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ABSTRACT

Optimization algorithms are proposed to tackle different complex problems in different areas. In this pa-
per, we firstly put forward a new memetic evolutionary algorithm, named Monkey King Evolutionary
(MKE) Algorithm, for global optimization. Then we make a deep analysis of three update schemes for the
proposed algorithm. Finally we give an application of this algorithm to solve least gasoline consumption
optimization (find the least gasoline consumption path) for vehicle navigation. Although there are many
simple and applicable optimization algorithms, such as particle swarm optimization variants (including
the canonical PSO, Inertia Weighted PSO, Constriction Coefficients PSO, Fully Informed Particle Swarm,
Comprehensive Learning Particle Swarm Optimization, Dynamic Neighborhood Learning Particle Swarm).
These algorithms are less powerful than the proposed algorithm in this paper. 28 benchmark functions
from BBOB2009 and CEC2013 are used for the validation of robustness and accuracy. Comparison re-
sults show that our algorithm outperforms particle swarm optimizer variants not only on robustness and
optimization accuracy, but also on convergence speed. Benchmark functions of CEC2008 for large scale
optimization are also used to test the large scale optimization characteristic of the proposed algorithm,
and it also outperforms others. Finally, we use this algorithm to find the least gasoline consumption path
in vehicle navigation, and conducted experiments show that the proposed algorithm outperforms Ax al-

gorithm and Dijkstra algorithm as well.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Optimization algorithms in evolutionary computation are
equipped with a meta-heuristic or stochastic optimization or
memetic optimization character, and they belong to the family of
trial and error problem solvers and distinguished by the use of
a population of candidate solutions. Particles of these algorithms
have two main character components, one is exploitation, and the
other exploration. Particle Swarm Optimization (PSO) is a powerful
evolutionary computational algorithm introduced by Kennedy and
Eberhart in [1]. The canonical PSO does not use cross over and
mutation operations, and particles in the population produce the
next generation by learning from their history best and global
best of the population experience. The moving velocity is used
to make a balance between the exploitation and exploration of a
particle.

As the PSO algorithm is simple, easy to implement and it
also has been empirically performed well on many optimization
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problems since its inception, many researches have learned about
the technique and proposed many variants, or new versions of
PSO. [2] proposed a new optimizer using particle swarm theory,
and examined how the changes in the paradigm affected the num-
ber of iteration required to meet an error criterion. [3] presented a
modified particle swarm optimizer with an inertia weight of par-
ticle velocity, a 2-dimension 4000-iteration conducted experiment
showed that the smaller inertia weight made it converged fast
if PSO could find the global optimum. When the inertia weight
was small, PSO paid more attention on exploitation and when the
inertia weight was larger, PSO paid more on exploration. Moderate
value of weight made PSO had the best chance to find the global
optimum with a moderate number of iteration. Empirically, inertia
weight was set as a decreasing function of iteration instead of a
fixed constant. Eberhart and Shi [4] made a comparison between
inertia weights and constriction factors in particle swarm opti-
mization, and the experiments showed that constriction coefficient
k=0.7298 and the constant c¢; =c; =2.05 was a good choice
[5]. PSO trajectories and topologies had been deeply analyzed for
the importance of the convergence. Kennedy [6,7] claimed that
PSO with a small neighborhood might perform better on complex
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problems, while PSO with a large neighborhood would perform
better on simple problems. Suganthan [8] proposed a neighbor
operator particle swarm optimization, and the operator calculated
the particles distance and particles learned from the neighbor-
hood. Mendes et al. [9] proposed a fully informed particle swarm,
valuable information was gained from the particle neighbor and
the convergence speed improved by this variant of particle swarm
optimization. Mendes [10] gave a deep analysis on population
topologies and their influence in particle swarm performance in
his doctoral thesis. Other variants such as dynamic multi-swarm
optimizer [11] and optimizer proposed in [12,13] performed better
to solve shifted-rotated benchmark functions, multi-optimization
problems and multi-modal functions respectively. There are also
all kinds of applications using PSO to tackle different tasks in
different fields. Ref. [14] is an application of optimization traffic
lights program with PSO, [15] shows an application to tackle
complex network clustering by multi-objective discrete particle
swarm optimization, and [16] proposed a binary particle swarm
optimization algorithm for optimizing the echo state network.

There are more and more optimization algorithms proposed to
tackle specific tough problems, and PSO is a popular one with de-
veloping variants from its inception in 1995. PSO variants proposed
in recent years for specific problem optimization are much more
complicated with huge time consumption than the canonical one,
but the optimization results are not so satisfying either on opti-
mization accuracy or on convergence speed. A property that is ap-
pealing than just being able to convergence to the optimum when
elapsed time approaches infinity, is to guarantee that a good solu-
tion can be found with a low number of function evaluations [10].
Simple optimization algorithms with powerful capacity and robust
[17] are much popular both for academic researches and engineers.
So in this paper, we proposed the MKE algorithm, which has a bet-
ter convergence speed and convergence accuracy with the similar
time complexity in comparison with variants of PSO.

With the development of industry technology, there are more
and more cars driving on the road. Traffic navigation becomes a
hot topic for city governors and researchers. Different approaches
have been advanced to tackle congestion and traffic emergency,
which aim for better performance of the traffic networks. The de-
sires of different roles in the traffic networks are different. City
governors often emphasize on the output of the total networks,
while some of the single drivers pay more attention to least travel
time or travel distance and most of them pay attention to least
fuel expense. As we know that large fuel consumption occurs when
cars are in traffic jams, and how to make a navigation while avoid-
ing congestion in the traffic networks not only achieve good out-
put of the total traffic networks, but also save the drivers’ money,
and this is an optimization problem. Ref. [18] shows some evolu-
tionary thoughts to tackle vehicle routing problem using a differ-
ent model of a static network. In this paper we advance models
and fitness functions of the traveling fuel consumption for a path
in vehicle navigation. The conducted experiments show that our
method outperforms Ax [19] and Dijkstra [20] in finding the least
fuel consumption path of the real-time navigation. The main con-
tributions of the paper include:

1. A new memetic evolutionary algorithm is advanced for global
optimization and it outperforms state-of-the-art PSO variants
not only on the robustness and accuracy but also on the conver-
gence speed (Test on BBoB2009 [21] and CEC2013 [22] bench-
mark functions on real parameter optimization).

2. The proposed algorithm has a large scale optimization property
that can be well used to tackle large scale optimization prob-
lems and it can be easily paralleled on distributed computing
systems to boost the calculation speed (Test on CEC2008 [23]
benchmark functions on large scale optimization).

3. A traffic networks model based on wireless sensor network en-
vironment is proposed with gasoline consumption function (of
navigation paths) proposed to be optimized for individual nav-
igation with regarding to least congestion in restricted traffic
networks.

4. The navigation result of the proposed algorithm outperforms Ax
and Dijkstra algorithm on gasoline consumption for real-time
navigation.

The rest of the paper is organized as follows, Section 2 presents
the related works. Section 3 presents the detailed algorithm of
Monkey King Evolution. Section 4 presents the navigation model
and fuel consumption fitness function. Section 5 gives a compara-
tive view and analysis and Section 6 shows the final conclusion.

2. Related works

Considerable developments have occurred since the inception
of canonical PSO [1]. The canonical PSO is based on swarm intelli-
gence and was inspired by the seeking food behavior of a flock of
birds. Individual bird is only influenced by its historical best and
the global best of the population, and the evolution equation is
shown in Eq. (1). The canonical PSO is simple and easy to imple-
ment, but the convergence is not good enough or even rather bad
to complicated problems.
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In order to accelerate the convergence speed of the canonical
PSO, an inertial weighted PSO [3] was proposed with the evolu-
tion equation shown in Eq. (2). Almost all the PSO variants like
constraint coefficient PSO (Eq. (3)), FIPS (Eq. (4)), Comprehensive
Learning PSO [12] (CLPSO, learning form personal best and others’
best), Cooperative PSO [24]| (CPSO, decomposing dimension vec-
tor as multiple swarm), Dynamic Neighborhood Learning PSO [13]
(dynamic neighborhood topology enabled exploration) use particle
topology/relationship for evolution, we can also get the topology
perception from Egs. (1)-(4).
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Topology/relationship plays a very important role in the perfor-
mance of a PSO variant, and proposed topologies up to date still do
not make the full exploration of the search region. Some of the al-
gorithms (CPSO, SLPSO) mentioned above need extra computation
expense. For example, the computation time complexity of CPSO is
about D (D is the dimension number) times larger than PSO, IW-
PSO, CCPSO, FIPS, CLPSO, and DNLPSO, and the performance of it
does not improved significantly. Moreover, the PSO variants also
have a fatal weakness that the performance does not improve with
the increase of population size, so is the weakness of these algo-
rithms for parallel computing.

For traffic navigation, Wireless Sensor Networks (WSNs) con-
sisting a number of sensor nodes are used to monitoring a lo-
cal area and getting the traffic information with little infrastruc-
ture [25]. There are often two different types of the structure, one
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Fig. 1. Four-lane road with sensors in the urban traffic networks.

is unstructured and the other is structured one. The unstructured
ones are that contains a dense collection of sensor nodes, and the
nodes may be deployed in an ad-hoc manner. For the structured
ones, the nodes are deployed in pre-planned manners. The struc-
tured style with few nodes can be deployed for traffic information
gathering with nodes placed at specific locations to provide cov-
erage. Fig. 1 shows the four-lane road with sensors in the urban
traffic network. The WSN communicates with a local area network
or wide area network through a gate way. The road-side sensor
acts as the end device to collect the traffic information and the
intersection node sensor acts as a coordinator and transfers the
collected traffic information to the gateway. The gateway acts as
a bridge connecting the WSN and other networks, and it enables
the data to be processed or stored by other resources. The traffic
model used in this paper is simulated on SUMO platform and grid
networks. Congestion analysis and least fuel navigation are based
on the traffic information collected form the WSNs of urban area.

3. The memetic Monkey King Evolutionary Algorithm

The Monkey King Evolutionary(MKE) Algorithm proposed in
this paper is inspired by the action of the Monkey King, a char-
acter of a Chinese famous mythological novel, named Journey to
the West. The novel relates the amazing adventures of the priest
Sanzang as travels west in search of Buddhist Sutras with his three
disciples, and Monkey King is the most capable disciple. The jour-
ney of the four is supposed to be dangerous and will-steeling.
When Monkey King is in trouble, he can transform into different
small monkeys to deal with the tough problem, and each small
monkey can give a feedback solution to the Monkey King, so the
Monkey King can select the best solution for the trouble. The Mon-
key King algorithm is an updated and more powerful version of
Ebb-Tide-Fish algorithm [26]. It is the same as Ebb-Tide-Fish algo-
rithm that there are also only a small amount of particles labeled
as Monkey King particles in Monkey King Evolutionary Algorithm.
We use a population rate R to define the proportion of particles in
the population labeled as Monkey King particles. The Monkey King
labels are randomly initialized with the sum equaling to RxPopSize,
PopSize denotes the population size. In the evolutionary algorithm,
each Monkey King particle transforms to a small group of mon-
keys for exploitation while other particles in the population are
for exploration. After each Monkey King particle’s exploitation, the
particle becomes a normal particle of the population, and then we
randomly select R«xPopSize particles from the population to change
their labels to be new Monkey King particles.

In the MKE algorithm, the number of small monkeys that a
Monkey King particle transforms to is C«D, C is a constant value
while D is the number of dimensions. A larger C value means the
Monkey King Particle does more exploitation of a local area and it
performs better on multi-modal functions, but it usually increases
the computational complexity. Empirically C =3 is a good choice
for lower dimension optimizations. The searching behaviors of par-
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Fig. 2. The search behaviors of particles in Monkey King Evolutionary.
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Fig. 3. The motion trajectory of a particle’s historical best drawn by global best of
the population.

ticles in the population are shown in Fig. 2, different particle la-
bels mean different search styles. The labeled S and X particles in
Fig. 2 are denoted as Monkey King particle and common particle
respectively. The evolution equation of Monkey King particles and
common particles are listed in Eqgs. (5), (6) and (7) respectively.
This kind of update scheme is denoted as Monkey King Evolution
version 1 (MKE_v1). Xgn(i) in Eq. (6) denotes the ith “small mon-
key” particle of the C x D small monkeys group. All these “small
monkey” particles have the same values as Xy ¢ (a Gth-generation
Monkey King particle). The “small monkey” particles search the
vicinity range of Xy ¢ by following evolution equation Eq. (5), and
Xumk ¢ is updated by Xy 41, the selected optimum value from the
C x D “small monkey” particles. For the normal particle, evolution
follows Eq. (7). Xy, press denotes the historical best of kth particle
in the population, F is the fluctuation coefficient of direction vec-
tor (the vector from current position to the global best position). A
particle’s historical best motion trajectory is shown in Fig. 3, and
the pseudo-code of the algorithm is shown below in Algorithm 1.!

Xom (1) :{x1,X2,...,Xj,..-,xD}v
Xj—>Xxj£02«rand() «x;, j € D.

(5)

T R(ry, 13, ..., Iy) is the bound restraints. As the search domain is usually symmet-
ric, we only need the maximum value of each dimension for the bound restraints,
and ry is the maximum value of d-th dimension.
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Algorithm 1 Pseudo-code of the Monkey King Evolution Algorithm.

Initialization:

Initialize the searching space R(ry, 13, ..

function f(X).

Iteration:

1: while exeTime < MaxIteration do

2:  if exeTime = 1 then

3: Generate the population coordinates X =
(Xi1. X2, - - in,d)T and generate the Monkey King par-
ticle and change its flag.

.,T4) and the benchmark

4: end if

5. if exeTime > 1 then

6: for pSize =1 : PopSize do

7 if label; == 1 then

8 Monkey king particle evolution (e.g. Egs. (5) and (6)).
9: label; =0

10: else

11: Common particle evolution (e.g. Eq. (7)).
12: end if

13: Generate Monkey King and change its flag.
14: end for

15:  end if

16:  Calculate the fitness value and update Xpeq;.
17: Update the optima with coordinate Xgpe;.
18: end while

Output:

The global optima Xgpes; and f(Xgpest )-

Table 1

The probability of newly added number of Monkey
King particles after one of 50 Monkey King particles
finishing its exploitation.

Added MK number 2 1 0
2 Cly x C1 2
Probabilit 49 49~ 51 El
Y Gu G Gy
Xuicg1 = 0Pt Xom (1), ... Xom (D). ... Xom (C x D)}. )
ieCxD
Xk4G+1 = kabest +Fx rand() * (ngest - Xk,G) (7)

Monkey King particles of the population are used as perturba-
tion factors to achieve better optimization results within less com-
putational time, so the proportion rate R is very small. We examine
two cases: one is Rx* PopSize = 1, which means there is only one
Monkey King particle in the population. The other is R«PopSize >
1, we take R x PopSize = 2 for analysis. In this case R x PopSize = 2,
we take PopSize = 100 for example, the initial number of Monkey
King particles is 2. According to the algorithm, when one Monkey
King particle changes its label to normal particle, two other parti-
cles in the population are selected and labeled as Monkey King.
The number of Monkey King particles is increasing until a cer-
tain threshold. We suppose there are half Monkey King particles
and half normal particles in the population with the number each
50 particles. When one of the Monkey King particle finishes ex-
ploitation and changes its label to normal, two other particles are
selected to change their normal labels to be Monkey King labels.
Table 1 shows the probability of the number of new added Mon-
key King particles, so the expectation is 0.74. The balance num-
ber n of Monkey King particles satisfies Eq. (8), so n = 63. Fig. 4
shows the number of Monkey King in the population with respect
to R % PopSize = 1 and R * PopSize = 2.

C? Clxcl
2 x 10207'1 + = leoofn =0.5 (8)
C C
100 100

70
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8
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o
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Number of function evaluations

Fig. 4. Number of Monkey King particles of each iteration in 100 particles’ popula-
tion.
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Fig. 5. 2-D schaffer function.

3.1. Benchmark functions

There are many benchmark functions for the validation of
new algorithms, these benchmark functions are usually uni-modal
functions, multi-modal functions, separable functions, nonsepara-
ble functions, symmetrical functions, asymmetrical functions, and
even composition functions. Fig. 5 shows a 2-dimension multi-
modal schaffer function. In this paper, we use 28 benchmark func-
tions, including uni-modal function, multi-modal function, sepa-
rable functions, nonseparable functions, symmetry functions and
asymmetry functions. The equations of the functions and the min-
imum values in search domain R of the functions are given in
Tables 2 and 3, respectively. The detailed description of these
benchmark functions can be found in BBOB2009 noiseless function
definitions [21] and CEC2013 problem definition [22].

We also use CEC2008 benchmark functions for the validation
of the scale invariant property of the proposed algorithm, and the
good large scale optimization property makes the algorithm out-
perform others on large-scale optimization especially for the ap-
plication, fuel optimization, in this paper. The optima of CEC2008
benchmark functions are listed in Table 4.

All the experiments are conducted on a PC with Intel(R)
Core(TM)2 Duo CPU T6670@ 2.2 Hz on RedHat Linux Enter-
prise Edition 5.5 Operating System, and all the algorithms are
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Table 2
Benchmark functions.

No. Name Benchmark function
1 Sphere function ix) =22+ f1.Z=X-0
2 Rot-Hi-Con-Elliptic function LX) =Y2,(105) 57 22 + f5,Z = Toe (My (X = 0))
3 Rot-Be-Cigar function frx) =22 +10°%2, 2z + f3.Z = My Ty (M; (X - 0))
4 Rot-Discuss function fa(x) =10°22 + 30,22 + f;.Z = T (M (X — 0))
5 Dif-Powers function fs(0 =/32, \z,-|2+4% +fi.Z=X-0
6 Rot-Ros function fox) = 221 (100(22 —zi1)? + (zi — 1)?) + f2.Z = My (228501 4 1
7 Rot-Schaffers F7 function (%) = (55 Y25 (VZi + VZisin? (50202)))2 + f3,
VI+YE, Y = AOML TS (My (X - 0))
8 Rot-Ackley’s function fo®) = —20exp(~0.2,/ § 37, 22) — exp(} Yy Deos(2mz)) +20 + e + f;
Z= A"’Mzr,gy5 (M (X — 0))
9 Rot-weierstrass function fox) = X2 (Zkm®¥[akcos (27 b (7 + 0.5))]) — D Y{™¥[akcos (2w b¥0.5)] + f;
a=05b=3, I<max_ 20,Z = AOM, TS (M; 22559y
10 Rot-Griewank’s function fiox) =2, 4000 -2 1cos( )+ 1+ fr.
Z = A0, BOO(Xf
1 Rastrigin’s function fux) =2 ](zz —10cos(27z;) + 10) + fi.
7= AmTOZ(Tosz(S]Z(XO D)))
12 Rot-Rastrigin’s function fra(x) = 21 1(zZ —10cos(2mz;) 4+ 10) + f},.
Z = My APM,TO? (Tos, (M 2125572 ))
13 Non-Rot-Rastrigin’s function fiz() =2 1@ - 10cos(2nz,) +10) + fi5.Z = My AOML T2 (Tosz (V)
2= M, 51260 2, 'f|X1| =05
X=M Yi= round (2%;)/2, 1f|x,| > 05
14 Schwefel’s function f14(Z) = 418.9829 %D — Y0 | g(z:) + fi,
Z = A10(10%°0)) | 4209687462275036€ -+ 002
15 Rot-Schwefel’s function f15(Z) = 418.9829 + D — 2?:1 £(z) + fis.
7= AwM (100X-0) ) 1 4.209687462275036e + 002
. |27zi-round(2/z)) | | 10 10 .
16 Rot-Katsuura function fie(®) = ]'[1 1(1 +iy j=132"———")07 — 5+ fis
7 — MZAIOU(M (S(X 0) ))
17 Lun-Bi-Rastrigin function frr () = min(¥2, yf,,AdD +5Y2, )+ 10D~ P cos2mz) +
18 Rot-Lun-Bi-Rastrigi i Yoo - p).yy = (i~ pin) 2= ARG dno) 59y 4 fe
-Lun-Bi-| gin function fis(x) =min(3;_; y5. dD+s3 "1 y3) +10(D — Y ;2 cos(27Z)) + fig
Vo= @& —t0),y1 = (X — 1),z = Ma A" (M (R — f10))
19 Rot-Exp-Gri-plus-Rosenbrock’s function fro(x) = g1(g» (21 2)) +81(82(22.23)) + - +81(&2(2p. 1)) + fiy
8100 =Y gh5 — [T21 cos(%) +1,2= My (3552) + 1
20 Rot-Exp-Scaffer’s F6 function fao (%) =8(z1.22) + 8(22.23) + ... + &(2p. 21) + f3
2 2 1
2(,Y) =05+ Sl 08 7= MyT) (My (X — 0))
21 Composition function 1 f(x) =YL, @i * [Aigi(x) + bias;] + f*
fi=fi-fg=fho=fhe=Ffa=Ffg=F
22 Composition function 2 f(x) = 3 @i x [higi(x) + bias;] + f*
fi’ = fl f 81-3= f14
23 Composition function 3 f(x) =i, wi* [Aigi(x) + bias;] + f*
fi=fi-fr.eis=fis
24 Composition function 4 f(x) =YL @i x [Aigi(x) + bias;] + f*
fi,:fi*ff’gl f15 gZ*fu &= fg ‘7_[20 20, 20]
25 Composition function 5 fx) =1, wi*[Aigi(x) + bias;] + f*
f' i=1
fi- f 81 = f15.8 = f1p.83 = fo. 0 = 110,30, 50]
26 Composition function 6 (x) = w; * [Xigi(x) + bias;] + f*
1 1
fi=fi-fre=Fis8="Fu8="Feg="feg="/
27 Composition function 7 f(x) = 3 @i+ [Aigi(x) + bias;] + f*
f fl f &1 = f10»g2:f12’g3:f15ag4:fg»g5:f1
28 Composition function 8 f(x) =YL, wi* [Aigi(x) + bias;] + f*

fi=fi-fr.e1="f98 =18 =fi5.8 = fr0.85 = f

implemented in Matlab 2011b Unix version. The fitness error val-
ues that smaller than “eps” (eps = 2.2204e — 016) are considered
as zeros herein.

When we test the MKE_v1 with R« PopSize =1 using these
benchmark functions, experiment results show that MKE_v1 has
better accuracy and convergence speed for lower dimension func-
tions and un-rotated functions than canonical PSO algorithm. In or-
der to improve the performance, we propose an updated version
named MKE_v2.

3.2. Updated version of memetic MKE Algorithm

As we know, Monkey King in Chinese famous mythological
novel, Journey to the West, is the most powerful disciple of priest
Sanzang. Accordingly, we appoint the global best in the population
of each iteration to be Monkey King particle instead of randomly

generated ones that in MKE_v1, this version is named MKE_v2.
Before the illustration of the evolution equation in MKE_v2, we
give some definitions first, X denotes the coordinate matrix of
all particles in the population with the coordinate of ith particle

= {x1.%p,...,Xp} to be the ith row vector of it. There are ps row
vectors in X as the population size is ps. XMKG denotes the Monkey
King matrix, and there are C x D vectors in the matrix. Each vector
in )?MK,G is Xk, ¢ with the value equaling to Xgpeq;, ¢ (the particle
that has global best fitness value). Eq. (9) shows the equation of X
and X\MK,G-

X Xuk.c

o X o X

X=1" |Xukc = ”{VIK'G (9)
Xps Xvkc | c.p
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Table 3

Search domain and minimum of real-parameter optimization benchmark functions.
No.  Name Search domain ~ Minimum value
1 Sphere function [-100, 100]P f(01,04,...,04) = —1400
2 Rotated high conditioned elliptic function [-100, 100]P f(o1,04,..., 04) = —1300
3 Rotated bent cigar function [-100, 100]P f(oq,09,..., 04) = —1200
4 Rotated discuss function [-100, 100]P f(o1,09,..., 04) = —1100
5 Different powers function [-100, 100]P f(o01,04,...,04) =—1000
6 Rotated Rosenbrock’s function [-100, 100]P f(oq,09,..., 04) = —900
7 Rotated Schaffers F7 function [-100, 100]P f(o1,09,..., 04) = —800
8 Rotated Ackley’s function [-100, 100]P f(01,04,...,04) =—700
9 Rotated Weierstrass function [-100, 100]P f(o1,09,..., 04) = —600
10 Rotated Griewank’s function [-100, 100]P f(o1,00,..., 04) = —500
1 Rastrigin’s function [-100, 100]P f(01,04,...,04) = —400
12 Rotated Rastrigin’s function [-100, 100]P f(o1.02,..., 04) = —300
13 Non-continuous rotated Rastrigin’s function [-100, 100]P f(o1,09,..., 04) = —200
14 Schwefel’s function [-100, 100]P f(o1. 0z, ..., 04) = —100
15 Rotated Schwefel’s function [-100, 100]P f(o1,04,...,04) =100
16 Rotated Katsuura function [-100, 100]P f(o1,09,..., 04) =200
17 Lunacek Bi-Rastrigin function [-100, 100]P f(o1,09,..., 04) =300
18 Rotated Lunacek Bi-Rastrigin function [-100, 100]P f(o01,04,...,04) =400
19 Expanded Griewank’s plus Rosenbrock’s function [-100, 100]P f(o1,09,..., 04) = 500
20 Expanded Scaffer’s F6 function [-100, 100]P f(o1,00,..., 04) = 600
21 Composition function1 (n = 5, rotated) [-100, 100]P f(01,02,...,04) =700
22 Composition function2 (n = 3, unrotated) [-100, 100]P f(o1.02,..., 04) = 800
23 Composition function3 (n = 3, rotated) [-100, 100]P f(o1,09,..., 04) =900
24 Composition function4 (n = 3, rotated) [-100, 100]P f(o1,09,..., 04) = 1000
25 Composition function5 (n = 3, rotated) [-100, 100]P f(o1,04,...,04) = 1100
26 Composition function6 (n = 5, rotated) [-100, 100]P f(oq,09,..., 04) = 1200
27 Composition function7 (n = 5, rotated) [-100, 100]P f(o1,09,..., 04) = 1300
28 Composition function8 (n = 5, rotated) [-100, 100]? f(o1,0q,..., 04) = 1400

Table 4
Search domain and minimum of large-scale benchmark functions.
No.  Name Search domain ~ Minimum value
1 Shifted sphere function [-100, 100]P f(o1,0z,..., 04) = —450
2 Shifted Schwefel’s problem 2.21 [-100, 100]? f(oy.09,..., 04) = —450
3 Shifted Rosenbrocks function [-100, 100]P f(o1,09,..., 04) =390
4 Shifted Rastrigins function [-5,5]” f(01,02,...,04) = —330
5 Shifted Griewanks function [-600, 600]P f(o1,04,..., 04) = —180
6 Shifted Ackleys function [-32,32]P f(o1,09,..., 04) = —140
7 FastFractal “DoubleDip” function — [—1,1]” f(o1,09,..., 04) unknown
Now, we get back to illustrate the evolution scheme of MKE_v2. X1
The local search/exploitation is implemented by Eq. (10). Xg;ss is r

the exploitation matrix, generated by the difference of two ran-
dom matrices )?H and )?rz- An illustration of two dimension )?diff
is shown in Fig. 6. 5(}1 and )?,2 are generated by randomly select-
ing C x D row vectors from X _(select without replacement), the

earlier selected row vectors of X appears in the front rows of Xr1 /

and sz FC is the fluctuation coefficient of the exploitation matrix. Y4

XMK c41(i) denotes the it row vector of XMK c+1- The next genera- \ // : //

tion (Xyk.c+1) of Xux, ¢ is updated by the row vector that find the \ \., / //’—-:/

optimum value among row vectors in Xy 1. The common parti- — e > x
cles still use the same update scheme mentioned in MKE_v1 with — N> 0

= e
the equation shown in Eq. (7). // f \\ \
A

Xd,ff = (Xr1 ~X2) /
Xvk.cr1 = XMKG +FC *Xdlff (10)
Xukc1 = 0pt{Xuk i1 (D)} i=1.2,....Cx D

In the conducted experiment, we use C=3,F =5,FC = 0.5 and
C=3,F =2,FC =2 to make comparisons. The optimization results
of the 28 benchmark functions with 10-dimension after 10,000 Fig. 6. The Monkey King particle’s exploitation matrix/vectors.
generations are shown in Table 5. For each function we run 20
times and the best minimum and mean minimum of the 20-run
fitness errors are listed in the table. We can see that the optimiza- the proposed MKE_v2 has an overall better performance than the
tion results are not good enough only by employing the exploita- canonical PSO algorithm. Then we propose the third Monkey King
tion of the Monkey King particle (global best particle), though Evolution version (MKE_v3).
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Table 5

Comparison results of MKE_v2 with different parameter settings. The best values of 20-run fitness errors are
emphasized in BOLDFACE and the average values of the 20-run fitness errors are highlighted in ITALIC fonts.

fx—flo)  MKE_v2, F=2,FC=2 MKE_v2, F = 5, FC=0.5 PSO

No. Best Mean Best Mean Best Mean

1 2.2737E-13 3.0695E-13 0 2.2737E-14 2.0552E + 02 4.8932E + 02
2 1.2857E + 03 1.8772E + 04 5.1501E + 04 2.2937E + 05 6.8267E + 05 1.2207E + 06
3 2.8475E-01 3.1489E + 07 5.6787E + 00 6.4120E + 05 2.4609E + 08  4.9810E + 08
4 0 5.7981E—13 1.7061E + 02 1.0869E + 03 1.5163E + 03 2.3930E + 03
5 0 2.3306E-13 0 3.9792E-14 6.0427E + 01 1.0332E + 02
6 1.1461E-03 1.3162E + 01 7.6161E-02 7.9281E + 00 2.1151E + 01 3.6457E + 01
7 1.7013E + 01 7.0382E + 01 3.1573E + 00 2.5164E + 01 2.4418E + 01 3.2066E + 01
8 2.0000E + 01  2.0232E + 01 2.0179E + 01 2.0261E + 01 2.0119E + 01 2.0236E + 01
9 4.5935E + 00 6.1842E + 00 3.0581E + 00  4.5408E + 00 5.0744E + 00 6.3820E + 00
10 8.1085E-01 2.5203E + 00  6.6424E—02 6.3203E-01 2.9134E + 01 4.6083E + 01
11 4.9748E + 00 1.4775E + 01 0 3.9798E-01 3.4236E + 01 4.6911E + 01
12 1.1940E + 01 3.1291E + 01 1.5919E + 01 3.0097E + 01 2.6582E + 01 4.5151E + 01
13 2.3971E + 01 5.0830E + 01 5.9475E + 00  2.7493E + 01 3.3342E + 01 4.5142E + 01
14 1.8197E + 02 3.1795E + 02 4.0176E + 01 14161E + 02 7.1241E + 02 1.0740E + 03
15 3.0321E + 02 9.2910E + 02 3.6868E + 02 9.0854E + 02 1.0092E + 03 1.1380E + 03
16 2.1292E-01 4.4480E—-01 2.0879E-01 5.0173E-01 5.3371E-01 7.8679E-01
17 4.7861E + 00 1.7968E + 01 1.0276E—-09 8.2347E + 00 7.1864E + 01 9.6239E + 01
18 1.1805E + 01 4.5189E + 01 2.0874E + 01 4.1024E + 01 7.7151E + 01 9.0736E + 01
19 4.5331E-01 1.4621E + 00 2.6635E-01 6.8545E-01 5.7323E + 00  8.5746E + 00
20 2.8668E + 00 3.5650E + 00  1.2588E + 00  3.0732E + 00 2.7487E + 00  3.2410E + 00
21 1.0000E + 02  3.7016E + 02 2.0000E + 02  2.9009E + 02 3.7741E + 02 4.3280E + 02
22 5.5712E + 01 4.0573E + 02 1.0979E + 01 2.1706E + 02 9.4005E + 02 1.2336E + 03
23 6.2828E + 02 1.2956E + 03 2.3218E + 02 9.8438E + 02 8.1939E + 02 1.1645E + 03
24 2.0855E + 02 2.1831E + 02 2.0783E + 02  2.1347E + 02 2.1516E + 02 2.1778E + 02
25 2.0393E + 02 2.1698E + 02 2.0333E + 02  2.1361E + 02 2.1622E + 02 2.1928E + 02
26 1.1890E + 02 2.1664E + 02 1.1791E + 02 2.1767E + 02 1.3451E + 02 1.8107E + 02
27 3.4323E + 02 5.3126E + 02 4.0000E + 02 5.3236E + 02  5.0656E + 02  5.7536E + 02
28 3.0000E + 02  4.6266E + 02 1.0000E + 02  3.1299E + 02 6.0308E + 02 7.2820E + 02

3.3. Monkey King Evolution version3

In this version, common particles are equipped with the same
exploitation behavior as Monkey King particles, in other words,
the particles are equivalent. Exploration and exploitation are im-
plemented simultaneously by affine-like transformation (In affine
transformation, f: X — Y, is of the form X — MX + b. Here in this
paper we use a new affine-like transformation style X — M@ X +
Bias, Bias = M ® B, ® denotes multiplication of corresponding ma-
trix elements, same as “.x” operation in Matlab), and all parti-
cles in the population use a matrix M for this transformation.
We also give some definitions before the introduction of the evo-
lution equation in MKE_v3. )?gbest,c denotes the replicated global
best matrix, and there are ps vectors in the matrix. Each vec-
tor in )?gbest,c is with the same value Xgps ¢ (the coordinate
of the particle that has global best fitness value). )?G denotes
the G generation of X, X is the coordinate matrix, which is
the same as the one mentioned in MKE_v2. Eq. (11) shows the
equation of )?gbest,(;s and Eq. (12) shows the evolution scheme in
MKE_v3.

Xl ngest,c
5(\ = X2 X\gbest,G = ?%bESt,G (11)
Xps ngest,c

Xairf = X1 = Xi2)

ngest,G+1 = ngest,G +FCx Xdiff
XG+1 = M®XG + Bias

Bias = M ® nges[,GH

)?differ also denotes the exploitation matrix, but )?ﬂ and )?rz
have extended meanings with the ones introduced in MKE_v2.
)?rl and )?rz here in MKE_v3 extend the row sizes from C x D to
ps (the population size). In this case, the randomly selecting row
vectors from X to X,; and X, can be implemented by randomly
permutating row vectors of X.

M is the transformation matrix, and it is transformed from
a matrix Mmp which is generated by the multiplication of or-
thogonal eigen-vector matrix P and diagonal eigen-value matrix
(Mtmp = PTAP). A =diag(dy,ds,...,dp) is a diagonal eigen-value
matrix and used for the amplification of the difference matrix. For
simplicity, Mynp is initialized by a lower triangular matrix with
the elements equaling to ones. Eq. (13) gives an example to show
the transformation for Mny to M with particle population size
equaling to D. There are two steps for the transformation, the first
step is to randomly permute the elements of each D-dimension
row vector in Mgy, and the second step is to randomly permute
the row vectors with the elements of each row vector unchanged,
so we can get M.

1 1 1
1 1

Memp = D I T | =M (13)
1 1 1 1

Usually, the size of the particle population is larger than particle
coordinate dimension, matrix My, needs to be extended accord-
ing to population size ps. For example, when ps=2D, My is
extended to duplicated matrix shown in Eq. (14). Generally, when
ps%D = k, the first k rows of the D x D lower triangular matrix are



Z. Meng, ].-S. Pan/Knowledge-Based Systems 97 (2016) 144-157 151

included in M¢pp, and M is adaptive with the change of M.

1 71 7
11 1
11 1 1
Mo = | 4 ~ =M  (14)
11 1T 1
1
11 1 L 1

M is binary reverse operation of M. The corresponding values
of non-zero elements in M are zeros in matrix M while the
corresponding values of zero elements are ones. Eq. (15) shows an
example of binary reverse operation.

1 0 1 R |
m=|t T m=|% 0 (1)
11 - 1 0 0 .- 0

The pseudo-code of the algorithm is shown in Algorithm 2. So

Algorithm 2 Pseudo-code of the final version of Monkey King Evo-
lution Algorithm.
Initialization:
Initialize the searching space R(ri, 13, ..
function f(X).
Iteration:
1: while exeTime < MaxIteration do
2: if exeTime = 1 then
3: Generate the population coordinates Xi =
(Xi1,Xi2,.-..Xq)T and generate the Monkey King par-
ticle and change its flag.
end if
if exeTime > 1 then
Particles evolution in Eq. (12).
end if
Calculate the fitness value and update Xpeq;.
9:  Record the optima coordinate Xgpe-
10: end while
Output:
The global optima Xgpes; and f(Xgpest )-

.,Tg) and the benchmark

XN R

there is only one parameter FC of the proposed MKE_v3 should be
determined in experiment. Empirically, FC = 0.7 is a good choice
for MKE_v3, and we use this setting in the following experiment.

4. Model of routing and fuel consumption in grid networks

Vehicle routing and scheduling models are very useful for the
dynamic vehicle transportation in urban area. Real time informa-
tion of street length, lanes, vehicle density, direction, velocity re-
strictions of a certain road are all recorded and collected by WSNs
with the aid of city traffic surveillance system and global posi-
tioning system for vehicle identification and navigation. The actual
need of routing is to search the optimal way from a source to a
destination that satisfy the driver’s needs. We mainly analyze the
shortest path (Dijkstra method), A+ algorithm and our proposed al-
gorithm for finding a least gasoline consumption path of a naviga-
tion. A simulation is conducted on a grid network, and the naviga-
tion result is shown in Fig. 7.

The routing of vehicles can be modeled as a directed graph
G = (V,E) which consists of road (Edge) and intersections (Node).
In Fig. 7, we randomly generated 10,000 vehicles to simulate the
traffic condition that should usually be collected by WSNs at some
time in a day, the road is 2-lane road, and the distance between

8 16 24 32 40 48 T(E-uqr ms
1400 |- . . . . 2 &
7 15 23 31 39 47 55 63
1200 |- . ) . . ) . .
6 14 22 30 38 46 54 62
1000 - . . 3 . ) )
5 13 21 29 37 45 53 61
800 - @ [} [+ =] [ ) .
4 12 20 28 36 44 52 60
600 |- e . [} . =} =) o L
3 1" 19 27 35 43 51 59
400 | 13 . . . L) * o
2 10 18 26 34 42 50 58
200 e . ) . 'y ) @ .
1 9 17 25 33 a1 49 57
OF e ° ° . L ] ) . °
1 1 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400

Fig. 7. Grid network of vehicle navigation simulation. (For interpretation of the ref-
erences to color in this figure, the reader is referred to the web version of this
article).

two nodes in the grid network is 2 km, and there are 51 vehicles,
on average, in one square kilometer with 89 vehicles on one sec-
tion of road (2 km, the interval between two intersections). When
the density is 1.2 times than normal traffic density or more than 3
vehicles in a 22.4 m, we denote the section congested with a delay
time Ty. The red points in Fig. 7 is congestion nodes, the pink one
is the generated start point, the yellow one is the destination and
green ones are the intersections nodes which demonstrate the op-
timal navigation result. The gasoline consumption fitness function
is a function of edge-travel gasoline cost and congestion gasoline
cost. The fitness function is shown in Eq. (16). g(w;) denotes the
congestion weight of Edge; and E; ., denotes the gasoline cost on
Edge; with the delay gasoline cost on the following intersection in-
cluded.

n
f= Zg(wi) * Ej cost (16)
i=1

Each navigation path candidate is composed of node-edge se-
quence, and we use the node sequence herein the paper to denote
each candidate path for simplicity. For example, X; in gasoline con-
sumption optimization is the i-th node sequence that contains the
i-th candidate path of the navigation. All the intersection nodes of
the local area are labeled for the navigation and different permu-
tation sequence of these nodes that contain a candidate path of a
navigation is a potential solution. For the definition of E;, i is the
start node of the edge, and edge is named after the start node.
Therefore, E; .o is the gasoline cost of E;. g(w;) is the congestion
weight of edge E;, and the value is determined by the traffic con-
dition at some time in a day. For simplicity, the value of g(w; is set
to 0 when the i-th intersection node is not on a navigation path,
and the value is set to 1 when it is on a navigation path. E; ., in
the navigation path can be calculated with the congestion weight
g(w;) constructed according to the current traffic condition.

Recent research shows that there is an optimum velocity range
for each car. In our experiment, a typical small gasoline (<
1400cm3) Euro 4 passenger car is used for the analysis. Fig. 82
shows the optimal speed for minimum fuel consumption. From the
chart, we can separate four areas with corresponding four velocity
ranges. The first range is 0-30 kph with quite high fuel consump-
tion. This speed range is typical for cars traveling in a city with

2 http://www.myengineeringworld.net/2012/05/optimal-speed-for-minimum-fuel.
html.
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Fuel Consumption - Average Velocity

Optimam Range

Table 6
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Fig. 8. Fuel consumption under different velocities.

Parameters setting of different algorithms.

Algorithms. Parameters settings

iwPSO
ccPSO

cl=c2=2.0,iw=0.5vel =rnd
¢c1=c2=205,iw=1,K=0.7298,v = rnd

ccPSO-local ¢l =c2=2.05,iw=1,K = 0.7298, VonNeumannTopology, v = rnd
FIPS_Uring cc=4.1,iw=1,K = 0.7298, UringTopology, v = rnd

CLPSO
DNLPSO
MKE_v3

iw =0.970.3, cc = 1,49455, Pc = 070.5, stay_num = 7, v = rnd, vmax = 0.2R
¢l =c2=1.49445,iw = 0.970.4, Pc = 0.4570.05,m = 3,g =5,v =rnd
F=0.7

Comparison results of best minimum error in 20 runs with the same number of function evaluations. The best result of each function
is emphasized in boldface and the best draw results of each function is highlighted in italic fonts.

D =10. iwPSO ccPSO ccPSO-local FIPS_Uring CLPSO DNLPSO MKE_v3

1 0 0 0 0 0 0 0

2 6.2219E + 03 1.5341E + 03 3.1794E + 03 2.5958E + 05 1.0742E + 05 1.1018E + 05 0

3 8.4504E + 00  7.2012E-03 6.3060E—04 9.3183E + 02 2.5073E + 04 3.1346E + 00 0

4 2.3032E-03 1.0383E-05 2.9173E + 01 1.0442E + 03 8.1690E + 02 0 0

5 0 0 0 0 0 0 0

6 1.0407E-01 5.8119E-03 1.3798E-03 2.9921E + 00 5.7861E-02 0 0

7 5.4720E-01 7.6699E—-01 1.1821E-01 1.4475E-01 2.7911E + 00 7.1501E-01 2.6603E-11
8 2.0109E + 01 2.0142E + 01 2.0150E + 01 2.0135E + 01 2.0108E + 01 2.0000E + 01 2.0227E + 01
9 7.5826E—-01 6.6214E-01 1.3548E + 00 1.1535E + 00 2.0014E + 00 2.0241E + 00 0

10 1.4268E-01 9.1142E-02 4.9242E-02 5.4348E-01 1.4956E-01 3.6914E-02 4.917E-02

1 0 9.9496E-01 0 1.2921E + 00 0 7.9597E + 00 0

12 5.9698E + 00  4.9748E + 01 2.9849E + 00 1.9855E + 01 2.2242E + 00  4.97480E + 00  4.7202E + 00
13 6.3297E + 00  3.1902E + 00 3.0705E + 00 2.1921E + 01 4.1636E + 00 2.0994E + 00 9.9496E-01
14 3.5399E + 00  3.5399E + 00  3.4774E + 00 24878E+02 0 1.3679E + 00 3.8531E + 00
15 1.6691E + 02 8.6620E + 01 5.0109E + 01 8.4792E + 02 3.4004E + 02 3.2461E + 02 2.9998E + 02
16 1.4823E-01 1.5265E-01 2.0954E-01 5.9590E-01 3.0200E-01 1.1897E-01 6.1354E-01
17 1.0312E + 01 1.7721E + 00 1.0648E + 01 2.4666E + 01 2.9551E + 00 1.1719E + 01 3.9636E-01
18 1.2079E + 01 4.8434E + 00 9.1023E + 00 3.0724E + 01 1.7227E + 01 1.9027E + 01 1.2956E + 01
19 3.0890E-01 6.9478E—-02 1.5285E-01 1.3817E + 00 5.3203E-02 5.9673E-01 2.8013E-01
20 8.9747E-01 1.7711E + 00 1.8324E + 00 2.5448E + 00  1.9101E + 00 2.2711E + 00 1.0848E + 00
21 2.0000E + 02  2.0000E + 02  2.0000E + 02  2.3411E + 02 4.1487E + 00 2.0099E + 02 1.0000E + 02
22 1.7541E + 01 4.1743E + 01 4.3246E + 02 1.9707E + 02 5.1004E + 00  4.0347E + 02 3.1368E + 01
23 3.8489E + 02  3.7587E + 02 1.1655E + 02 1.0744E + 03 2.6518E + 02 6.1120E + 02 1.5338E + 02
24 2.0083E + 02 1.2547E + 02 2.0402E + 02 2.0680E + 02 1.1540E + 02 2.0080E + 02 1.1186E + 02
25 2.0154E + 02 2.0071E + 02 1.1359E + 02 2.0814E + 02 1.2615E + 02 2.0197E + 02 2.0000E + 02
26 1.0398E + 02 1.0497E + 02 1.0796E + 02 1.2904E + 02 1.0890E + 02 1.0717E + 02 1.0398E + 02
27 3.0110E + 02 3.5496E + 02  3.1318E + 02 3.5674E + 02 2.9236E + 02  3.0574E + 02 3.0000E + 02
28 3.0000E + 02  3.0000E + 02  1.0000E + 02  1.5215E + 02 1.1715E + 02 3.0000E + 02 1.0000E + 02
Win 2 1 1 0 5 2 8

Draw 4 2 4 2 3 4 7

Total 6 3 5 2 8 6 15
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Table 8

Comparison results of median value of minimum errors in 20 runs with the same number of function evaluations. The best result
of each function is emphasized in boldface and the best draw results of each function is highlighted in italic fonts.

D =10. iwPSO ccPSO ccPSO-local FIPS_Uring CLPSO DNLPSO MKE_v3

1 0 0 0 0 0 0 0

2 6.3806E + 04 1.2153E + 04 1.2396E + 04 8.4876E + 05 2.6012E + 05 1.2038E + 06 0

3 1.1851E + 05 1.9421E + 04 7.1724E + 00 4.8359E + 03 2.0317E-05 1.4948E + 06 0

4 3.1851E-02 4.8394E—-05 1.3013E + 01 2.1160E + 03 1.8513E + 03 1.5871E-01 0

5 1.1369E-13 1.1369E-13 0 0 0 0 0

6 9.8661E-00 7.7159E-02 3.5043E-02 3.9566E + 00 1.7674E-01 1.0751E + 01 0

7 1.1007E + 01 1.0536E + 01 5.3617E-01 5.7795E-01 5.6673E + 00 1.9268E + 01 9.5508E-03
8 2.0232E + 01 2.0228E + 01 2.0215E + 01 2.0249E + 01 2.0228E + 01 2.0278E + 01 2.0478E + 01
9 4.3370E + 00 3.2650E + 00  2.8860E + 00 3.8699E + 00 2.9952E + 00  4.7871E + 00 1.7891E + 00
10 4.5315E-01 3.3458E-01 1.7096E-01 6.2779E-01 3.1643E-01 3.0889E-01 1.6972E-01
1 1.9899E + 00 29849E+00 0 9.3415E + 00 0 1.1442E + 01 2.9849E + 00
12 1.4924E + 01 1.4924E + 01 7.9597E + 00 2.8003E + 01 6.0776E + 00 1.5919E + 01 1.3718E + 01
13 1.7901E + 01 1.9618E + 01 9.5999E + 00 2.7402E + 01 9.4278E + 00  3.2975E + 01 1.9161E + 01
14 1.3632E + 02 1.9300E + 02 6.1817E + 01 5.6135E + 02 0 4.0847E + 02 1.0360E + 02
15 6.6693E + 02 7.8020E + 02 4.1893E + 02 1.1650E + 03 5.1257E + 02 6.7508E + 02 1.0711E + 03
16 4.9882E-01 3.5291E-01 5.8408E-01 7.8826E-01 6.7720E-01 4.2404E-01 1.1980E + 00
17 1.1121E + 01 1.1216E + 01 1.2122E + 01 3.3599E + 01 6.9076E + 00  2.4595E + 01 1.1374E + 01
18 2.2190E + 01 1.9620E + 01 1.4389E + 01 3.7075E + 01 2.1799E + 01 3.5661E + 01 3.2489E + 01
19 5.4808E—-01 5.3011E-01 4.8039E-01 2.0450E + 00 1.7803E-01 9.6366E—01 6.2560E—-01
20 3.0051E + 00 3.4763E + 00 2.2794E + 00 2.7727E + 00 2.5118E + 00 2.8935E + 00 1.7738E + 00
21 4.0019E + 02 4.0019E + 02 4.0019E + 02 4.0019E + 02 1.7552E + 02  4.0019E + 02 4.0019E + 02
22 2.1424E + 02 2.0658E + 02 1.5606E + 02 5.4100E + 02 1.0606E + 02 7.5007E + 02 1.4334E + 02
23 9.5811E + 02 9.1353E + 02 4.1825E + 02 1.2283E + 03 5.7812E + 02 1.0252E + 03 9.9672E + 02
24 2.1004E + 02 2.0893E + 02 2.0708E + 02 2.1175E + 02 1.2189E + 02 2.1218E + 02 2.0700E + 02
25 2.1437E + 02 2.0808E + 02 2.0722E + 02 2.1309E + 02 1.4166E + 02 2.1669E + 02 2.0654E + 02
26 2.0002E + 02  2.0002E + 02 1.2391E + 02 1.3871E + 02 1.2402E + 02 2.0004E + 02  1.2292E + 02
27 5.0404E + 02 4.0503E + 02 3.7359E + 02 4.1487E + 02 3.2453E + 02 3.6286E + 02 3.0000E + 02
28 3.0000E + 02  3.0000E + 02  3.0000E + 02  3.0000E + 02  1.4265E + 02  3.0000E + 02  3.0000E + 02
Win 0 2 4 0 10 0 10

Draw 1 1 3 2 3 2 2

Total 1 3 7 2 13 2 12

continuous start and stop motion, and the traffic situation in this
range is often considered as being in traffic congestion. The sec-
ond range is 30-55 kph, and this velocity range is very common
of a car in sub-urban or rural areas. The third range is 55-80 kph,
and this is the optimum velocity range that minimize the fuel con-
sumption. The last range is 80-120 kph, and the fuel consumption
augments with the velocity increase. Ej g is calculated by the ad-
dition of traveling cost and delay cost with the equation shown
in Eq. (17). Cost(vel) denotes the gasoline cost with corresponding
velocity value vel, Dist(vel) denotes the traveling distance with the
velocity equaling to vel, Cost(delay) denotes the engine idling fuel
consumption, and Ty is the delay time mentioned earlier in the pa-
per.

Ei,cost = Ei,rravel + Ei,delay
E; traver = Dist (vel) = Cost (vel) (17)
Ei getay = To + Cost (delay)

5. Performance evaluation and comparisons

The proposed algorithm has been tested under benchmark
functions listed in Section 3.1, and contrasted with the canoni-
cal PSO, Inertia Weighted PSO (iwPSO), Constriction Coefficients
PSO (ccPSO), Fully Informed Particle Swarm (FIPS), Comprehen-
sive Learning PSO (CLPSO), Dynamic Neighborhood Learning
PSO(DNLPSO). The compared algorithms herein has similar time
and space complexity, so it's easier to examine the performance
of these state-of-the-art algorithms. The parameter setting of
PSO is C1 =(C2 =2, parameters of iwPSO in the experiment are
C1=C2=2 and iw=0.5. For ccPSO, we use C1 =C2=2.05 and
K =0.729, ccPSO-local denotes constriction coefficients PSO with
von Neumann topology/neighborhood, and the parameter settings
are the same as ccPSO. For CLPSO, the parameters settings are
cc =1.49445 and iw < [0.2, 0.9] a decreasing function of iterations

and for DNLPSO, the parameters c1 = 1.49445, c2 = 1.49445, iw
€ [0.4, 0.9], also a decreasing function of iterations, m =3 and
g=>5.2 All the settings of algorithms are listed in Table 6, and they
are the authors’ recommended settings.

In our implementation, we use 100 particles of a popula-
tion, and run 20 times, with 10,000 iterations in each run to
get the minimum of the benchmark functions from CEC2013 and
BBoB2009. The benchmark functions are used as black box test
functions. The best, median, mean/standard deviation of fitness er-
ror f — f(o) comparison of a single 20-run by different algorithms
are shown in Tables 7-9 accordingly. As can be seen from Table 7,
the fitness error of the benchmark values (f1, f4, f5, {6, f11, f26
and f28) are equal with different state-of-the-art algorithms. Illus-
tration of the convergence speed are analyzed and shown in the
following figures (Figs. 9-15) when different state-of-the-art algo-
rithms have the same best fitness error values. For the PSO vari-
ants, there are two different ways of velocity initialization, one
is that velocities initialized with zeros and the other is initialized
with random values, we use random velocity values in this paper.
All the compared algorithms can find the minimum value on func-
tion 1 and function 5 of CEC2013 benchmark functions. DNLPSO
can find the minimum values of function 4 and function 6. Only
CLPSO can find the optimum of function 14. Our algorithm has an
overall better performance, and we can see that our method not
only has better optimization result but also has better convergence
speed.

For the validation of large scale property of the proposed algo-
rithm, we use the benchmarks CEC2008 for the test. The dimen-
sion of the test-bed is 100-D with a population of 500 particles,
and we run 20 times with 10,000 iterations each. The parameters

3 CLPSO code and DNLPSO code are from Prof. Ponnuthurai Nagaratnam Sugan-
than.



Table 9

Comparison results of mean/standard deviation of 20 runs with the same population size and number of function evaluations. The best result of each function is emphasized in boldface and the best draw results of each

function is highlighted in italic fonts.

D=10. iwPSO ccPSO ccPSO-local FIPS_Uring CLPSO DNLPSO MKE_v3

1 0/0 5.6843E-14/1.0101E-13 0/0 0/0 0/0 0/0 0/0

2 1.4943E + 05/1.8848E + 05  2.0926E + 04/1.8434E + 04  1.1760E + 04/6.7065E + 03  8.3832E + 04/2.6904E + 05  2.8651E + 05/1.8413E + 05  1.6864E + 06/14808E + 06  2.2291E-14/6.8285E-14

3 1.6815E + 06/3.7625E + 07  41743E + 06/1.3400E + 07  1.7124E + 04/31723E + 04  7.7936E + 03/8.5641E + 03  2.4655E + 05/1.9573E + 05  4.5197E + 07/6.3876E + 07  4.5959E-03/1.7094E-02

4 4.5055E-02/5.1575E-02 1.9519E-04/5.7786E-04 1.8738E + 01/1.7684E + 01  1.9171E + 03/5.1283E + 02 1.8794E + 03/5.9328E + 02 1.7469E + 03/3.8752E + 03  0/0

5 7.9580E-14/5.3451E-14 7.9580E-14/5.3451E-14 0/0 0/0 0/0 1.4947E-04/3.6081E-04 0/0

6 9.3974E + 00/1.1850E + 01  8.6092E-01/1.6391E + 00 3.3451E-02/8.3316E-03 3.8760E + 00/5.3077E-01 1.6891E-01/7.0527E + 00 8.4198E + 00/4.6314E + 00  4.4064E + 00/4.8315E + 00
7 1.7024E + 01/2.2056E + 01 14176E + 01/1.1512E + 01  8.1367E-01/6.5693E-01 6.2262E-01/3.8467E-01 5.9567E + 00/1.7804E-00 2.3676E + 01/2.4266E + 01 7.0377E-01/2.1134E + 00

8 2.0213E + 01/5.7059E-02 2.0215E + 01/4.4255E-02 2.0225E + 01/4.5937E-02 2.0248E + 01/4.3374E-02 2.0220E + 01/5.7137E-02 2.0293E + 01/1.3372E-01 2.0457E + 01/8.6529E-02

9 3.9963E + 00/1.5776E + 00  3.4175E + 00/1.7503E + 00  2.8786E + 00/7.6713E-01 3.6769E + 00/9.6284E-01 3.0316E + 00/5.0727E-01 4.8402F + 00/2.3086E + 00  2.0279E + 00/1.4519E + 00
10 4.9989E-01/2.9794E-01 3.4498E-01/1.8439E-01 1.0603E-01/4.2707E-02 6.3301E-01/5.8004E-02 3.1259E-01/8.0042E-02 3.1971E-01/1.7876E-01 1.0887E-01/8.8611E-02

1 1.7411E + 00/9.6167E-01 3.5321E + 00/3.1210E + 00 9.4521E-01/1.3103E + 00 8.6795E + 00/3.8262E + 00  0/0 1.3929E + 01/6.0974E + 00  3.1214E + 00/1.8022E + 00
12 1.5064E + 01/5.5123E + 00 1.6018E + 01/6.7319E + 00  7.4621E + 00/2.7675E + 00  2.7347E + 01/3.4252E + 00  5.5914E + 00/1.6202E + 00  1.6940F + 01/8.9530E + 00  1.3973E + 00/6.7581E + 00
13 1.8486E + 01/6.5294E + 00  1.8805E + 01/8.2768E + 00  9.5653E + 00/3.7863E + 00  2.6346E + 01/2.6632E + 00  9.1990E + 00/2.2030E + 00  3.3325E + 01/9.9912E + 00  1.9075E + 01/8.6885E + 00
14 12585E + 02/9.7576E + 01  1.9985E + 02/1.3954E + 02 7.5352E + 01/5.9251E + 01  5.2574E + 02/11005E + 02 0J0 4.6460E + 00/3.1100E + 02 1.2560E + 02/1.1706E + 02
15 6.3640F + 02/2.5248E + 02  7.0312E + 02/2.7108E + 02 41751E + 02/1.8087E + 02  11446E + 03/1.1770E + 02 5.0029E + 02/8.4036E + 01  7.2541E + 02/2.4893E + 02  1.0043E + 03/3.2006E + 02
16 4,6522E-01/1.9935E-01 3.6472E-01/1.3443E-01 5.3634E-01/2.6191E-01 7.9505E-01/1.1954E-01 6.7487E-01/1.1728E-01 5.2585E-01/3.6842E-01 1.2167E + 00/3.5948E-01
17 1.1447E + 01/1.0458E + 00 1.1175E + 01/2.5557E + 00 11895E + 01/8.1751E-01 3.2791E + 01/4.0305E + 00  8.7542E + 00/2.4160E + 00  2.4732E + 01/9.2094E + 00  8.7361E + 00/4.3007E + 00
18 22961E + 01/6.7136E + 00  1.9318E + 01/5.4133E + 00  1.4284E + 01/1.7113E + 00 3.7400E + 01/3.6474E + 00  2.1875E + 01/2.2914E + 00  3.3354E + 01/8.1537E + 00  3.1576E + 01/8.1329E + 00
19 5.6809E-01/1.7289E-01 5.3041E-01/1.8566E-01 4.7916E-01/1.3250E-01 1.9199E + 00/3.0975E-01 1.5905E-01/6.0262E-02 1.0548E + 00/4.1233E-01 5.9791E-01/1.3885E-01

20 2.9026E + 00/6.2217E-01 3.1800E + 00/6.9959E-01 2.2852E + 00/2.6666E-01 2.7682E + 00/1.2796E-01 2.4449E + 00/2.5033E-01 2.9047E + 00/4.9488E-01 1.8075E + 00/5.01660E-01
21 3.6515E + 02/7.4593E + 01  3.9018E + 02/4.4765E + 01  3.6015E + 02/8.2158E + 01  3.7925E + 02/5.0392E + 01  1.5772E + 02/5.4660E + 01  3.8027E + 02/6.2994E + 01  3.7665E + 02/7.37814E + 01
22 1.9603E + 02/11511E + 02 2.4275E + 02/1.4075E + 02 1.2397E + 02/6.9959E + 01 ~ 5.0891E + 02/1.4705E + 02  1.0170E + 01/3.1552E + 00  8.0999E + 02/3.1771E + 02  9.0642E + 01/7.4036E + 01
23 8.6764E + 02/2.6074E + 02 8.7279E + 02/2.6247E + 02  3.9136E + 02/1.8061E + 02  12210E + 03/9.4446E + 01  5.6413E + 02/1.0927E + 02  1.2058E + 03/4.1367E + 02 9.8230E + 02/3.1535E + 02
24 21030E + 02/4.8793E + 00  2.0488E + 02/1.9098E + 02  2.0705E + 02/2.3643E + 01  2.1135E + 02/2.2063E + 00  1.2301E + 02/6.2363E + 00  2.1017E + 02/5.8131E + 00  2.0435E + 02/1.3891E + 01
25 21379E + 02/4.4460E + 00  2.0884E + 02/3.8450F + 00  2.0262E + 02/2.1029E + 01  2.1301E + 02/2.1873E + 00  1.4422E + 02/1.5950E + 01  2.1381E + 02/74104E + 00  2.0553E + 02/5.2419E + 00
26 1.8572E + 02/6.8971E + 01  18191E + 02/7.0252E + 01  1.1399E + 02/4.0556E + 00  14337E + 02/1.5172E + 01  1.1447E + 02/3.4262E + 00  1.6795E + 02/4.2324E + 01  1.1269E + 02/4.914SE + 00
27 45301E + 02/1.0575E + 02 4.0298E + 02/2.8914E + 01  3.6789E + 02/2.6391E + 01  4.1130E + 02/2.7367E + 01  3.2683E + 02/1.1156E + 01  4.1441E + 02/1.2431E + 02 3.2536E + 02/8.9250E + 01
28 3.0000E + 02/0 3.5024E + 02/1.2687E + 02 2.6000E + 02/8.2078E + 01  2.9260E + 02/3.3060E + 01  1.4081E + 02/1.7011E + 01  3.0000E + 02/0 2.9608E + 02/2.8006E + 01
Win 1 0 3 0 10 0 10

Draw 1 2 2 2 2 1 2

Total 2 2 5 2 12 1 12
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Table 10

Comparison results of best error in 20-Run under CEC2008 large scale benchmark functions. The best result of each function is emphasized

in boldface and the best draw results of each function is highlighted in italic fonts.

155

D = 100. iwPSO ccPSO ccPSO-local FIPS_Uring CLPSO DNLPSO MKE_v3
1 3.2999E + 02 3.4106E-13 5.6843E-14 5.5998E + 04 1.8568E-01 2.3194E + 04 5.6843E-14
2 1.7190E + 01 9.8553E + 00 3.0533E + 01 7.4635E + 01 5.1614E + 01 1.3400E + 01 1.0605E + 00
3 8.9575E + 01 5.8249E + 01 5.1414E + 01 1.1137E + 10 1.0264E + 04 3.1491E + 07 7.6646E + 00
4 5.9698E + 01 2.0795E + 02 1.8805E + 02 9.5246E + 02 2.4207E-01 3.4027E + 02 1.1243E + 02
5 1.1728E + 00 1.9895E—13 2.8422E-14 5.4630E + 02 1.3149E-02 1.7210E + 02 2.8422E-14
6 1.7053E-13 1.2139E + 00 1.1369E-13 1.7362E + 01 1.3610E + 00 1.1482E + 01 5.6843E-14
7 —1.4703E + 03 —1.4345E + 03 —1.4028E + 03 —9.2989E + 02 —1.4314E + 03 —1.3972E + 03 —1.4733E + 03
Win 0 0 0 0 1 0 4
Draw 0 0 2 0 0 0 2
Total 0 0 2 0 1 0 6
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Fig. 10. Comparison of different algorithms on function 4.

setting is the best fitted ones of each algorithm with the same val-
ues mentioned above. The benchmarks are also used as black-box
test functions and the best minimum error f— f(0) comparisons
are shown in Tables 10 and 11. Experiment results show that our
algorithm outperforms others significantly. When we use this al-
gorithm to find the least fuel consumption path of a traffic navi-
gation application. It also performs very well. The least fuel con-
sumption comparison with Dijkstra and A+ are shown in Tables 12
and 13, respectively. They show the average fuel consumption and
time consumption of 1000 times navigation of Ax algorithm and

Fig. 12. Comparison of different algorithms on function 6.

shortest path algorithm (Dijkstra) separately by comparison with
our algorithm respectively. We can see that the proposed algorithm
outperforms on gasoline consumption over the two algorithms.

6. Conclusion

In this paper, we propose Monkey King Evolutionary algorithm,
analyze three update schemes, and then we use benchmark
functions to validate the proposed algorithm. Comparisons are
made between our algorithm and state-of-the-art PSO variants,



Table 11
Comparison results of mean/standard deviation of 20-Run under CEC2008 large scale benchmark functions. The best result of each function is emphasized in boldface and the best draw results of each function is highlighted in
italic fonts.
D = 100. iwPSO ccPSO ccPSO-local FIPS_Uring CLPSO DNLPSO MKE_v3
1 5.0213E + 02/1.9858E + 02 6.2272E-12/2.3814E-11 5.6843E-14/0 6.4343E + 04/4.0084E + 03  2.4108E-01/3.4933E-02 3.7632E + 04/7.6068E + 03 5.6843E-14/0
2 1.9779E + 01/1.5107E + 00 1.5239E + 01/3.4556E + 00  3.4727E + 01/2.1694E + 00 7.8362E + 01/1.8366E + 00 5.5218E + 01/1.6941E + 00 3.4593E + 01/2.2565E + 01 2.3887E + 00/8.6376E-01
3 1.9831E + 02/7.5928E + 01 1.2882E + 02/4.7968E + 01 1.0531E + 02/2.2950E + 01 1.5521E + 10/1.8620E + 09 1.2970E + 04/1.4926E + 03 3.3977E + 08/3.0349E + 08  4.2294E + 01/2.8079E + 00
4 9.4666E + 01/2.1137E + 01 3.6256E + 02/6.1874E + 01 2.3760E + 02/2.1194E + 01 1.0388E + 03/2.8191E + 01 1.0011E + 00/3.0238E-01 6.9793E + 02/2.2689E + 02  1.3934E + 02/2.1267E + 01
5 2.3165E + 01/6.8379E-01 2.8839E-02/4.2480E—-02 2.8422E-14/0 5.9223E + 02/2.4041E + 01 2.0526E—02/3.6250E—-03 2.7306E + 02/8.2656E + 01 4.9286E—04/2.2042E-03
6 2.1316E-13/2.3510E-14 3.8780E + 00/5.4874E + 00  1.3216E-13/1.3908E—14 1.7855E + 01/1.8430E-01 1.5787E + 00/1.2246E-01 1.4561E + 01/1.8313E + 00 8.5265E—14/2.3099E—14
7 —1.4265E + 03/1.9730E + 01 —1.4005E + 03/2.1153E + 01 —1.3820E + 03/1.2110E + 01 —8.9138E + 02/1.6633E + 01 —1.4219E + 03/6.5729E + 01 —1.3972E + 03/1.3744E + 02 —1.4398E + 03/2.0909E + 01
Win 0 0 1 0 0 0 4
Draw 0 0 1 0 1 0 1
Total 0 0 2 0 1 0 5
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Fig. 15. Comparison of different algorithms on function 28.

within least fuel consumption is discussed and our algorithm
gives the least fuel consumption navigation, and it outperforms
Ax and Dijkstra algorithm. Our algorithm can also be degraded
into PSO form and Differential Evolution(DE) form. We also can
reduce iterations/generations of particles’ evolution by increasing
the particle population size to achieve equal number of function
evaluations, and it makes a better performance, the analysis will
be discussed in the next paper.
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