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ABSTRACT 

A simplified mathematical model of floc growth in a stirred suspension is developed 
with the aid of the Smoluchowski equation for orthokinetic coagulation. Particles 
are assumed to be spherical and to conjoin into spheres of proportionate volume upon 
contact. Particle growth is restricted to different maximum sizes or multiple volumes, 
larger particles breaking up into smaller ones which are returned to the system. A 
smooth growth pattern asymptotically approaching a steady-state mean size results 
when a model parameter of gross contact opportunity is less than 0.04 in magnitude; 
as it approaches 0.10, the growth pattern becomes oscillatory. Oscillatory growth was 
observed also experimentally when a controlled shear gradient was imposed on a 
suspension of iron flocs. 

INTRODUCTION 

One of the most effective unit operations of water purification is the 
coagulation of colloidal and otherwise finely divided particles in advance 
of sedimentation and filtration. By incorporatng dispersed substances 
into chemical matrices or ~ttaching them to each other or to fiocculent 
precipitates, the resulting agglomerates become larger and heavier and, 
consequently, more settleable, and more filtrable. In  essence, therefore, 
coagulation is preparation of unwanted suspensoids for phase separation. 
Because coagulation takes time, the rate of coagulation is one of the de- 
terming factors in water-purification design. The rate, it is known, is a 
function of many factors tha t  affect coagulation in diverse ways. Those 
to be considered here may be lumped together under the rubric of contact 
opportunity,  namely, the chance for particles to approach close enough 
for short-range, interracial forces to come into play. Obviously this op- 
portunity,  which complements chemical destabilization, is time dependent 
as well as motion dependent. Accordingly, we have turned to resolution of 
Smoluchowski's formulations of colloid removal by  coagulation, introduc- 
ing to this purpose numerical solutions that  have become computationally 
feasible through high-speed digital computers. 

i Presented at the Symposium on Coagulation and Coagulant Aids, American 
Chemical Society General Meeting, Los Angeles, California, April 1--3, 1963. 
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According to Smoluchowski, colloids are coagulated in two primary 
ways: by perikinesis (1) or particle diffusion, and by orthokinesis (2) or 
fluid motion. Both of these he formulated as infinite sets of differential 
equations, each of which contains infinite series. Of the two, the equation 
for orthokinetic floceulation provides what we are after, namely, a rational 
and useful measure of the effect of fluid motion (natural or induced) on 
the rate of coagulation or degree of contact opportunity. 

We shall write it as follows: 

J i j  =- ( ~ / ~ ) n i n j R ~ / d u / d z ) .  [1] 

Here J~j is the number of contacts in unit time and fluid volume between 
n~ particles of size i and ns particles of size j ;  d u / d z  is the local velocity 
gradient to which the particles were exposed within the fluid; and R~. is 
the radius of the sphere of influence encompassing the two particles, or 
the greatest distance between particle centers at the time of their effec- 
tive conjunction. 

In order to test the validity of computational manipulation, let us turn 
also to Smoluchowski's perikinetic formulation 

I~] = 4 ~ r D i j R ~ n j  , [2] 

where i, j, n, and R carry the same connotations as in Eq. [1], but D~. is 
the mutual diffusion coeffleient of an i and a j particle, and I~j is their 
number of conjunctions by diffusion. 

Neither equation is strictly and fully descriptive of the coagulation 
process. Yet both of them can be useful in water-purification design by 
identifying the manageable controls. Camp (3), for example, has referred 
to Smoluchowski's concepts in ordering the design and operation of mixing 
and coagulation basins and appurtenant stirring devices in water-treat- 
ment plants. Specifically, he identified empirically optimal or near optimal 
velocity gradients and detention times for stirring equipment and floe- 
eulation tanks. A wider and more general application of the equations in 
the practical management of coagulation has lacked a suitable analytic 
solution of the orthokinetie equation. Since it earmot be the purpose of 
this paper to provide one, we substitute a study of the utility of a mathe- 
matical model of floe growth based upon Smoluchowski's orthokinetie 
equation. 

We proceed first to the perikinetic equation, for which there is an ap- 
parently reasonable solution. Written in differential form, it states that 
at time t the time rate of change in the number nk of particles of size k in 
a unit volume of sol during coagulation is: 
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where D~k and R~ are simple variates of D~j and R~.. In similar fashion 
the orthokinetic equation states that: 

at  - 3 az  Li:i-  , [4] 

where Ri,  Ri ,  and R~ are the effective radii of particles of size i, j ,  and 
k, respectively. Utilizing Smoluchowski's assumption that Di~.R~j = 
(Di + Di)(R~ --F R~), where Di and D~- are the individual diffusion co- 
efli.cients of particles of size i and j, respectively, one can write (4) 

D~iRij -- DIRt[4 + (%/~/R, -- % / ~ ) ~ ] .  [5] 

~ioreover, when R~ and Rj are of about the same size, D~jR~j closely equals 
4 D1R1, and one arrives by this simplification at the following analytical 
solution for Eq. [3]: 

nk/Yo = (t/T)k-i/(1 + t/T) k+I, [6] 

where t is the time allowed for coagulation and T = 1/(8~rD1R~No) is the 
half-time of coagulation, namely, the time required to halve the starting 
number No of particles per unit volume. At time t the total number Nt of 
particles per unit volume is 

Nt/No = 1/(1 + t/T). [7] 

COMPUTATIONAL METHODS AND TESTS 

To develop the growth pattern of coagulation described by Eq. [4], 
its equivalent finite difference equation was programmed for numerical 
solution by an iterative procedure ~ based upon the following simplifying 
assumption: all particles are spherical and conjoin into spheres of equiva- 
lent total volume. This assumption was introduced even though it applies 
more closely to the coalescence of emulsions than to the coagulation of 
sols. For it does in fact represent the simplest possible merging of particles 
and creation of the smallest possible radius of interaction of the resultant 

8 
mass. 

Maximum stable sizes of coagulum (MAXVOL) were read into the 
computer, the largest one being i00. Although this would have had to be 

Flow charts and FORTRAN listings are contained in the i unior author's doctoral 
~hesls entitled "Some Aspects of Orthokinetic Floeculation." See reference 7. 

3 In a more specific study of coagule form resulting from aggregation, published 
s}nce our results were first presented, Vold (5) has assumed that spheres conjoin 
randomly without coalescence. The radius of interaction of the resultant mass ap- 
peared to vary as the 0.43 power of its volume. It would be a simple matter, there- 
fore, to apply this exponent in our computational procedures in place of the 0.33 
power characterist ic of coalescence. 
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done, in any ease, because available computer memory space is finite, 
the action rested also on consideration of coagulum breakup by hydraulic 
shear supported by experimental observation of chemical floc growth. In 
our computations, finally, growth towards a limiting steady-state particle 
size was observed and no significant shift in growth pattern manifested 
itself when the maximum size limit was raised progressively. What is not 
yet resolved is whether conjunction stops, or oversize particles break up 
into two or more particles equal or unequal in size. Accordingly, both 
possibilities were accepted into the program. 

Conjunction stoppage could be simulated by returning oversize ag- 
gregates to their immediately preceding and hence stabel size (BRAKUP 
1); hydraulic breakup by splitting unstable conjunctures into approxi- 
mately equisized particles (BRAKUP P) ,  where P is an integer equal to 
or greater than 2. In computer operations with BRAKUP 1, therefore, 
the rate of aggregation was dropped to zero when a particle of the maxi- 
mum size was involved; in BRAKUP P, aggregation involving a particle 
of maximum size proceeded at an undiminished rate. The magnitude of 
P was a specific input variable. 

Other program inputs were the initial particle size distributions, either 
mono- or polydisperse; and the magnitude of a constant (XKK),  a simu- 
lant of the velocity gradient du/dz together with numerical constants of 
the equation and scale factors. Although a breaking up of coagula into 
other than two equisized particles seems unlikely, this possibility could 
not be denied with certainty. Accordingly, it was retained in the program. 
Indeed, Bartok and Mason (6) have shown that there are conditions under 
which large droplets assume sigmoidal shapes from which many smaller 
droplets are shed. 

Whether programming modifications could affect computer results 
significantly was tested by incorporating the procedures applied to ortho- 
kinetic calculations Mso in a parallel computer program for the perikinetic 
equation (Eq. [3]) and comparing the calculated results obtained with 
available analytical evaluations. 1Vioreover, the two relationships for 
Dg¢R~j, namely, that of Eq. [5] and that of Smoluchowski's simplification 
DijR~5 - 4D1R1, were introduced into separate computer runs. By choice, 
the initial population of particles was monodisperse, the velocity-gradient, 
particle-number product C was 0.02, the limiting particle size (~MAXVOL) 
was 40, and the breakup routine (BRAKUP) was 1. The computer re- 
sults are plotted in Fig. 1 along with Smoluchowski's analytical solution. 
Half times of coagulation were approximated by graphical interpolation 
between computer values. As shown in Fig. 1, comparisons are eased by 
plotting the reciprocal of the proportion of particles remaining (N/Nc) 
against the relative coagulation time t/T. For Run 24, D~R~j issues frmn 
Eq. [5]; for Run 26, from Smoluehowski's simplification for particles of 
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FIG. 1. Linearizing plot for second-order decrease in total number of particles in 
perikinetic coagulation. O Run 24, • Run 26, analytic solution by Smoluchowski 
shown as solid line. 

not too different size: D~R~j = 4D1R1. Agreement between analytical and 
computational results and agreement between approximate and fully 
simplified values are seen to be good, especially during early coagulation. 
Up to t /T = 10, divergence is less than 3 %; beyond that, i t  is somewhat 
more. 

ORTIIOKINETIC ]:~ESULTS 

Only enough results are included in this paper to suggest a wider useful- 
ness of the mathematical model of orthokinetic coagulation for evaluating 
the presumptive effects of: size-limited growth; initial concentration of 
particles; velocity gradient; relative time of exposure; and combination 
of gradient and initial concentration as contact opportunity. 

The results incorporated in Fig. 2, for example, are an indication of how 
conjunction stoppage (BRAKUP 1) and breakup into 2, 3, and 4 equisized 
particles affect the relative number (N /No)  and mean volume of particles 
when velocity gradient and initial concentration of particles are the same 
(C = 0.01), along with the maximum particle size (MAXVOL = 20). 
Generally, similar curves exhibit rapid initial increases in particle mean 
sizes and appropriate decreases in relative particle numbers. Steady-state 
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conditions are soon reached, although less quickly when oversized con- 
junctions are returned to their immediately preceding stable size than 
when split into equisized parts. Understandably, multiple breakup makes 
for smaller mean particle volumes and larger relative numbers of particles. 

The results plotted in Fig. 3 are internally more complex though out- 
wardly quite comparable. The velocity-gradient, initial-number parameter 
C occurs twice each as 0.01 and 0.02, and once as 0.04; MAXVOL appears 
once as 8, three times as 20, and once as 40; half time of coagulation T is 
as small as 4.0 once, becomes 8.7 twice, and once each as large as 17.7 
and 18.7, but the breakup routine is the same (BRAKUP 3). A change in 
maximum stable particle volume (MAXVOL) from 8 to 40 units (five- 
fold) is seen to shift the steady-state mean particle volume from about 4 
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to 20 units (also fivefold). At the same time the steady-state relative 
number of particles drops from 0.23 to 0.05 unit (also fivefold). The general 
nature of the curves, however, is much the same. Because the velocity 
gradient parameter (XKK) and the initial concentration of particles (No) 
were found to behave as their product C = No(XKK), the component 
variables are not shown by themselves. 

As seen in Fig. 3, the small difference in range of C from 0.01 to 0.04 
did not bring out significant differences in the curve traces. However, when 
C was pushed up to 0.08 or more and the size-limiting mechanism was 
shifted to BRAKUP 10, particle growth began to oscillate as in Fig. 4. 
Here, initial growth rates and steady-state mean volumes do not differ 
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FIG. 3. Effect  of e the r  i npu t  var iab les  on floc g row th  and  to ta l  n u m b e r  of par t ic les  
in o r thok ine t ic  coagula t ion.  All r uns  used B R A K U P  3. R u n  11, C = 0.02, M A X V O L  = 
40, T = 8.7; R u n  12, C = 0.04, M A X V O L  = 20, T = 4.0; R u n  13, C = 0.01, M A X V O L  
= 20, T = 17.7; R u n  14, C = 0.01, M A X V O L  = 8, T = 18.6; R u n  15, C = 0.02, M A X -  

VOL = 20, T = 8.7. 
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much at the beginning. Soon, however, peaking becomes pronounced and 
the more so, the greater the value of C. When C is as low as 0.04, particle 
growth is steady and the size-limiting effect of BRAKUP asserts itself 
before the supply of small particles is exhausted. Indeed, small particles 
are reborn continuously. As C approaches 0.1, it appears that particles 
grow so rapidly in size and the supply of original particles is drawn upon 
so heavily before BRAKUP can take effect that virtually no small particles 
remain in reserve at peaking times. Rebuilding these reserves produces 
the trough in the growth curve, and subsequent cyclical swings are under- 
standably repeated in decreasing amplitude. 

The multiple effects that comprise Fig. 4 are identified more closely in 
Tables II  and III  for Runs 45 and 47. Table I, containing the results of 
Run 21, precedes them in order to highlight the gradual transitions in size 
distribution that typify smooth growth. The marginally stable pattern of 
Run 45 is detailed in Table II. A selection of results from Run 47, finally, 
illustrates the high degree of fluctuation in numbers of partieles of specified 
size when the growth pattern becomes notably oscillatory. 

Reduction of the number of particles in the course of coagulation did not 
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TABLE I 
Particle Size Distribution Changes during Coagulation. Run  21, C = 0.01, B R A K U P  

1, T = 17.7, No = 1000 

Relative coagulation time t / T  
Paticle 

volume Vi 
1.13 2.85 4.52 5.65 7.92 11,30 16.95 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

256.61 72.50 31.93 20.71 10.01 4.01 1.05 
87.63 26.80 11.93 7.85 3.95 1.73 0.54 
43.25 15.19 7.02 4.73 2.51 1.20 0.45 
24.63 10.21 4.92 3.40 1.89 0.97 0.41 
15.23 7.63 3.89 2.76 1.62 0.90 0.44 
9.82 6.03 3.24 2.36 1.45 0.86 0.46 
6.57 5.03 2.88 2.17 1.40 0.89 0.53 
4.48 4.30 2.62 2.03 1.37 0.91 0.59 
3.12 3.81 2.50 1.99 1.42 1.00 0.71 
2.18 3.43 2.40 1.97 1.46 1.08 0.81 
1.55 3.15 2.35 1.97 1.51 1.15 0.86 
1.11 2.94 2.35 2.03 1.61 1.27 1.00 
0.80 2.82 2.44 2.17 1.80 1.49 1.25 
0.58 2.74 2.55 2.34 2.01 1.74 1.51 
0.43 2.74 2.77 2.62 2.36 2.13 1.95 
0.31 2.78 3.06 2.99 2.81 2.62 2.48 
0.24 2.97 3.57 3.61 3.55 3.45 3.40 
0.18 3.31 4.41 4.62 4.75 4.79 4.85 
0.15 4.16 6.30 6.93 7.52 7.92 8.25 
O. 13 7.76 15.26 18.42 22.26 25.05 26.86 

Mean 2.18 5.25 8.45 10.24 12.94 15.35 17.12 
volume 

yie ld  successful ly  to  first- or second-order  k ine t ic  descr ip t ion .  However ,  
mu l t i p l i ca t i on  of t he  p a r a m e t e r  of con tac t  o p p o r t u n i t y  C = ( X K K ) N o  b y  
i ts  assoc ia ted  half  t ime  of coagu la t ion  T reduced  a 25-fold v a r i a t i o n  in  C 
be tween  0.004 and  0.10 to  a less t h a n  1.4-fold v a r i a t i o n  of C T  in  a range  
of 0.19 to  0.14. H a d  the  d rop  in re la t ive  numbe r s  been  of second order ,  
t he  p r o d u c t  C T  would  have  been  a cons tan t .  

A l t h o u g h  chemical  f loe-growth s tudies  p r o v i d e d  the  incen t ive  for our  

c o m p u t e r  p rog ram,  only  br ief  reference is m a d e  here to  c o m p a r a b l e  ex- 

pe r imen t a l  resul ts .  To  p roduce  chemical  coagula,  ferric sul fa te  so lu t ion  

was a d d e d  to  b i c a r b o n a t e  so lu t ion  to  p roduce  in i t ia l  concen t ra t ions  of 

1.6 X 10 -4 mo la r  Fe2(SO4)3 a n d  1.0 X 10 -2 mola r  N a H C O 3 ,  t he  f inal  p H  

va lue  be ing  6.8. Af t e r  r ap id  s t i r r ing,  t he  mix tu re  was t r ans fe r red  to  wide-  

annu lus  Cone t t e  cy l inders  t h a t  p roduced  a w a n t e d  shear  g r ad i en t  a t  a 

specific r a t e  of ro ta t ion .  Pa r t i c l e  g rowth  was recorded  in  a series of pho to -  

g raphs  f rom which  m e a n  areas  were de t e rmin e d  b y  scal ing the  longest  
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TABLE II  

Particle Size Distribution Changes during Coagulation. Run 45, C = 0.04, BRAKUP 
10, T = 4.09, No = 4000 

Values of n~ X 103/No for stated V~ and t /T 

Relative coagulation time t/T 
Particle 

volume Vi 
1.47 2.94 4.31 5.87 7.83 13.70 23.47 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

164.19 51.70 17.15 5.81 1.38 0.02 0.00 
71.04 88.27 1 0 1 . 3 1  105.16 107.40 108.15 108.16 
41.67 55.50 56.41 55.86 55.38 55.13 55.11 
27.35 16.65 17.08 16.57 16.65 16.74 16.74 
18.93 10.91 13.60 13.77 13.98 14.90 14.00 
13.39 7.83 8.91 8.55 8.48 8.45 8.45 
9.55 5.77 6.38 6.39 6.48 6.50 6.50 
6.80 4.69 5.13 5.12 5.12 5.11 5.11 
4.82 3.94 4.06 4.06 4.06 4.07 4.07 
3.37 3.38 3.36 3.42 3.43 3.43 3.43 
2.33 2.97 2.87 2.92 2.91 2.91 2.91 
1.58 2.64 2.47 2.53 2.53 2.53 2.53 
1.06 2.37 2.17 2.24 2.24 2.24 2.24 
0.69 2.14 1.93 2.00 1.99 2.25 2.00 
0.45 1.95 1.77 1.81 1.81 2.06 1.81 
0.28 1.78 1.59 1.65 1.64 1.64 1.64 
0.17 1.64 1.47 1.52 1.51 1.52 1.52 
O. 10 1.51 1.36 1.40 1.40 1.40 1.40 
0.06 1.39 1.27 1.31 1.31 1.31 1.31 
0.04 1.29 1.19 1.22 1.22 1.23 1.23 

Mean 2.72 3.73 3.98 4.11 4.15 4.16 4.16 
volume 

dimens ion  of the floe image and  the greatest  width  a t  r ight  angles to this 
length.  The  resul t ing areas are p lot ted  for three m e a n  shear gradients  in  
Fig. 5 agains t  a nond imens iona l  abscissa Gt, where G is the m e a n  shear 
gradient  in  sec. -1 and  t is the  t ime of f loceulation in  seconds. The  p roduc t  

Gt, therefore, replaces 4 the normalized time-scale rat io t / T  of the eomputa -  

t ional  schemes. F luc tua t ions  in  floc area are seen to move towards s teady-  
s ta te  values and  oscillatory growth is most  p ronounced  when the shear 
grad ien t  is least (G = 3.2 see.-1). I t s  suppression b y  higher gradients  of 

shear m a y  be explained in  pa r t  b y  the  smaller  size of compat ible  floes. 
Fa i lure  of the  rising l imbs of the p lo t ted  values  to be eolinear a t  the  s ta r t  
m a y  be ascribed to inadequacies  of t ime-scale approximat ions  as well as 
in fo rmat ion  on early flocculation. 

4 If we accept the approximation of the second-order decrease in relative number 
of particles, the product Gt simulates the normalized time scale t /T for a constant 
value of No. 
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SUMMARY 

Smoluchowski's equations for orthokinetic coagulation, that is, coagu- 
lation promoted by fluid motion, cannot be solved analytically. They can, 
however, be adapted to produce numerical solutions by reasonable use of 
high-speed digital computers. Adaptation includes imposition of both an 
upper, conceivably shear-controlled, limit on particle size and a breakup 
routine on oversized particles. The technique employed receives support 
from the fact that its application to Smoluchowski's formulation of peri- 
kinetic flocculation is in reasonable agreement with the analytical solutions 
available for the perikinetic equation. The proposed modification is but 
one of many alternatives. Its limitations remain to be explored more fully. 
Exactly why and how flocs break up in different circumstances remains to 
be determined experimentally. So does the upper size limit of conjunction, 
although existing evidence (7) suggests it may be inversely related to the 
magnitude of the mean velocity gradient. 

The decrease in number of particles during coagulation cannot be fitted 
by a second-order kinetic expression. Yet the divergence may be small 
enough to justify the assumption of second-order kinetics in the design 
and operation of water-treatment plants. The product of mean shear 
gradient, G, initial concentration of particles No, and half-time of coagula- 
tion, T, then becomes nearly constant. Accordingly increases in G (a 
function of stirring) and No (a function of coagulant dose) may result in a 
proportionate decrease in the half time of coagulation or a proportionate 
speed-up in rate of particle growth. Within limits, too, small values of No 
may be offset by larger values of G. 

Comparable chemical studies suggest that mean floc size decreases with 
increasing G values, thus limiting the usefulness of high mean shear gra- 
dients; for the aim of particle growth in water treatment is not only the 
rapid coagulation of colloids but also their conjuncture into particles of 
such size and weight that they are readily separated from the suspending 
water by sedimentation, filtration, or both. 

If oscillatory floc growth is reproducible in practice, it should be possible 
to improve sedimentation by terminating fluid agitation at or just before 
a peak (preferably the highest in magnitude and shortest in time) is 
reached. At that instant, virtually no small particles are left in suspension 
and mean particle size is maximal. Settling rates, too, are presumably 
optimal and sedimentation basins can be reduced in size without lowering 
their efficiencies. 

The conclusions here presented are drawn from batch-type operations. 
Continuous flow is expected to replenish small particles and diminish the 
likelihood of oscillatory growth--a matter that remains under study. 

The work reported in this paper was supported in part by Public Health 
Service Research Grant WP-00024 from the Division of Water Supply 
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computation centers of the 5/Iassachusetts Institute of Technology and 
Harvard University. 
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