action. If the 
decision-maker chooses to replace the structure, no matter the state in which the 
structure is at that time, it will transition with certainty to the state with condition level 1 
and the first deterioration rate.  
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 Another maintenance action that is considered is a minor-repair action. If a minor-
repair action is performed, the system still transitions to the next deterioration rate as in 
the do-nothing action but the condition level of the structure possibly improves or at 
worst remains the same. The core minor-repair matrix, which repeats itself many times 
in the global, 332 by 332 minor-repair transition matrix following the just explained 
pattern, is given by: 
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and the symbols follow the same definitions as in Eq. (3). In a physical context, the 
minor-repair action can represent patch repairing of the concrete slab at possible 
contaminated locations, [32]. 

The last maintenance action considered is a major-repair action. If a major-repair 
action is performed, the system transitions with certainty at the next epoch to three 
deterioration rates before the one currently in and the condition level of the structure 
possibly improves or at worst remains the same. The core major-repair matrix, which 
repeats itself many times in the global, major-repair transition matrix following the just 
explained pattern, is given by: 
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where a, b, c, d represent consecutive deterioration rates and the remaining symbols 
follow the same definitions as in Eq. (3). Obviously, if the system is in deterioration rates 
from 1 to 4 it will go to a state with deterioration rate 1 in the next time step. In a 
physical context, the major-repair action can represent use of waterproofing membranes 
or concrete milling and overlays at possible contaminated locations, [32].  

Having introduced the maintenance actions and their representation in the POMDP 
context, it is easily understood that the actions, apart from the do-nothing action, 
although representative, are based on synthetic transition matrices. While it is always 
possible to form these matrices in an equivalent manner as the do-nothing action, or 
maybe calibrate them from field data, we have not done these for this work. From our 
literature review on maintenance actions however, it was concluded that this is an area 
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that has not received much attention. Analytical\numerical studies based on modeling 
and simulation of maintenance actions, e.g. [33], or empirical\experimental works based 
on field data are not that many and further studies on the very important subject of 
maintenance actions should be performed in the future.    

Concerning observations in the POMDP formulation, three different assessment 
techniques are considered and representatively modeled. In this example, it was 
assumed that the state of deterioration rate of the structure is known to the decision-
maker and the uncertain inspections reveal information over its condition level. The 
dimensions of the observation matrices are number of states by number of observations 
and 4 observations are considered in this problem, one for each condition level of the 
slab.   

The first observation choice considered is the no-inspection one and in the POMDP 
context it is modeled through the observation matrix: 
 

� �

� 	�

 �

 ��

 �

�
 �

 �

�
 �
� 
 ��
 �

 �

 �

�
 �

 �

 �

 � �

� � � �

� � � �

332 4

11

21

31

41

11

41

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0
,1 0 0 0

1 0 0 0

x

a

a

a

a

b

b

p

p

p

p

p

p

oP  (6) 

 
where 11

ap  now represents probability of being in a state with deterioration rate a and 
condition level 1 and observing the first observation. The remaining parameters are 
similarly explained. By a close look at Bayes’ rule: 
  

� � � �
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,
, ,

,
s S

p o s �
b s p s s � b s
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�

�
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 (7) 

 
where b belief, � performed action, o observation and � �,p o �b  the usual normalizing 
constant, [1], one can conclude that the specific observation matrix in Eq. (6) does not 
update the belief of the decision-maker because the likelihood function � �,p o s ��  gives 
the exact same information no matter what the state of the structure is. An alternative 
way to form this matrix could have been to assume that in any state of the system the 
decision-maker has equal probabilities of observing any out of the 4 condition levels of 
the structure. This formulation however results unnecessarily in full matrices, instead of 
the sparse one in Eq. (6) and hinders the computational performance of Perseus.  

The second inspection choice is assumed to be a visual inspection (without any loss 
of generality concerning evaluation techniques and/or monitoring methods). The 
observation matrix in this case is modeled as:  
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and symbols follow the same definitions as in Eq. (6), e.g. 23

bp  represents that the 
probability of being in the state with deterioration rate b and condition level 2 and 
observing the third observation (which is incorrect since the system is in condition level 
2 and deterioration rate b) is equal to 0.27.   

Finally, the third inspection choice is assumed to be a monitoring inspection based 
on some non-destructive corrosion evaluation method, [22]. The observation matrix in 
this case is modeled similarly to Eq. (8) and therefore its representation is simplified 
here:  
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 (9) 

 
The improved accuracy of this inspection choice, in comparison to the visual inspection 
option, is apparent by simply comparing the two observation matrices in Eqs. (8) and 
(9).  

In a more detailed effort to form the observation matrices, Probability of Detection 
(PoD) curves would have been needed for the non-destructive evaluation methods and 
studies, based on field data and inspectors’ judgment, for the visual inspection. Since 
the problem has a spatial aspect (extent of corrosion damage), stochastic modeling of 
different inspection techniques is probably required in order to identify the observation 
matrices accurately enough (equally to the do-nothing action modeling and mapping) 
and perhaps a more refined discretization of the condition level of the structure to avoid 
extensive marginalization over large segments. These approaches have not been 
followed in this work and can be considered in future studies.  

Not having performed meticulous analysis to form the observation matrices, the main 
logic in representatively forming them is that the two informative inspection techniques 
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should have different levels of observation accuracy. It is also assumed that for 
corrosion detection it is more probable to mischaracterize the condition of the structure 
towards a poorer condition level than a better one. The observation outcome is more 
informative when the true state of the structure is at the middle of a condition level 
segment (for example being in condition 3 and having 38% extent of damage) rather 
than its edges (for example being in condition 3 and having 49% extent of damage). 
However, the belief of the decision-maker over the condition of the structure is usually 
weak at the edges of the condition level segments and that is the time when inspection 
is needed. For these reasons, the observation probabilities are assigned having the 
edges of the condition level segments in mind and a conservative, pessimistic outlook of 
their efficiency.    

An important note at this point should be that self-evidently the more accurate the 
observation modeling in a POMDP formulation is the better policy the decision-maker 
will come up with. However, after solving the POMDP, and given that the policy 
planning is performed over the belief space, any predictable or unpredictable real 
observation outcome can be handled, since at the end the action to be taken is decided 
based on the final belief of the decision-maker. This POMDP attribute can be also 
extended for actions and most importantly even if the decision-maker does not follow 
the model’s suggestions at some point in time, the policy still remains valid and based 
on the current belief will try to guide decisions towards optimum results. 

The rewards (costs) of the POMDP modeling in arbitrary units are given in Table 1. 
As explained already, costs can be simply perceived as negative rewards. The values of 
the maintenance actions are realistically assumed to depend on the condition level of 
the structure and are valued according to their expected effect on the structure’s 
condition. The replace action is valued equally in all conditions of course and the do-
nothing action has zero value. The values of the inspection actions are independent of 
the condition of the system and the no-inspection choice has zero value. The value of 
information is taken into account in this modeling, since more precise inspection 
techniques are naturally more expensive. Finally, the user/penalty rewards (costs) 
represent the estimated values the decision-maker (or the asset owner) is charged each 
year due to the condition of the structure. What these negative rewards resemble can 
be interpreted in a variety of ways, like reduction in the level of service due to 
deterioration, working accidents, additional expenses incurred during operation, etc. 
They can also resemble and be correlated with more abstract notions, like 
environmental impacts, structural reliability, structural failure   probability, 
competitiveness loss, risk management, etc. Overall, user/penalty rewards are a very 
important component of any POMDP modeling and one of the main reasons for their 
versatile modeling ability and successful implementation in a variety of seemingly totally 
unrelated problems. Given that the rewards in this POMDP modeling are independent of 
the deterioration rate it is easily understood that Table 1 contains all the necessary 
information for the full reward function representation of all states. The only parameter 
that is not set yet is the discount factor �. Assuming a typical discount rate of 0.0526 the 
discount factor used in this work is equal to �=0.950.     
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Table 1. Rewards part of the POMDP modeling. 
 

 
 

Although in this modeling indicative values are used, these are not based on real 
data or invoices. However, actual values are not usually hard to find. State agencies 
and companies provide lists with services and costs, e.g. [34], and lots of studies on the 
subject can be found on a more practical level, concerning user costs [35] and overall 
costs [36].  

The decision-maker in this application needs to find both optimum maintenance and 
inspection actions. For this reason, the 4 different maintenance and the 3 different 
inspection actions are combined into a set of 10 distinct actions. The 2 combinations 
that are omitted from the full factorial combinations are the replace-visual-inspection 
and replace-monitoring-inspection actions, because after the structure is replaced is 
characterized with certainty by the state with condition level 1 and the first deterioration 
rate. Hence, in this application the decision-maker has an initial belief and has to 
choose what action to take. After choosing an action, the maintenance part of that 
action is performed and at the next step the user reward is collected and the inspection 
part of the action is executed. Based then on the new belief the decision-maker has to 
choose another action to take and so on. The optimal value function representation V*, 
[1], in this application can therefore be given in its most expanded form by: 
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where rm, rins and rpen maintenance, inspection and penalty reward part of the action � 
respectively. Combining all the reward parts, as:   
 
� � � � � � � �, , , , , ,m ins penr s � s r s � �r s � �r � s� �� � �  (11) 

 
the usual form of the value function is retrieved: 
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and in a more condensed form by: 
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Finally, summarizing briefly the current POMDP modeling, it consists of 10 actions, 4 

observations and 332 states in a discounted infinite horizon format. Based on the same 
idea of combining maintenance and inspection actions, as just presented, more action 
choices can be straightforwardly modeled, for example minor-repair-visual-inspection-
monitoring-inspection. However, we did not find any reason in doing this at this point.  

3. Perseus algorithm 

As already stated, the Perseus point-based value iteration algorithm, [20], is used in 
this work in order to compute efficient solutions for this large POMDP formulation. A 
general description and comments about point-based solvers can be seen in the 
companion Part I paper. As in every point-based solver, Perseus uses a simple, lower 
bound approximation in order to initialize the value function over the belief simplex. A 
commonly used initial value function is given by a single �-vector , [1], with all its 
components equal to: 
 

� � � �
 
 

1 min , ,
1 s S
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�

�
�

�  (14) 

 
which is guaranteed to be a lower bound. Other initializations are appropriate as well, 
like: 
 

� � � �
  

1max min , ,
1 s S� �

s R s �
� ��

� 	
� 
 �� �

�  (15) 

 
or blind policy initialization [37], etc.  

Unlike most point-based algorithms, Perseus builds a set of reachable belief points B 
at the beginning and this set remains fixed throughout the complete algorithm. 
Compared to other algorithms that use various heuristics to collect points, Perseus 
builds up B simply and inexpensively by performing random walks over the belief space, 
through simulation of random trajectories of possible actions and observations, starting 
from an initial belief point.   

At each Bellman backup step, Perseus starts by sampling a belief point b uniformly 
at random from B and computes its updated value and -vector� . Having performed the 
backup it first checks if the value of b is improved. If it is improved it adds this vector to 
the new value function representation and further checks which other points in B have 
an improved value based on this newly calculated vector. The hope is that the linear 
vector will improve the value of many other points in B and all these points will be 
removed from B� , which is an auxiliary set containing the non-improved points. If the 
value of b is not improved the new -vector�  is ignored and a copy of the maximizing 
vector of b from Vn is used for Vn+1 as well. Point b is then considered improved and is 
removed from B�  together with any other belief point which had the same vector as 
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maximizing one in Vn. This procedure ensures that B�  shrinks and the backup step will 
terminate after some iterations, since eventually all the points will be improved and B�  
will become zero. As long as B�  is not empty the algorithm continues sampling points 
from it and adding their -vectors� . To summarize the backup stage of the algorithm in 
pseudocode format we write, [20]: 
 

Perseus backup stage 
 

1. Set 1 0nV � � . Initialize  to B B� . 

2. Sample a belief point b uniformly at random from B�  and compute its -vector.�  

3. If � �nV� �b b�  then add 
�  

1 1to ,  otherwise add =argmax  to . 
i
n i

i
n n nV V� �� 	� �� b

�
� � �  

4. Compute � � � ��  1: .n nB B V V�� � !b b b�  

5. If 0B ��  stop, else go to 2. 

 
Given that at every backup step the new value function is initialized without any 

-vectors�  and that Perseus only selects vectors that are useful at the current step of the 
algorithm, no pruning is required. The backup steps continue until some convergence or 
termination criterion is met. Several criteria can be considered, like a bound on the 
value function difference between successive estimations, running time of the algorithm, 
number of -vectors�  difference between consecutive value functions, number of belief 
points that have a different optimal action, etc. 

The key idea underlying Perseus is that when a point is backed up the resulting 
vector improves the value of many other belief points in B, apart from the value of the 
point that generated it. Based on this observation, the resulting value function has a 
relatively small number of vectors (in comparison to other solvers) and the backups of 
Perseus are performed in an asynchronous dynamic programming style since only a 
small subset of B is randomly visited, at each iteration. By backing up non-improved 
points Perseus focuses on interesting regions of the reachable belief space and by 
sampling at random ensures that eventually all points in B will be taken into account. 
The asynchronous backups further allow the algorithm to use a large B, which has a 
positive effect on the approximation accuracy as shown in [38]. In Fig. 2 the backup 
stage of Perseus is illustrated. Having a value function approximation of two vectors and 
a belief set of 8 points Perseus first selects and backups b7 and improves the value of 
all points from b5 to b8 in comparison to their previous estimate (dashed lines). Since the 
value of some points has not improved the algorithm continues by improving b1 and b2 
and finally finds a new approximate value function (of three vectors now) by backing up 
b4 which also improves all the remaining belief points and terminates this backup step. 
A new backup step then starts and the procedure continues until convergence, as in 
Fig. 3, where iterative lower bound evaluations of the value function until an 
approximate, converged value function � *V  can be seen. 
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4. Results

Having presented the POMDP framework in a detailed manner, simulation results 
and Perseus performance are now demonstrated and discussed. All numerical 
experiments were run on a desktop PC with 32-bit windows, Intel Core2Quad processor 
at 2.33GHz and 3GB RAM.    

As stated earlier, Perseus builds a set of reachable belief points B, at the beginning 
of the algorithm, by performing random walks over the belief space, through simulation 
of random trajectories of possible actions and observations, starting from an initial belief 
point. For the specific example, a set of 120000 belief points is finally used by 
performing random simulations, based on action selection probabilities equal to 0.84/3 
for all the do-nothing/no-repair actions and 0.08/3 for all minor- and major-repair 
actions. Every 124 simulation steps each random trajectory was terminated and a new 
one was initiated from the initial belief point. The initial point of the system is the state 
with condition level 1 and the first deterioration rate, with certainty. Due to the 
continuous restarting of new trajectories the replace action was not sampled during the 
runs. All these parameters were finally chosen because they provide an adequate 
coverage of the whole reachable belief simplex. For the backup part of the algorithm, 
we have set Perseus to terminate after it had completed a backup stage beyond 86400s 
(24h), in order to check the algorithmic behavior for prolonged time. 

   
 
 
Fig. 3. Iterative lower bound value function approximations.  

 
Apart from Perseus, the problem is also solved with two methods that are based on 

the underlying MDP, the Most Likely State (MLS) and the QMDP methods, [1], in order 
to examine their performance. As mentioned earlier, MDPs form the current 
computational framework used by state agencies for asset management. To evaluate 
the computed policies from all methods 100 different trajectories of 500 steps each, 
based on the policy this time, have been simulated and their averaged expected reward 
is calculated. Unless differently stated all the simulations started from the state with no 
deterioration (condition level 1 and the first deterioration rate).  

 In Fig. 4 all the supported actions by the 2319 -vectors� , that compose the final value 
function of the algorithm, are shown. As seen, the calculated optimum policy includes all 
the actions except the major-repair-monitoring-inspection action since Perseus did not 
identify any area of the belief simplex where this action would have been the optimal 
one for the decision-maker to take. One simple explanation for this can be derived after 
observing the two, randomly selected, example simulations of the computed policy, in 
Figs. 5-6. In these two figures it is seen that based on the policy the decision-maker 
chooses to perform major-repair actions in relatively early deterioration stages. 
Therefore, since the structure will be in relatively good condition, especially after 
maintenance, expensive inspection techniques, following an already expensive 
maintenance action, are not justified. The fact that the decision-maker chooses major-
repair actions in relatively early deterioration stages may seem surprising at first. The 
reason however is that major-repair actions are considerably more expensive than 
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minor-repair ones but they have the advantage of both improving the deterioration rate 
and the condition level of the structure. Due to this, the decision-maker executes these 
actions early enough, in order to take advantage of both the low deterioration rates and 
the deterioration rate improvement feature of the actions, and to guide the structure to 
an even lower deterioration rate, eventually prolonging its life and minimizing the life-
cycle cost. Yet, in later, increased deterioration rates, major repair actions are not 
usually preferred because the deterioration rate will still improve by these actions, but 
since the structure is already in high rates this small improvement does not justify such 
expensive maintenance and thus minor-repair actions are been chosen instead. This 
planning pattern of the decision-maker is of course dependent on the different 
capabilities of the actions to improve the system and their relative, to each other, costs. 
Nevertheless, it is very interesting to observe this pattern since it is rather different than 
what it is often done currently in practice, where decision-making is much more myopic 
and greedier strategies are followed (defined in an optimization context).         

 
 

 
 
 
 
Other interesting conclusions can be also inferred from Figs. 5 and 6. First of all, as 

seen, the current modeling can also indicate the best time to renew the structure. 
Although in these two, randomly selected, simulations the renewal time is around 150 
policy steps, we have seen others, where based on observations the structure should 
be replaced as early as 55 steps or as late as 300 steps. Furthermore, this modeling 
feature can be also used, in a different context, as a very useful prognostic tool towards 
estimations of the most profitable structural service period. Another appealing 
observation is that at increased deteriorated conditions the computed policy indicates 
that generally the structure should be inspected every one to three years, depending on 
the observations each time, when was the last maintenance action performed, etc. 
Currently, many structural assets (e.g. bridge decks) are periodically inspected 
biannually. The current study shows that for such non-flexible policies (periodic 
inspections are imposed on the management policy) this 2 year interval might be a good 
choice. However, this planning is certainly sub-optimal (in comparison to the approach 
in this paper), both in safety and economic terms, because there will certainly be cases 
where more or less frequent inspection visits are necessary. Apart from suggesting 
inspection visits, the computed policy also manages successfully, in each step, the 
required  
 

 
 
 

inspection quality. Generally, in cases when there is high uncertainty about the 
condition of the structure the decision-maker will choose the more expensive and 
accurate monitoring-inspection than the less expensive and accurate visual one. Other 
cases where monitoring-inspection is usually preferred is when the decision-maker 
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wants to have increased certainty about the condition of the structure, before an 
investment on an expensive maintenance action (major-maintenance) is decided to be 
made or not. This conclusion is not frequently met before a renewal action however, 
since the structure is in a poor state and a visual inspection usually suffices to 
determine its replacement. Overall, the versatility of the policy in order to achieve 
optimality should be emphasized at this point. Without imposing any unjustified 
constraints on the policy search space (like periodic inspection periods, threshold 
performances, perfect inspections and many more) in order to make the optimization 
method capable of solving the problem, the proposed approach finds a complex policy 
strategy. This strategy is successful because it is based on the most important 
information the decision-maker may have at each step, which is the belief over the 
conditions of the structure.     

Perseus results are also compared with results from the MLS and QMDP methods. 
As these two methods are based on the underlying MDP they never include informative 
gathering actions in their computed policies. It is easily understood that this is already a 
big limitation of the methods in this application, since the problem is cast so that the 
decision-maker has to choose when and how to inspect the structure. In Figs. 7-8 the 
averaged expected reward of the MLS and QMDP policies, calculated as mentioned 
earlier, can be seen. Results in Fig. 7 are based on simulations that started at the usual 
initial point of no deterioration. For the results in Fig. 8, simulations started at an initial 
belief point of 51% and 49% probability of being in a condition level 2 and 3, 
respectively, at a deterioration rate of 68. Looking at Figs. 7-8 it is easily concluded that 
the policies computed by the two methods are approximately equal, in all cases. The 
no-inspection bars represent results based on the already presented modeling. These 
results are named no-inspection because the methods never choose actions that 
include inspections in their policies. To investigate the quality of the policies in more 
realistic situations, where inspections are obviously performed, the problem is 
reformulated so as the decision-maker is obliged to inspect in every step. Given that 
MDPs cannot also choose actions based on how good their inspection quality is, the 
problem is reformulated twice, allowing either only uncertain visual-inspection actions or 
uncertain monitoring-inspection actions.  An interesting outcome from all these different 
cases is that the no-inspection modeling produces better policies if the structure starts 
from intact conditions, taking advantage of the small uncertainties in the beginning of 
this case and the discount factor. This result is not so obvious anymore when the initial 
conditions of the structure are in a deteriorated, uncertain state. In other words, when 
the uncertainty and the deterioration are low, inspections are not needed that much and 
decision mistakes due to ignorance about the true condition of the structure are 
counterbalanced by the savings of not paying for inspections. However, in deteriorated, 
uncertain situations, inspections are useful and this is why in Fig. 8 the simulations with 
inspections give an equal reward to the no-inspection case, although the decision-
maker pays annually for inspections in these cases. These findings clearly indicate that 
the MLS and QMDP methods are not able to find a policy that will be optimum for the 
whole service life of the structure in this problem, mainly due to the known MDP 
limitations. Inspections are not needed that much in the beginning of the structure’s 
service period but are desperately needed when deterioration and uncertainty are 
present. As stated in section 4.1 in [1], we could have further reformulated the problem, 
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seeking better solutions with these methods, by dropping the requirement for annual 
visits to the structure. This would allow greater flexibility, but even so these methods still 
would not have been able to choose different inspection techniques or to separate 
maintenance from inspection actions (and vice versa) in any decision epoch.  
 
 

 
 
 

 
 

To compare the policy performance of these methods with Perseus results, which 
take advantage of the full POMDP modeling, the no-inspection case is chosen, starting 
from intact initial conditions, since this is the case that gives the highest rewards. In Fig. 
9 comparison results can be seen and the superiority of Perseus (and of the POMDP 
modeling) over the two methods (and the MDP modeling) is obvious.  

Perseus performance at each backup stage can be seen in Figs. 10, 11 and 12. In 
Fig. 10 the expected discounted reward is shown, based on the computed policy in 
each step and averaged over the 100 performed simulations, and in Fig. 11 the 
averaged expected total reward is seen. Both figures show an overview of Perseus 
performance, as well as a detailed view of the last part of the iteration stages. The 
QMDP solution (no inspection case) is also shown in both figures. QMDP calculates a 
solution very quickly but as  
 
 

 
 

already explained it is not the optimal one. Perseus takes around 4minutes in the 
discounted case to permanently exceed the performance of QMDP and around 
18seconds in the total reward case. In this latter case, where future rewards are not 
discounted, QMDP shows its weaknesses earlier, as explained before. Relying on the 
simulation results, it seems that Perseus reached an adequate policy in around 
30minutes and it finally converges satisfactorily after approximately 4hours of 
computational time. The overall performance of Perseus is typical of point-based 
POMDP solvers that they alter their policy considerably during the backup stages, while 
updating and improving the value function, until they reach some sort of convergence. 
In Fig. 12 the number of hyperplanes that compose the value function in each step can 
be seen. This number has an increasing trend, as more backup stages are performed, 
and reached a value of 2319 in the last stage. The fact that Perseus keeps adding 

-vectors�  to its value function representation is an indication that it gradually improves it. 
It might be possible that a better policy and higher rewards are obtained after some 
more backup stages and computational time. This is something typical of point-based 
POMDP solvers as well, i.e. the fact that may seem to have reached a plateau for some 
time and then they suddenly improve the policy and a jump in the rewards can be 
noticed. In order to know if that is the case in this application however, an upper-bound 
value function representation should have been computed as well, so as to check where 
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the current solution lies between the bounds. Nonetheless, only the lower bound value 
is computed in this work and shown in Fig. 12. In the overall view, the average bound 
value is illustrated, considering all the points collected by Perseus. That means that the 
bound for each point is calculated, summed up and divided by the total number of 
points. As seen, the algorithm has been initiated with a very low initial value function 
representation, to guarantee its lower bound attribute, and gradually Perseus updates 
and improves the bound. Finally, by comparing the simulation results with the lower 
bound value of the initial point it is seen that after the value function reaches a 
satisfactorily high level and seems converged, simulation results are consistent with the 
bound and normally, barely exceed it.  
 

 
 

5. Conclusions 

The problem of planning an optimum life-cycle cost policy that can suggest 
inspection/monitoring and maintenance actions based on the structural conditions in 
real time is considered in this work, complementing the Part I companion paper. The 
optimum life-cycle policies are determined based on Partially Observable Markov 
Decision processes (POMDPs), involving stochastic control, probabilistic models, 
uncertain structural data and Bayesian principles. A detailed application example for a 
corroding reinforced concrete structure is analyzed and an advanced infinite horizon 
formulation is cast and solved, with non-stationary stochastic phenomena, connection to 
physically based stochastic models and a considerably large state-space of 332 states. 
Choice availability of different monitoring and maintenance actions, uncertain 
observation and action outcomes, non-periodic structural visits and the cost-benefit of 
information are also incorporated in the formulation, resulting in a highly complex 
optimum policy, which cannot be achieved by any other method, and combines a range 
of inspection/monitoring types and intervals, and maintenance actions and action times. 
To be able to solve this challenging problem we resort to point-based solvers and 
particularly asynchronous dynamic programming and Perseus. Apart from Perseus we 
also solve the problem with simple approximate solvers, based on MDPs, 
demonstrating differences in performance and quality of solutions and touching upon 
the important notion of the value of information. Synoptically, the current paper provides 
a generic framework that modernizes the way relevant problems are solved today, sets 
a step forward in large-scale modeling, showcases deployment of point-based POMDP 
methods and motivates their use in a wider variety of problems and practical 
applications. 

The biggest limitation of the presented approach however is the substantial 
computational demands for large state-spaces both in terms of computational memory 
and time. As such, research for dedicated models and solvers that can efficiently scale 
up the representation of the problem even more should be continued. Future research 
work is also possible in several other directions, as for example a more rigorous, 
systematic formation of structural maintenance actions in a POMDP context.         
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� An advanced, non-stationary, 332 state, infinite horizon POMDP formulation is 
solved. 

� The cost-benefit of information is naturally incorporated in the methodology.  
� The formation and solution of the problem modernize and extend relevant 

approaches. 
� The estimated complex optimum policy cannot be achieved by any other method. 
� The suggested framework is compared with simpler techniques based on MDPs 

(MLS, QMPD) 
 
 

Fig. 1. Probability of being in any condition state, starting from sound condition, and 
comparison of physically based stochastic modeling with Markov chain simulations. 

Fig. 2. Perseus backup stage.
Fig. 4. Actions supported by the 2319 hyperplanes. 
Fig. 5. First example simulation.  
Fig. 6. Second example simulation. 
Fig. 7. Comparison of policies. The simulations initialized in the no deterioration 

state.  
Fig. 8. Comparison of policies. The simulations initialized in states with deteriorated 

conditions. 
Fig. 9. Comparison of policies and superiority of POMDP. 
Fig. 10. Perseus performance. Average expected discounted reward.  
Fig. 11. Perseus performance. Average expected undiscounted reward.  
Fig. 12. Perseus performance. Number of hyperplanes and lower bounds. 
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Maintenance actions rewards 

Condition levels 1 2 3 4 

Do-nothing 0.00 0.00 0.00 0.00 

Minor-repair -60.00 -110.00 -160.00 -280.00 

Major-repair -105.00 -195.00 -290.00 -390.00 

Replace -820.00 -820.00 -820.00 -820.00 

Inspection actions rewards 

Condition levels 1 2 3 4 

No-inspection 0.00 0.00 0.00 0.00 

Visual-inspection -4.50 -4.50 -4.50 -4.50 

Monitoring-
inspection 

-7.50 -7.50 -7.50 -7.50 

 
User / Penalty rewards 

 
Condition levels 

 
1 2 3 4 

 
-5.00 -40.00 -120.00 -250.00 

 




