
Distributed resource management in wireless sensor networks
using reinforcement learning

Kunal Shah • Mario Di Francesco • Mohan Kumar

� Springer Science+Business Media, LLC 2012

Abstract In wireless sensor networks (WSNs), resource-

constrained nodes are expected to operate in highly

dynamic and often unattended environments. Hence, sup-

port for intelligent, autonomous, adaptive and distributed

resource management is an essential ingredient of a mid-

dleware solution for developing scalable and dynamic

WSN applications. In this article, we present a resource

management framework based on a two-tier reinforcement

learning scheme to enable autonomous self-learning and

adaptive applications with inherent support for efficient

resource management. Our design goal is to build a system

with a bottom-up approach where each sensor node is

responsible for its resource allocation and task selection.

The first learning tier (micro-learning) allows individual

sensor nodes to self-schedule their tasks by using only local

information, thus enabling a timely adaptation. The second

learning tier (macro-learning) governs the micro-learners

by tuning their operating parameters so as to guide the

system towards a global application-specific optimization

goal (e.g., maximizing the network lifetime). The effec-

tiveness of our framework is exemplified by means of a

target tracking application built on top of it. Finally, the

performance of our scheme is compared against other

existing approaches by simulation. We show that our two-

tier reinforcement learning scheme is significantly more

efficient than traditional approaches to resource manage-

ment while fulfilling the application requirements.

Keywords Wireless sensor networks �
Resource management � Task scheduling �
Reinforcement learning � Target tracking

1 Introduction

Wireless sensor network (WSN) nodes are remarkably

constrained in terms of their resources, i.e., energy, com-

putational power and radio bandwidth. WSNs normally

operate in uncertain and dynamic environments where the

state of the system changes dynamically over time. In fact,

new sensor nodes may join an already deployed network.

On the other hand, existing nodes may cease to participate

in WSN operations due to depleted batteries, malfunctions,

or disconnection from the rest of the network. As a conse-

quence, applications have to explicitly address the fact that

WSNs are inherently dynamic and uncertain. At the same

time, Quality of Service (QoS) requirements and optimi-

zation goals need to be fulfilled by the applications as well.

Indeed, adaptive resource management is the key to any

successful middleware solution to enable such applications.

Resource management includes initial sensor selection

and task allocation as well as runtime adaptation of allo-

cated tasks and resources. There are many proposed mid-

dleware solutions that advocate a strong need for proactive

adaptation of resources [5, 6, 16, 31]. However, there are

only few that have actually focused on adaptive resource

management for WSN applications [6, 16]. The problem of

resource management and adaptation (see Fig. 1) can be

described as follows: Given the application structure, the

QoS requirements and the current system state, what is the
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best task-to-resource allocation strategy so that a given set

of system-wide, application-driven, global parameters can

be optimized?

In the discussion above, the application structure is

supposed to be defined in terms of the underlying tasks and

their interactions. In this context, QoS requirements

include metrics such as latency, reliability, coverage and so

on. The current state of the system is defined by parameters

which include, for instance, mobility, energy availability,

and neighboring nodes. The optimization parameters

include, but are not limited to, energy, bandwidth, and

network lifetime. To be more specific, we illustrate the

resource management problem by using a sample target

tracking application. It can be defined in terms of the fol-

lowing tasks: sample, i.e., sense the environment for the

presence of a target or for the occurrence of an event;

transmit a message to next hop towards the a central col-

lecting point (namely, a sink or base station); receive by

turning on the radio and listening to incoming messages;

aggregate two or more local and remote readings into a

single reading (e.g., by performing data triangulation to

better estimate the position of the target); sleep by setting

the microcontroller and the radio in a low-power mode to

minimize energy consumption. Here, the state representa-

tion may consist of the following variables: having one or

more neighbors; being successful in recent sampling; being

successful in recent message reception; and the quality of

readings (e.g., the signal strength). Furthermore, QoS

requirements here may include: tracking error; coverage

area; and maximum allowed latency. Our goal in this case

is to optimize energy usage among all sensor nodes. The

goal of our resource management framework is to schedule

and allocate tasks on each sensor node in the system, so

that energy usage among all sensor nodes is minimized

while fulfilling the requirements of the application. The

target tracking application is used as a means to demon-

strate the effectiveness of the proposed scheme, which can

be easily applied also to diverse applications such as

intrusion detection, data collection with mobile nodes,

health monitoring, and so on.

In this article, we advocate the use of reinforcement

learning to address the issue of dynamic resource adaptation

in WSNs. We propose a bottom-up approach where each

sensor node is responsible for task selection, as opposed to

the top-down approach conventionally used by other mid-

dleware solutions. This bottom-up approach based on

reinforcement learning allows the development of autono-

mous WSN applications with dynamic adaptation, minimal

or no centralized processing for task allocation, and limited

communication overhead. In order to make sure that the

system is actually meeting the global application goals, we

exploit a two-tier learning scheme. The first learning tier

(micro-learning) allows individual sensor nodes to self-

schedule their tasks by using only local information, thus

enabling timely adaptation. The second learning tier

(macro-learning) governs the micro-learners by tuning their

operating parameters so as to guide the system towards a

global application-specific optimization goal (e.g., maxi-

mizing the network lifetime). On one hand, micro-learners

use Q-learning [28] as their independent reinforcement

learning (RL) algorithm while, on the other hand, macro-

learners use the Collective Intelligence (COIN) theory [9,

29, 30] to guide the system towards the global application-

specific goal. We provide a detailed performance analysis

of the proposed two-tier RL-based scheme, and compare it

with other related approaches. We show that our scheme is

very effective in optimizing the resource usage while ful-

filling the application requirements.

The rest of the article is organized as follows. Section 2

overviews the related work available in the literature, while

Sect. 3 introduces the background of the used techniques, i.e.,

Q-learning and the COIN theory. Section 4 details our Dis-

tributed Independent Reinforcement Learning (DIRL)

approach consisting of micro-learners. Section 5 describes

how concepts from the COIN theory can be utilized for

proper guidance of micro-learners to ensure global optimality

Fig. 1 The resource

management problem in a WSN
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and overcome the shortcomings of DIRL. Section 6 shows

how our resource management framework can be applied to

some real-world applications such as target tracking, data

collection with mobile nodes, and health monitoring. Section

7 presents the simulation setup and Sect. 8 describes the

results of the performance analysis of our two-tier RL-based

framework. Finally, Sect. 9 concludes the article.

2 Related work

We present the related work available in the literature

according to the different categories detailed below.

Rule and predicate logic Solutions falling in this cat-

egory are based on a set of rules pre-defined on individual

nodes. A rule fires if all conditions and parameters included

in the rule predicate are satisfied, and this may result in task

adaptation [4, 13, 25]. Even though being simple, this

technique requires that all state conditions are known in

advance, thus limiting the adaptation. Furthermore, this

approach is unfeasible in very complex scenarios with a

large number of nodes and highly varying system dynam-

ics. Furthermore, the impact of rule-based adaptation at a

local sensor node on the global WSN application is not

considered. The Generic Role Assignment (GRA) scheme

[4] considers nodes in a WSN system as taking a certain

role in the network based on their properties, such that the

requirements of a given role is satisfied. Impala [13] uses a

set of rules to implement its own application adaptor

component. The application adaptor in Impala follows a

finite state machine where each state represents an appli-

cation, and a transition between states is governed by rules

represented as parametric expressions. FACTS [25]

uses abstraction of facts, rules and functions. In the

corresponding middleware architecture, every informa-

tion—ranging from sensor readings to state variables—is

represented as a fact. Facts, rules and functions are local to

each node of the WSN which runs its own rule engine.

Constraint-satisfaction A different option is to define

the problem in terms of constraint-satisfaction, which is

sometimes reduced to linear programming with the objec-

tive function consisting of optimization parameters under

given constraints (namely, the application requirements).

The works in [10, 11, 17] are sample applications of the

constraint-satisfaction approach to WSNs. Due to the com-

plexity of the system, it is not always possible to reduce our

resource adaptation problem into a linear programming

problem without making unreasonable assumptions. In

addition, in most cases the approach cannot be distributed,

thus making it not practical for large-scale WSNs. A con-

straint-guided software reconfiguration approach is pro-

posed in [10] where adaptation is performed by updating

software components on TinyOS motes based on different

constraints. In [11] various configuration tasks of multi-hop

WSNs are mapped to distributed constraint-satisfaction

problems. Specifically, the connection with critical trans-

mission power threshold is derived, and it is shown that the

average problem complexity can be reduced by tuning the

transmission power of individual nodes. A distributed con-

straint-optimization algorithm called Adopt is proposed in

[17] for generic multi-agent systems. Adopt uses localized

asynchronous communication and makes local decisions

based on conservative cost estimates rather than on global

knowledge, and results in a polynomial-space algorithm.

Agent negotiation and auction theory Research in this

category mainly includes multi-agent systems whose

agents are able to negotiate with each other in order to

determine the best resource allocation [12, 18, 26]. Spe-

cifically, the system consists of one or more mediators

responsible for negotiations. Although this approach can

lead to efficient resource management, the communication

and computational resources required for negotiations may

not be feasible in an implementation on resource-con-

strained wireless sensor nodes. A center-based algorithm

called Mediation is proposed in [18] to address task

assignment problem in distributed WSNs. A distributed

resource allocation based on dynamic coalition formation

and coalition strategy learning is presented in [12]. In this

scheme, agents attempt to operate autonomously with

incomplete information about their potential collaborators.

Synchronization of actions across multiple agents is then

achieved by forming coalitions via multiple 1-to-1 nego-

tiations. However, because of the uncertainty in a WSN,

the formed coalitions will be suboptimal. To allow adap-

tation to environment dynamics, each agent is capable of

multiple levels of learning. This includes: case-based

learning to learn about how to negotiate better; and rein-

forcement learning to learn how to form a better coalition.

In our work, we also utilize multiple-levels of learning

which are mainly based on reinforcements obtained from

local actions and global outcome. We do not require any

explicit coalition formation due to related significant

communication and computation overhead, which is not

feasible on resource-constrained sensor nodes.

Utility and market theory The purpose of the solutions

in this category is to define a utility function for mapping

an optimization parameter over a number of participating

nodes to a real value. Then, such a function is maximized

under given constraints, usually in terms of a linear pro-

gramming problem, which can be addressed by either a

distributed or centralized approaches. Utility functions to

define global objectives of WSN applications along with

cost model for energy consumption were first introduced in

[2]. Here, a model where node makes heuristic assessments
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mostly based on locally available information is proposed.

The model is further driven by objective functions that

maximize the utility of WSNs over their lifetime. Although

the simplistic model presented in that work is substantial,

routing algorithms and heuristics presented are primitive

and cannot be applied to real-world WSN applications. Our

approach of allowing individual nodes to maximize their

utility functions and the representation of cost model is

actually inspired by [2]. A utility-based WSN system based

on techniques from mechanism design and game theory is

presented in [19]. The authors have attempted to address

the same problem that we are interested here: designing

local utility functions so that each node can selfishly

optimize its local utility as well as to optimize of desired

global objective function. However, the authors have

concentrated on the theoretical aspects of developing a

game-theoretic algorithm for constructing a load-balanced

spanning tree in the network. Furthermore, the work in [19]

does not consist in a generic framework for WSN man-

agement, which is the focus of this article. Self-Organizing

Resource Allocation (SORA), a market-based approach for

resource allocation in WSNs, is proposed in [15]. In

SORA, each sensor node acts as an agent that tries to

maximize its payment by undertaking a set of actions. Each

action can result in some energy consumption and can also

produce some goods with an associated price. Agents

receive feedback on their actions in the form of payment

which, in turn, characterizes their behavior.

Even though each of the approaches mentioned above

can provide efficient resource management, they suffer

from some pitfalls as described. None of these techniques

tries to address uncertainty which is inherent in dynamic

networks. Furthermore, most of them require a careful

implementation of algorithms on a case-by-case basis,

which may be quite difficult in WSNs. Therefore, a

framework that can enable large set of applications with

autonomous adaptation and minimum communication

overhead is required.

3 Background

In this section, we will briefly describe Reinforcement

Learning (Q-learning) and the concepts behind the COIN

theory used in designing our resource management

framework. Reinforcement learning (RL) is a branch of

machine-learning and is concerned with determining an

optimum policy that maps states of the world to the actions

that an agent should take in those states so as to maximize a

numerical reward signal [24]. Agent receives a numerical

reward as a consequence of its action which provides a

reinforcement signal. Agents try out different actions in

order to learn what actions yield the most reward. Action is

selected either based on past experiences (exploitation) or

randomly (exploration). RL is very useful for interactive

(online) learning in dynamic uncertain environments.

In this work, we use Q-learning [28] which is a form of

model-free reinforcement learning. Q-learning uses a sin-

gle data structure, an utility look-up table Q(s, t) across

states s and tasks t. The utility of performing task t in a

state s is defined as the expected value of the sum of

immediate reward r and the discounted utility of resulting

state s after executing task t, i.e.,

Qðs; tÞ ¼ E½r þ ceðs0Þjs; t�

where eðs0Þ ¼ maxt Qðs0; tÞ over all possible tasks. Note

that the expected value above is conditional upon being in

state s and performing task t. As Q-learning is done online,

the equation above cannot be applied directly as the stored

utility values may not have converged yet to the final

values. Hence, in practice, Q-learning is used with

incremental step updates as given by the following

expression:

Qðs; tÞ ¼ ð1� aÞQðs; tÞ þ aðr þ ceðs0ÞÞ

Here, 0 B a B 1 is the learning-rate parameter. It

controls the rate at which an agent tries to learn by

giving more (a close to 1) or less (a close to 0) weight to

the previously learned utility value. Setting a equal to 1

will force the agent to ignore all previously learned utilities

resulting in single-shot learning. 0 B c B 1 is a discount-

factor: the higher the value, the greater the agent relies on

future reward than the immediate reward.

An important aspect of an RL system is the trade-off

between exploration and exploitation. Exploration deals

with trying out some random actions which may not have

higher utility in search of better rewarding actions, while

exploitation tries to use the learned utility to maximize the

agent’s reward. Most of the RL system uses exploration

with a certain probability e, which can be a constant value

(mostly around 0.1–0.5) or can be derived using some other

heuristics like starting with a high value and gradually

decreasing, for instance, by using the Boltzmann equation

[24].

COIN [9, 29, 30] is a large multi-agent system (MAS)

with a well-defined world utility function which rates the

behavior of the entire system and there is little or no cen-

tralized control. Each agent in the MAS is selfish and runs a

RL algorithm. Hence, the global behavior of the system is

the collective effect of individual agents, each modifying

their behavior by using a RL algorithm. COIN theory

addresses the following design problem: Ensure optimal

world utility, given that each individual agent attempts to

maximise its local utility.
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RL algorithms called micro-learners try to optimize the

local utilities at each agent. The learning algorithms that

update the utility functions of the agents are called macro-

learners. COIN uses concepts from game-theory to devise

a methodology for designing and updating the local utility

functions at each agent so that system will approach the

near-optimal values of the world utility. The COIN theory

has established that a collective system which is factored

and has higher learnability eventually reaches a Nash

equilibrium point, where all nodes are fully rational in

optimizing their utility functions. This Nash equilibrium

point is also the Pareto optimal point of the system. We

will address concepts used by COIN as well as its appli-

cation to WSNs in Sect. 5.

4 Distributed independent reinforcement learning

(DIRL)

The main idea of DIRL is to allow each individual sensor

node to self-schedule its tasks and allocate local resources

by learning the corresponding usefulness (utility) in any

given state, while honoring application-defined constraints

and maximizing total amount of reward over time [21]. The

advantage of using independent learning is that no com-

munication is required for coordination between sensor

nodes since each node selfishly tries to maximize its own

reward. The application can specify global optimization

parameters in terms of rewards for individual tasks at

sensor nodes. Thus, if an application needs to optimize

energy usage, the reward function of each task can be

expressed as a combination of the task output and the

energy consumed in performing such task.

4.1 Assumptions and system model

Our model is based on the following assumptions.

1. Each node is able to perform only one task at a time,

and all tasks are allocated according to time steps of

duration s.

2. Tasks are allocated to sensor nodes according to their

features (in case of a heterogeneous network), and the

initial task allocation is already done after the

deployment.

Assumption 1 means that a sensor node is single-threaded,

as it happens in many real-world sensor platforms available

today. This is not a restriction, however, as our approach

can be also used in environments supporting multi-

threaded nodes. We are currently working on relaxing the

constraint associated to Assumption 2 by designing a

complete middleware framework with support for task

distribution and task allocation.

In order to apply RL, we need to define the resource

adaptation problem in terms of RL elements. These ele-

ments and their mapping are as follows.

• Agent: each sensor node corresponds to an agent in

multi-agent reinforcement learning (MARL).

• Environment: the world surrounding the sensor node

and its interactions.

• Action: the application task to schedule. An application

is deployed on a sensor node in the form of a set of

tasks that a node can perform, and each node schedules

one task during each time step. For example, an agent

may have the following set of actions: transmit, receive,

sample, alarm, actuate, aggregate, etc.

• State: a set of application-defined and system vari-

ables. For example, one can include system variables

such as the number of neighboring nodes, remaining

energy, mobility, capability for outbound and inbound

communications, and so on. Application-specific vari-

ables, such as sensor readings or signal strength, may

also be part of the state. The number of states in a

system can grow exponentially with the state vari-

ables, and most of the time it is not practical to

enumerate all possible states in advance. To this end,

DIRL uses a weighted Hamming distance to group

similar states, thus reducing the total number of

needed system states.

• Policy: determines what action an agent will take in a

particular state. In our case, the policy determines

which task to execute a certain sensor state. We have

defined a policy that consists of predicates as well as an

exploitation and exploration strategy. These as will be

discussed later in this section.

• Reward function: provides a mapping of agent state and

corresponding action to a reward (typically, a real

number) that contributes to the utility. The goal of each

agent is then to maximize total reward over time. In

DIRL, this reward function needs to map the applica-

tion-defined optimization parameters into a numerical

reward. Each task in DIRL implements a simple reward

function that determines the amount of reward (positive

or negative) obtained during each execution of that

task. For example, the reward of a receive task could be

function of the received messages during its execution,

as well as the amount of resources consumed. DIRL

defines the reward as a function of expected price ep, so

that the reward can be tuned at runtime by simply

updating the expected price ep.

• Value function: defines the long-term objective of an

agent as well as the possible future states not imme-

diately as described by the reward function. Essentially,

it is built upon the values of the reward function over

time, hence its quality totally depends on the reward
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function. We use Q-learning, a form of RL that has an

intrinsic value function defined.

Figure 2 illustrates the elements introduced above along

with their mutual interactions.

4.2 DIRL framework

DIRL is based on Q-learning, a form of model-free rein-

forcement learning [28]. Q-learning is quite simple,

demands minimal computational resources and does not

require a model of the environment. Hence, it is very

suitable to be implemented on resource-constrained sensor

nodes. Furthermore, it also supports state-based learning by

allowing sensor nodes to quickly adapt when a node

switches from one state to another. Each sensor node in

DIRL performs task and resource management by execut-

ing an algorithm based on Q-learning.

As outlined in Sect. 3, Q-learning uses a single data

structure, namely, a utility look-up table Q(s, t) that stores

the knowledge acquired by the agent over time in the form

of numerical utilities across states s and tasks t. For online

Q-learning, the utility table is updated incrementally by

using the following expression:

Qðs; tÞ ¼ ð1� aÞQðs; tÞ þ aðr þ ceðs0ÞÞ ð1Þ

Here, again, 0 B a B 1 is the learning-rate, while 0 B c B

1 is the discount-factor. In DIRL, we have used a simple

heuristic where the exploration probability at any point of

time is given by:

e ¼ minðemax; emin þ ðSmax � SÞ=SmaxÞ

where: emax and emin define the upper and lower boundary

for the exploration factor, respectively; Smax represents the

maximum number of states (as obtained from the appli-

cation) that DIRL will try to map; and S represents the

current number of states already known. Thus the heuristic

above allows an initial exploration with a higher rate,

gradually decreasing over time as DIRL is able to discover

(and map) more states. Note that some minimum explo-

ration is always required to allow a node to dynamically

reconfigure in case of environmental changes.

In DIRL, each node chooses a task to execute at each

time step by either exploitation or exploration. However,

all tasks may not be executable at all times. For example,

the aggregate task cannot be executed if there are no

readings available to aggregate. In addition, DIRL needs to

honor certain application constraints, such as the latency

and quality of readings, while scheduling tasks. In order to

achieve this, DIRL associates each task with an applica-

bility predicate that needs to be true for that task to be

executed. Thus, a task is executed only if its applicability is

satisfied. With reference to the aggregate task, if the

application specified some constraints on the maximum

latency of a reading, that can be reflected in the applica-

bility predicate of the corresponding task. Figure 3 shows

the flow diagram of task scheduling based on the explo-

ration and exploitation policies, in addition to the appli-

cability predicate of tasks at a particular time step s.

Fig. 2 Elements of

reinforcement learning applied

to a WSN

Fig. 3 Task scheduling in DIRL
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An important feature of a RL system is its handling of

the temporal and structural credit assignment problem [14,

23]. The temporal credit assignment problem is to propa-

gate the reward backwards in time, while the structural

credit assignment is to propagate the reward spatially

across states in order to define the notion of similarity.

Q-learning provides support for the temporal credit

assignment problem in terms of delayed reward [27]. The

structural credit assignment also needs to be addressed, as

otherwise each node will end up using a massive state-

space, which is not practical for WSNs scenarios. DIRL

uses a simple weighted Hamming distance between two

states in order to address the structural credit assignment

problem. While defining a state representation in the form

of system and application variables, the application also

specifies a weight associated to each variable. This weight

is used by DIRL to define the state difference based on the

variables. Thus, if the representation of an application state

consists of variables V1;V2; . . .;Vn with the corresponding

weights W1;W2; . . .;Wn; DIRL determines whether two

given states s1 and s2 are similar or not by calculating the

corresponding Hamming distance as follows:

Hðs1 � s2Þ ¼ W1�jðV1ðs1Þ � V1ðs2ÞÞj þW2 � jðV2ðs1Þ
� V2ðs2ÞÞj þ . . .þWn�jðVnðs1Þ � Vnðs2ÞÞj

ð2Þ

If the Hamming distance is less then a threshold, then

two states s1 and s2 are considered to be similar and they

share a single entry in the Q data-structure.

DIRL also needs the following inputs from the

application:

• A set of application tasks in some priority order. Note

here that the priority is important only until the

Q-values are not established, or if two tasks have

similar Q-values.

• An applicability predicate, associated to each task,

incorporating application-specific constraints and

reward functions towards the optimization goal.

• A state representation consisting of system and appli-

cation variables, as well as the corresponding weight

for determining Hamming distance and to aggregate

similar states.

• The maximum number of states that DIRL should try to

explore. This gives an upper bound on number of states

in the system, so that DIRL will not try to identify any

more states beyond this number. If the need arises, one

can tune Hamming distance threshold to accommodate

new states into the existing set of similar states.

Once the information above is available, DIRL performs

the algorithm given in Fig. 4.

4.3 Global optimality

The main advantage of using independent learning in

DIRL, as presented above, is that no communication is

required for coordination between sensor nodes, and each

node selfishly tries to maximize its own reward. This

approach is feasible when each node in WSN application

can acting on its own, and does not need to cooperate or

compete with other nodes. In other words, if all nodes are

working independently and their actions do not affect

others, then any increase in the utility of individual nodes

cannot reduce the utility of others and, hence, always

results in increasing the world (system-wide) utility, which

is merely the sum of all nodes utilities over all times. As we

will see in the next section, such a system is subworld

Fig. 4 The DIRL algorithm as performed by individual nodes
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factored and will eventually reach a Pareto-optimal point,

thus gearing towards the system-wide optimization goal.

However, most of the real-world WSN applications need

some sort of cooperation among sensor nodes which cannot

work independently. In this case, an increase in the utility of

an individual node may result in the reduction of the utility

of others and, hence, may not increase the world utility. It is

also possible that such system is affected by the Tragedy of

the Commons (TOC) phenomenon or Braes’ Paradox [30],

wherein the selfishness of individual agents leads to sig-

nificantly lower global utility. Such phenomenon can be

avoided by carefully designing the utility functions of the

agents as well as the constraints for task selection. In other

words, we need to make sure that the private utility is

‘‘aligned’’ with the global (world) utility, i.e., any increase

in the private utility of an agent because of its own actions

will also result in an increase of the world utility. A real-

world example of this scenario is represented by human

economy [29], wherein each individual tries to maximize

their private utility in the form of income, career advance-

ment, and so on. If there were no constraints on how indi-

viduals can operate and maximize their utility, people can

harm others thereby leading to the downfall of the global

utility (e.g., the gross domestic product). Here, government

regulations act as the necessary constraints and modifica-

tions to utility function of individuals in order to ensure its

alignment to global utility. Regulations are designed such

that any increase in human utility will also cause an increase

in the global growth of the economy.

In our framework, we neglect issues related to trust and

reputation of sensor nodes, as the utility functions of all

nodes in the system is under the control of the designer. As

a consequence, all sensor nodes are assumed to be fair.

Nevertheless, the problem of obtaining sub-optimal sys-

tem-wide utility still needs to be addressed, even if nodes

are not malicious. This is mainly related to imperfect

(partial) knowledge that each node has about the rest of the

system. This partial knowledge can lead a node to perform

an action which may not benefit the overall system. Hence,

the key in achieving a higher global utility lies in the

design of private (to individual nodes) as well as global

utility functions such that they are aligned.

Another drawback of using DIRL in real-world appli-

cation is determining the reward functions and the price

settings. It is difficult to investigate different aspects of

system dynamics and choose the reward settings for each

resource and task. Furthermore, these settings need to be

changed on the fly whenever the overall system state and

(or) the application requirements change. Hence, hand-

tuning of rewards is not acceptable. Instead, COIN-based

macro-learning can help learning the right settings for these

rewards (private utilities) for individual nodes, and no

domain expertise is required to set them. Macro-learning

can update the utility function of micro-learners as and

when the application states or requirements change, in

order to move towards the global optimization goal.

In the next section, we will present further details about

the COIN theory and how we have adapted it to the

problem of resource management in sensor systems.

5 Collective intelligence-based macro learning

The problem of resource management in WSN can be

defined in terms of COIN as follows [22]. Consider a WSN

system, consisting of N nodes, evolving across a set of

discrete, consecutive time steps s 2 f1; 2; 3; . . .g. Let nns be

an element of a vector space Zns, representing state of a

node in our WSN at a particular time step s. Here, state of a

node consists of not only its application and system vari-

ables, but also node’s actions that are directly visible to the

outside world (including other nodes in the system). Fol-

lowing this convention, ns 2 Zs denotes a global state of

our system, combining actions/variables from all nodes, at

a particular time step s, while n 2 Z is the vector of global

state at all times. n can also be referred as world-line [29] in

the space Z over all time steps. The goal of our framework

is then to determine an optimal world-line n by maximizing

some system-wide global utility function of n i.e., G(n), and

then driving the system along that world-line. Each node n

in our framework is trying to maximize its private utility

function say qn(n). Thus, we need to show here how and

under what conditions our framework can determine the

optimal n, given each node trying to maximize its private

utility function qn(n), i.e., the Q-learning value function.

5.1 Application of COIN to WSN resource

management

The major features of the COIN theory [9, 29] along with

their applicability to the resource management problem in

WSN are described below.

• A collective is a multi-agent system wherein each agent

is adaptively trying to maximize its own private utility

function, while, at the same time, there is a system-

wide performance criterion defined to grade the

behavior of the entire system. Thus, a WSN comprising

individual sensor nodes adaptively trying to maximize

their utility function according to a system-wide goal is

a collective.

• Most of the collective system focus is on the forward

problem of how local attributes induce a global

behavior and thereby determine the system perfor-

mance. On the other hand, COIN addresses the inverse
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problem of designing a system to induce behavior that

maximizes world utility. This is done by designing

either private utility functions or incentives to private

utility functions. Similarly, our objective is to design

the reward and utility functions used by individual

sensor nodes in the WSN so that the system-wide utility

can be maximized.

• Subworlds are sets forming an exhaustive partition of

agents. For each subworld w, all agents in that subworld

share the same subworld utility function gw(n) as their

local utility function. Accordingly, each subworld can be

considered as a set of agents that collectively have the

most significant effects on each other. In this case, agents

cannot work against others, since all agents that affect

each other substantially share the same local utility. As

WSN applications are mostly data-centric, a chosen

subworld is a set of sensor nodes involved in a data

stream, i.e., from the data-source to the sink. For

example, all nodes involved in a particular data stream

from data sensors, to aggregators and collectors, will be

part of a single subworld as they all have immediate and

considerably high effect on each other. This subworld

definition suggests that the subworld formation is

dynamic and can change according to the state of the

system. Figure 5 marks four sample data-stream sub-

worlds in a target tracking application deployed over a

10-node WSN.

• A (perfectly) constraint-aligned system is such that any

change in the state of agents in subworld wi at time s
will have no effect on the states of agents in the

subworld wj (i = j) at times greater than s. Intuitively,

a system is constraint-aligned if no two agents in

separate subworlds affect each other, so that the

rationale behind the use of subworlds holds. Most of

the real-world systems are not perfectly constraint-

aligned and the same holds in WSNs. In fact, a state

change in a node involved in one data-stream (and

hence one subworld) may affect state of other nodes in

nearby data streams. But the effect here will be

probably negligible if compared to the one on a node

in the same data-stream.

• A subworld-factored system is such that, for each

subworld w considered by itself, a change at time s to

the states of the agents in that subworld, when

propagated across time, results in an increased value

for gw(n) if and only if it results in an increase of G(n).

Mathematically, a system is subworld-factored if

the following holds for all pair of states n and n0 that

differ only for subworld w : gwðnÞ � gwðn0Þ () GðnÞ
�Gðn0Þ. For a subworld-factored system, the side

effects on the rest of the system of subworlds increasing

their own utility do not end up decreasing world utility.

In the current problem, if we model a system where each

sensor node is a subworld, then it selfishly tries to

maximize its private utility. This leads to a system that is

not subworld-factored (assuming that sensor nodes are

not totally independent) as the action of one node may

be harmful to other more critical nodes and hence may

reduce world utility. However, if we model a system

where each data-stream is a subworld trying to maxi-

mize its utility by using an appropriate subworld utility

function (e.g. Wonderful Life Utility Function [29])

gw(n) will not reduce the world utility because of the

relative dependence with other data-streams during the

existence of a subworld. Hence, such a system can be

considered as subworld-factored.

Another requirement for applying the COIN theory is to

have private utility functions with high learnability. Lear-

nability is a measure of how well an RL-algorithm can

learn to optimize the utility function. For example, lear-

nability of utility functions for a team game (where the

reward of each node is the same as that for all nodes in the

system at any time step) is much less than those of self-

centered utility functions. Thus, the learnability of a utility

function will be high if it is easy to interpret effect of

node’s action in the reward obtained. In DIRL, each node

uses self-only utility functions where it gets immediate

feed-back on the action taken and hence enjoys higher

learnability. On the other hand, in COIN, all the nodes in a

data-stream subworld share the same utility and, hence, the

learnability of each node is lower than that of self-only

utility functions, but considerably larger than those in a

team game. This is because the number of nodes in single
Fig. 5 Data-stream subworlds in a WSN application for target

tracking
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data-stream is just a fraction of the total number of nodes in

a WSN. The wonderful life (WL) utility function plays an

important role in designing a subworld-factored system

because a constraint-aligned system with wonderful life

subworld-utilities is subworld-factored. If CLw(n) is

defined as vector n modified by clamping the states of all

agents in subworld w across all time to a null vector (or say

0), then WL utility of w is:

gwðnÞ ¼ GðnÞ � GðCLwðnÞÞ ð3Þ

This definition of WL utility is the same as setting WL utility

to world utility when considering that subworld w had never

existed. Thus, the utility of a subworld will be high only if

that subworld contribution has also increased world utility.

We are using WL utility for macro-learning among sensor

nodes which in turn is used to set the utility functions private

to DIRL, i.e., the qn(n). The COIN theory proves that a

collective system which is subworld-factored and has higher

learnability, eventually reaches a Nash Equilibrium point

where all nodes are fully rational in optimizing their utility

functions [9, 29]. The COIN theory also shows that this Nash

Equilibrium point is the Pareto optimal point of the system.

From the above description, we can see that a resource

management framework using a model of data-stream sub-

worlds with Wonderful Life (WL) subworld utility function

is subworld-factored and also has high learnability. Hence

such a system will also eventually reach Nash Equilibrium

which is also the Pareto optimal point and hence will avoid

issues such as the Tragedy of Commons (TOC).

We will next describe how such a data-stream subworld

scheme including macro-learning and settings of private

utilities can be introduced to DIRL based resource man-

agement framework.

5.2 Resource management framework using two-tier

learning

Our design goal is to create a system using a bottom-up

approach where each sensor node is responsible for task

selection, rather than the top-down approach (where some

central entity dictates nodes what task to execute) used by

many other middleware solutions [6, 16, 31]. The main

advantages of bottom-up approach are: pro-active and real-

time adaptation, no centralized processing requirement for

task allocation, and minimal communication overhead. But

principal challenge of bottom-up approach is how to make

sure that system is actually meeting the global application

goals and is not just acting randomly or creating chaos. We

resolve this issue by using two-layer learning: micro-

learning as used by individual nodes to self-schedule their

tasks and macro-learning as used by each data-stream

subworld to steer the system towards application goal by

setting/updating rewards for micro-learners.

As mentioned earlier, the goal of a resource manage-

ment framework is to determine the best allocation of tasks

to sensors so that application-defined optimization goals—

such as energy savings, network lifetime longevity,

bandwidth preservation etc.—can be achieved while

simultaneously honoring the QoS metrics of the applica-

tion. QoS may be defined in terms of quality of measured

variables (sensed and processed data) or other application

constraints such as latency, reliability, and so on. Thus

G(n), which represents global utility over all time, can be

expressed here as a sum of rewards
P

sRs(ns), where Rs is

global reward and ns is global state at time step s. Thus, Rs

are temporal translations of one another, i.e.,

GðnÞ ¼
X

s

RsðnsÞ ð4Þ

As the global utility function may take many forms and is

application-specific, we allow the application to define

Rs(ns) given the current state of the system as represented

by the measured variables (data) and optimization

parameters. All the optimization parameters are

represented in the form of a running-sum of numerical

rewards, and are associated to each message.1 It is also

possible to provide a generic implementation of Rs(ns)

based on the QoS requirements and the total of rewards

from all data-streams. Each micro-learner uses Q-learning

as in DIRL and, hence their private utility function qn(n) is

a Q-learning value function as given by Eq. (1). On the

other hand, macro-learners use the COIN-based wonderful

life utility function. All sensor nodes that are part of one

data-stream create a subworld and, hence will share same

utility (reward) for single time step. From Eq. (3) and Eq.

(4), the wonderful life reward of each agent part of

subworld w at time step s is given by:

gwsðnsÞ ¼ RsðnsÞ � RðCLwðnsÞÞ ð5Þ

In this case, R(CLw(ns)) is the world reward Rs(ns) after

removing all data values that have been reported by data-

stream w. This removes the effect of data-stream w on the

world reward, but considers the actual contribution towards

the world reward Rs(ns). Let us assume that data-stream w

is providing values of a data variable which by itself is not

significant, but has higher effect on the overall global

application goal. In this case it is w which gets a higher

reward as required. On the other hand, if w is contributing

to redundant information provided by data-stream w0 with

higher reward, the wonderful life reward of w will be

lower, as desired, thus discouraging its use. This reward

value is used to update reward function of micro-learners

for the task they executed for data-stream w. In order to

1 In order to reduce the related overhead, we assume that the rewards

are piggybacked into the messages.
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perform resource management by using this COIN-based

framework, we made the following extensions to the

application input for DIRL described in Sect. 4.2.

• Instead of hand-tuning the expected prices associated to

the reward function of each task (which we found very

difficult to do given various system dynamics), the

expected price is set by the macro-learner in terms of the

WL utility of its subworld. Again, we have used a

numerical price to allow a macro-learner to update

private utility functions without incorporating new code.

• The application also provides a global reward function

Rs(ns) which returns the global reward for a time step s,

given the current state of the system as represented by

the measured variables (data) and the optimization

parameters.

5.3 Architecture and system components

Each sensor node in the system embeds two agents: a

micro-learner which is self-contained, trying to maximize

its private utility by using only local information; and a

macro-learner which is part of a subworld containing other

sensor nodes linked in a data-stream and sharing the same

utility functions. Once the application input is available,

the system enters the initialization phase. This is needed

since at the beginning there are no learned utilities avail-

able to either the micro-learners or the macro-learners. To

this end, several options are possible.

• Self-exploration and system learning: RL-based systems

always use a tradeoff between exploration (trying out

random actions in search of better rewarding ones) and

exploitation (choosing actions based on the obtained

utilities) to build up its knowledge base. During the

initialization phase, the rate of exploration needs to be

higher compared to exploitation. Hence, decisions made

by the system during this phase will be more random and

may not immediately lead towards the system goal. This

choice can be tolerated or not depending on the specific

application and the WSN scenario under consideration.

• Using domain knowledge: domain expertise can be

exploited to provide effective and faster initialization

phase. This can be done in combination with self-

learning for micro-learners. Domain knowledge can be

provided to the system in the form of initial expected

price (utility values set by macro-learners) for each

task. This is similar to providing an initial estimate of

the effect of tasks. These corresponding values can also

be determined by using simulation and self-exploration

as described above. As mentioned earlier, micro-

learners have very high learnability and hence can

build their utilities quickly.

• Employing an available sensor-selection scheme: any

of the several sensor selection techniques (as mentioned

in Sect. 2) such as MidFusion [1] or MiLAN [6].

Results from these techniques can be then used to

initialize the macro-learners with the expected prices

for individual sensor nodes.

After the initialization, micro-learners and macro-learn-

ers have some knowledge to exploit for decision making,

and the system is then considered to be in the normal

operating phase. During that time, the micro-learner tries to

maximize its private utility function by running a modified

version of the DIRL algorithm as given in Fig. 6. The

micro-learner uses either exploration or exploitation for

task selection at each time step s based on the exploration

Fig. 6 Micro-learning algorithm performed by individual nodes, where the blocks different from the plain DIRL have been marked with a dark
background
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factor, and also uses the Hamming distance between two

states as the criterion to distinguish separate states, there-

fore reducing the state space of the sensor node. The micro-

learner gets an immediate reward after task execution at

each time step. The immediate reward is then used to update

not only the Q-learning value function, but also the running

sum of the reward (rws) on the message that it acted on. As

the reward obtained is a function of application-specific

optimization goal (e.g., minimizing the energy usage), rws

will be a measure of how well each data-stream is per-

forming towards the application goal. The micro-learner

also updates a running sum of cost (cws) as obtained from

the cost function of a given task. A tuple consisting of the

chosen task ID and the message ID at time step s is recorded

at the macro-learner so that it can provide future feedback

on the related task execution.

The sink (base-station) is responsible for determining

the wonderful-life reward gws(ns) (given by Eq. (5)) in a

certain time step s for each data-stream. Here, the global

reward Rs(ns) is calculated by using the application-

specific or generic global reward function, given the data

stream output (measured variables), the total of running-

sum of rewards, and the cost from all data-streams (as a

measure of the optimization parameters). CLw(ns) is also

calculated by using the same global reward function, but

discarding the reward obtained from w. The difference

between the WL reward and the running sum of the reward

based on the local utility of the data-stream given by dw, is

next determined for each data-stream w through Eq. (6).

dw ¼ gwsðnsÞ � rws ð6Þ

The dw value is then handed over to the participating nodes

in w along the reverse path of the data-stream. As each

macro-learner gets its reward from the sink, it may arrive

after a few time steps. As a consequence, the macro-learner

maintains a history of the tuples recently recorded by the

micro-learner (a tuple for each time step), until it receives a

reward for that time step. The received reward is matched

against the recent history by using the message ID, and is

then used to update the utility value (i.e., the expected price

of micro-learner) for the associated task. The expected

price ep of a task is updated by using the learning rate a as

explained in Sect. 4.2, through the following equation:

ep ¼ ð1� aÞep þ adw ð7Þ

The value of dw may need to be transmitted to each node

participating in the data-stream w and may be a costly

operation. To minimize this, we publish the WL reward

only if it is significant as described below:

Negative Reinforcement if � dw\m\0

Positive Reinforcement if 0\m\dw

No Reinforcement otherwise

ð8Þ

where m is determined empirically based on the applica-

tion-specific reward and the cost functions. The value of m

can be varied to tune the effect of macro-learning on the

system and as such a very high value of m may turn off

macro-learning. If both qn(n) and gw(n) are correlated (i.e.,

they generate reward value using same metric), it is pos-

sible to design our global reward function so that dw ! 0,

as our system approaches a steady state. For example, if the

value of gws(ns) is high for a data stream w, this will result

in a high utility for the participating node qn(n). This will

further increase the data-stream reward rws in the sub-

sequent data collection and thereby reduce the value of d.

As a consequence, the WL updates for the entire data-

stream are required only when there is a state change

resulting in a need for adaptation and for learning the new

optimum task scheduling strategy. Updates will decrease

and eventually be not needed any more as the system

approaches a steady state.

The reinforcements for the macro-learners can be

computed and transmitted by the sink according to a

reinforcement window of N time steps, instead of at every

time step s. Therefore, the sink collects data for a window

of N time steps and computes the reward of the stream

based on the data accumulated in the window. This not

only allows to save on communication costs, but also

prevents the fluctuation of the global reward by computing

it over a larger time interval.

Figure 7 gives a high-level overview of our framework

and the related interactions with the application. As part of

application deployment, the task graph and the associated

application constraints—as well as the reward and cost

functions—are disseminated to the nodes of the WSN. The

application also provides a global reward function to the

sink. The figure also shows the optional initialization of

the local utilities of individual sensor nodes. The appli-

cation can provide the variables of interest with the related

QoS requirements at any state change. From this point

onwards, each node takes the responsibility of self-

scheduling its own tasks and allocating its own resources

based on the local learned utilities. All data-streams are

evaluated for WL reward at the end of each time step. The

WL reward is next distributed to all the nodes in the

corresponding data-stream, if significant, as determined by

Eq. (8). Sensor nodes participating to the involved data-

stream update their local-utility functions based on the

global WL reward.

The set of micro-learners and macro-learners provides

each sensor node with the capability to self-schedule tasks,

while making sure that the overall system is guided

towards its global optimization goal. Thus, such a scheme

allows a sensor node to self-adapt to the system dynam-

ics and the uncertainty inherent in the WSN. In fact, the
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micro-learner immediately adapts to changes in the local

state (e.g., low battery, neighbor change, nearby target). In

addition, the macro-learner provides adaptation at the

global level with changes in the global state or the appli-

cation requirements (e.g., change in QoS of data variables,

addition and removal of sensor nodes). Global changes

affect the WL utility of the macro-learner which, in turn,

changes the utilities learned by the micro-learner along the

corresponding direction. A change in the reward function

of the micro-learners may invalidate the learned utilities,

namely, the Q-values, which may not converge fast to the

equilibrium [28]. However, it is possible to discard the

learned utilities and start over again whenever the reward

function is updated. In addition, here we are more inter-

ested in adaptation as well as convergence of the system as

a whole rather than in the convergence of individual micro-

learners.

6 Implementation of real-world applications

The design of our resource management framework is

motivated by the need for flexibility, so as to allow dif-

ferent classes of WSN applications to be built on top of it.

Applications which require autonomous adaptation in

dynamic environments benefit the most from our frame-

work. We will next show how some of real-world WSN

applications can be easily implemented over our two-tier

RL-based resource management framework. The variables

of interest, QoS requirements, involved sensor types and

global reward function for studied applications are given in

Table 1.

6.1 Target tracking

A target tracking application can be deployed on top of

heterogeneous WSN to track the presence of an object, a

person, or even an event (e.g., fire propagation in the

woods). As a consequence, this application can be used for

intrusion detection, surveillance, or environmental and

battlefield monitoring. Depending on the actual scenario,

the application may have have different coverage area and

lifetime requirements. In general, the application does not

need redundant information provided by nodes with over-

lapping sensing ranges. In addition, tasks performed by

each sensor node (e.g., sampling or routing) can be tuned

based on current state of the system (e.g., presence of the

tracked item or event). Hence, by means of efficient and

continuous adaptive resource management over time, it is

possible to allow sensors to preserve energy while still

meeting application requirements.

Tasks involved in target tracking application along with

the corresponding reward function and applicability pred-

icate are defined below:

Fig. 7 Summary of the interactions between the different components in our two-tier reinforcement learning scheme
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• Sample. Obtains a sensor reading, i.e., the signal

strength of a target object.

Reward Function: (noOfSensedEvents * expected-

Price) - energySpent

Applicability Predicate: remainingEnergy [ threshold

• Transmit. Transmits a message to next hop towards the

sink.

Reward Function: (noOfMsgsTransmitted * expected-

Price) - energySpent

Applicability Predicate: noOfOutboundMessages [ 0

• Receive. Sets the radio in receive mode to listen for

incoming messages.

Reward Function: (noOfMsgsReceived * expected-

Price) - energySpent

Applicability Predicate: always

• Aggregate. Aggregates two or more (local and/or

remote) readings referring to the same target into

single one (we use a simple last value aggregation in

this example).

Reward Function: (noOfSamplesAggregated * expect-

edPrice) - energySpent

Applicability Predicate: noOfSamples [ 1 and time

FromLastReporting \ n steps

• Sleep. Sets the microcontroller and the radio in sleep

mode to minimize energy consumption.

Reward Function: expectedPrice - energySpent

Applicability Predicate: always

Table 2 shows the expected prices for the different

tasks. Here, our goal is to optimize energy usage among all

sensor nodes. This can be seen from the reward function

which penalizes each task with the amount of energy

consumed. The separation of the expected price from the

reward function allows to dynamically tune the reward

function by the macro-learner. Unfortunately, changing

the reward function may invalidate the learned utilities

(Q-values) which may not converge to the equilibrium

(more details about the convergence of Q-values can be

found in [28]). However, it is possible to discard the

learned utilities and start over again whenever the reward

function is updated. To this end, the values in Table 2 are

only the initial estimates provided by system developer and

the macro-learner will tune the values as required

throughout the lifetime of the system. Also note that the

expected price and reward functions are designed to have

an effect only if the task execution succeeds. Thus if a node

schedules the Receive task, then the node will obtain a

positive reward only if one or more messages are received

in the corresponding time step, otherwise it will receive a

penalty proportional to energy consumed. The applicability

predicates are quite simple and self-explanatory. Here, we

do not allow a sensor node to sample if its energy is below

a certain threshold, in order to make sure that the node is

available for routing messages when required. This can be

easily implemented in the applicability predicate for the

Sample task as shown above.

Our state representation consists of the following vari-

ables and their weights: have one or more neighbors (1.0),

successful in recent sampling (1.0), successful in recent

receive (1.0), signal strength (or quality of reading) (0.1).

We used a Hamming distance of 1.0 as threshold, and

maximum number of states was set to 5.

6.2 Data collection with mobile elements

Data collection can be performed in a WSN by means of

mobile elements, i.e., either mobile sinks or special data

nodes which relay collected data to the sink or base station

[3]. In such a scenario, communication opportunities

(namely, contacts) between a sensor node and a mobile

element are limited. Furthermore, the contact duration is

usually very short, especially if compared to the frequency

Table 1 Implementation of WSN applications

Element Object tracking Data collection with mobile elements Health monitoring

Variables Signal strength, covered area, location of

the target

Presence of the mobile element at a given

time, number of transferred messages

Heart rate, respiratory rate, blood

pressure

QoS

requirements

Signal strength greater than threshold and

coverage and delay less than threshold

Detection accuracy, bandwidth utilization Quality of measured variables

greater than threshold

Types of sensors Acoustic, proximity, video Temperature, humidity, infra-red,

chemical

ECG, blood pressure, blood flow,

EMG

Global reward

function

(Rs(ns))

f(signal strength, coverage, tracking

delay) - total cost of data acquisition

f(transferred messages) - total cost of

discovery and communication

f(quality of measured

variables) - total cost of data

acquisition

Table 2 Expected price for tasks in the target tracking application

Name Expected price

Aggregate 0.2

Transmit 0.1

Receive 0.2

Sample 0.05

Sleep 0.001
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in the arrivals of the mobile element. To this end, the goal

of a data collection application should be to discover

contacts between the sensor nodes and the mobile elements

with the minimum energy consumption. At the same time,

the contacts should be exploited as much as possible in

terms of the successfully transferred messages.

A possible approach to the problem consists in defining

an energy-efficient protocol for the timely discovery of the

mobile element. At the sensors, the discovery protocol

exploits a duty-cycle to save energy, such that individual

nodes alternate active and sleep periods while trying to

detect the proximity of a mobile element. Once the mobile

element is discovered, the sensor node switches to a

communication phase where it exchanges data with the

mobile element until it is reachable so as to maximize the

contact utilization. In this context, the application tasks can

be defined as discovery tasks with different duty-cycles

[20]. For instance, the following tasks can be defined.

• High Rate Discovery. The sensor nodes use a duty-

cycle to the maximum allowed value Dmax.

• Low Rate Discovery. The sensor nodes use a duty-cycle

lower than Dmax, but with the same order of magnitude.

• Very Low Rate Discovery. The sensor nodes use a duty-

cycle significantly lower than Dmax, i.e., one order of

magnitude less.

The expected price associated to each task is propor-

tional to the corresponding duty-cycle, and the state con-

sists in the presence of the mobile element at a given time,

which can eventually be further detailed as a function of

the mobility model when available. Furthermore, the

reward can be expressed as the successful discovery of the

mobile element and the number of messages successfully

transferred within a contact. Additional details for this

scenario are provided in [20].

6.3 Health monitoring

In a health monitoring application, several sensors with

different characteristics can be used to collect one or more

physiological parameters and quantities related to activi-

ties. Each sensed value provides different quality of

information, and is characterized by an associated cost. For

an example, the heart rate can be measure by ECG, blood

pressure monitor or blood flow monitor [6]. However, the

accuracy and quality associated to the individual sensors

are different, and so is the cost of obtaining the heart rate

information. Intelligent resource management can help in

choosing less costly sensors during normal conditions, and

can trigger expensive but highly accurate sensor in case of

emergency. The different aspects associated to such health

monitoring application as required by our resource man-

agement framework are detailed in Table 1. The tasks for

the health monitoring application are similar to those for

target tracking, where the Sample task is responsible for

measuring a given sensed variable (e.g., blood pressure or

heart rate) and its reward function depends on the quality of

the sensed variable.

7 Simulation setup

In order to evaluate our approach, we used the J-Sim simu-

lator [8] and referred to the target tracking application, since

it is the more demanding in terms of the learning process (see

Sect. 6.1 for the details about the learning parameters).

We compared the performance of our two-tier learning

approach (referred to as COIN) against the following schemes.

• DIRL: each node performs a task according to the DIRL

approach. There is no macro-learning involved, and the

system consists only of individual micro-learners as

described in Sect. 4.

• Random: each node performs a task randomly chosen

from a uniform distribution at each time step.

• Simple: each node performs a simple scheduling

algorithm without trying to adapt or conserve energy

by sleeping. As nodes are always active, this scheme

provides the best tracking of the target object, as well as

the upper bound on the energy usage.

• Oracle: this is an idealistic scheme that assumes each

node somehow knows exactly what task to perform,

and there is no overhead involved to manage the

system. Thus, this scheme provides the lowest bound on

energy usage, as well as the best tracking efficiency and

accuracy. Clearly, this scheme cannot be implemented

in practice and is used only for comparison purposes.

For our analysis, we considered the following performance

metrics.

• Global Reward: this is related to the target events that

are reported to the sink and the amount of energy

consumed (i.e., the acquisition cost) as given in

Table 1. As the optimization goal of our framework

is defined in terms of the global reward function G(n),

the best way to measure its performance consists in

using the global reward over time. The value of global

reward is reported as percentage of value obtained from

the Oracle scheme presented above. Thus, the global

reward of Oracle scheme corresponds to 100 % and the

other schemes have values relative to Oracle.

• Activity Ratio: this is defined as the ratio between the

number of active tasks (Sample, TX and RX) and the

total number of tasks executed in the system (hence,

including the Sleep task). The activity ratio is averaged

over all sensors in the system, and is expressed as a
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percentage. A scheme with better resource management

should have lower activity ratio as it should allow the

system to conserve energy by executing the Sleep as

much as possible, without affecting the accuracy

significantly. A system where the nodes are always

active (i.e., Simple) will have activity ratio of 100 %.

• Energy consumption: this is the average energy

consumption spent by a single sensor node to track

one object [7, 26]. In case of multiple tracked objects,

the energy consumption is averaged over the different

objects. Clearly, a lower energy consumption per

tracked object indicates a better efficiency of the

system.

• Tracking Error: this is the difference between the

actual position of the tracked object and the position as

estimated by the learning system. This metric is also

averaged over all sensors and tracked objects in the

system, and characterizes the tracking efficiency.

8 Simulation results

Simulation was performed under a variety of network and

target scenarios which are detailed in the following sections.

In all cases, sensor nodes are deployed in a grid of variable

size, and their distance to the sink was up to two hops.

Unless otherwise stated, the targets move along the grid

with random direction and a constant speed of 3.6 km/h.

In all experiments we performed 10 independent replicas,

each of at least 10,000 s of simulated time. We also derived

the confidence intervals with a 95 % confidence level.

Table 3 summarizes the most important simulation

parameters. The radio parameters were taken from the

WSN package of J-Sim [8]. In the following, we will first

focus on the learning performance, then we will investigate

the impact of different number of tracked objects and

sensor nodes on the considered metrics.

8.1 Learning performance

In this section, we evaluate our scheme in terms of its

convergence to an equilibrium state, the reward of indi-

vidual data-streams, as well as the global rewards. The

results were obtained in a scenario with 10 sensor nodes

and a single target randomly placed in a 300 9 300 m

sensing area.

Figure 8 shows the convergence over time of our two-

tier learning scheme COIN based on one simulation run

(the corresponding behavior was found to be similar in

multiple iterations as well) in terms of the reward of

individual data-streams, i.e., dw as given by Eq. (6). In the

considered scenario, the target was stationary and in range

of multiple sensor nodes. For clarity, we also limited our

analysis to a subset of meaningful data-streams as shown in

in Fig. 5. We can see that initially multiple data-streams

(i.e., 4, 5, 7 and 8) report a tracked object to the sink, and

that dw oscillates between positive and negative values.

This roughly corresponds to the initialization phase

described in Sect. 5.2. After about 2,000 s, dw stabilizes: in

this specific scenario, the system chose stream 4 for

tracking the object, and the other (redundant) data-streams

were turned off to preserve energy. At this stage, as dw 2
ð�m;mÞ for all streams, no more global reinforcement has

to be sent out, thus the system has reached an equilibrium

state. When the state of system or the application change,

some variations in dw are again possible until the system

reaches a new equilibrium. This behavior shows that our

two-tier learning scheme is effective in selecting the best

stream and in obtaining an equilibrium state rather quickly.

Figure 9 shows the global reward as a function of the

simulation time for the different schemes. Different from the

previous scenario, the target here was randomly moving

along the grid with a speed of 3.6 km/h. We can see that

COIN obtains the highest global reward (around 40 %), and

is also able to maintain or even improve the reward over

Table 3 Parameters used for simulation

Component Parameter Value

Micro-learner Minimum exploration (�min) 0.05

Maximum exploration (�max) 0.3

Discount factor (c) 0.5

Learning rate (a) 0.5

Time step (s) 10 s

Macro-learner Minimum WL reward (m) 0.25

Reinforcement window (N) 10

Energy consumption Sampling 84.1 lJ

Routing 8.42 mJ

Sleep 8.0 lJ
Fig. 8 Reward dw of individual data-streams as a function of time
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time. This shows that COIN manages the system resources

appropriately at all times by balancing the cost of acquisition

and the reward from received data. As DIRL is based on

micro-learning only, sensor nodes try to maximize their

personal reward at all times and no consideration is given to

system-wide performance. As a consequence, the system

depletes considerable energy in redundant and unnecessary

sensing and processing. As expected, Simple and Random

have the lowest reward, as Simple keeps the nodes always on

while Random does not actually exploit any learning.

8.2 Impact of the number of targets

In this scenario, 10 sensor nodes were deployed over a

300 9 300 m area, and the number of targets was varied

from 1 to 3. All target objects were randomly placed over

the grid, and moved along it with random direction with a

speed of 3.6 km/h.

Figure 10(a) shows the global reward. We can see that

COIN always outperforms the other schemes, even though

the global reward decreases slightly with the number of

tracked objects. Since the global reward is a function of the

tracking events as well as amount of consumed resources,

COIN manages the resources of the sensor nodes signifi-

cantly more efficiently than the other schemes when there

is one tracked object. When number of targets increases,

more nodes are required to be active in order to success-

fully track all objects. Due to the higher number of targets,

the system has a lower opportunity to conserve energy by

resource management. As a result, the difference between

COIN and the other schemes decreases when the number of

targets increase. However, COIN still obtains a significant

advantage over the other approaches even when the num-

ber of targets is equal to 3. Figure 10(b) illustrates the

energy consumption. Here, COIN is closest to the (unfea-

sible) Oracle scheme independent of the number of targets.

Specifically, the related energy consumption is almost a

half of the one obtained by DIRL. Compared to the Simple

scheme, which does not put the nodes to sleep, the energy

consumption of COIN is always less than 25 %, even

though it increases with the number of targets.

Figure 11(a) shows the activity ratio. We can observe

that COIN maintains a low activity ratio of nearly 20 %,

even when the number of targets increases. This shows the

effectiveness of COIN in resource management. The

activity ratio of DIRL increases with number of targets,

while the one of Random is fixed and equal to about one

third, i.e., the probability of randomly scheduling the sleep

task out of available ones according to a uniform distri-

bution. As nodes are always active, the Simple scheme

always obtains an activity ratio of 100 %. Finally,

Fig. 11(b) illustrates the tracking error. Clearly, the Simple

scheme has the lowest tracking error since nodes cannot

miss the target for being asleep. Indeed, sleeping enables

energy conservation at the expense of the accuracy,

namely, of the tracking error. Despite the lowest activity

ratio, COIN still performs similar to DIRL. However,

DIRL has a tracking error lower than COIN in general.

This is related by the negative feedback received by data-

streams which did not detect the target at a given time step

k, but will eventually be in the sensing area of the target at

Fig. 9 Global reward as a function of time for the different schemes

Fig. 10 Performance as a function of the number of targets: a global

reward and b energy consumption
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the k ? 1th time step. This issue can be addressed by using

a more sophisticated global reward function which uses the

track of the target to predict its future direction and provide

the reward accordingly. However, the solution presented

here has the advantage of being able to track even events as

they happen, and which may not follow an actual path.

8.3 Impact of the number of sensor nodes

In this scenario, we considered network deployments over

a sensing area ranging from 200 9 200 m to

500 9 500 m, with different number of nodes (i.e., 5, 10,

and 25), and with only a single target.

Figure 12(a) shows global reward. We can see that

Simple and Random have the lowest reward, which also

decreases when the number of sensor nodes increases. The

figure also shows that the difference in the global reward

between COIN and DIRL is almost the same when there

are 5 sensor nodes in the network. This happens because it

is more difficult to conserve energy when there are only a

few sensor nodes, since most of them have to be relatively

active to track the object. However, as the number of nodes

increases, the difference in global reward between the

different schemes also increases significantly. Specifically,

the global reward decreases in all other schemes except for

COIN. This shows that COIN is very effective in managing

system resources as the redundancy and the overall size of

the WSN increases. This is mainly due to the global

feedback received by the sensor nodes participating in the

associated data-stream. The efficiency of COIN is also

apparent in Fig. 12(b), where the related energy con-

sumption decreases when the number of nodes increases.

Instead, the energy usage of the other schemes increases

with the number of nodes, with Simple showing the max-

imum amount.

Figure 13(a) shows the activity ratio. Clearly, COIN has

the lowest activity ratio, closely followed by DIRL,

resulting in the lowest energy consumption. Similar to the

previous figure, the overall activity ratio decreases when

the number of nodes increases for COIN. Finally,

Fig. 13(b) shows the tracking error. In this case, DIRL

obtains a higher tracking efficiency than COIN, especially

when the system changes are very dynamic (i.e., occurring

during a few time steps). In fact, by the time global

knowledge is learned and applied, the system may have

moved to a different state, and this chance is higher when

the motion of the target is fast and unpredictable.

Fig. 11 Performance as a function of the number of targets: a activity

ratio and b tracking error
Fig. 12 Performance as a function of the number of nodes: a global

reward and b energy consumption
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9 Conclusions

We presented a scheme for resource-management in

wireless sensor networks (WSNs) that employs a bottom-

up approach such that each sensor node is responsible

for task selection. This approach is based on reinforce-

ment learning and allows the development of autono-

mous WSN applications with dynamic adaptation,

minimal or no centralized processing for task allocation,

and low communication overhead. In order to ensure that

system is actually meeting the global application goals,

we used a two-tier learning scheme: micro-learning used

by individual nodes to self-schedule their tasks; and

macro-learning used by each data-stream to guide the

system towards application-defined goals. Specifically,

we used the collective intelligence (COIN) theory to

enable macro-learning by setting and updating the

operating parameters of the micro-learners. Simulation

results showed that two-tier learning can substantially

improve the overall performance compared to micro-

learning or macro-learning alone. The application of the

COIN theory guarantees that the Pareto-optimal point is

eventually achieved, and avoids the system to be con-

fined in a local maximum.

As a future work, we are looking into refining the

interactions between micro-learners and macro-learners as

well as the reward distribution, in order to enable private

utilities under more complex application scenarios which

are not limited to data-streams. A complete middleware

framework is under development to support the proposed

resource management scheme including the associated task

interactions and node coordinations. Furthermore, we will

investigate health monitoring applications as they will

benefit from the two-tier approach.
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4. Frank, C., & Römer, K. (2005). Algorithms for generic role

assignment in wireless sensor networks. http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.59.8091; http://www.vs.inf.ethz.ch/

publ/papers/sensys05.roleassignment.ps.

5. Hadim, S., & Mohamed, N. (2006). Middleware challenges and

approaches for wireless sensor networks. IEEE Distributed Sys-
tems Online 7(3), Article no. 0603–o3001.

6. Heinzelman, W., Murphy, A., Carvalho, H., & Perillo, M. (2004).

Middleware to support sensor network applications. IEEE Net-
work 18,(1), 6–14.

7. Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed

diffusion: A scalable and robust communication paradigm for

sensor networks. In MOBICOM (pp. 56–67). doi:10.1145/

345910.345920.

8. J-sim: Component-based, compositional simulation environment.

http://sites.google.com/site/jsimofficial/.

9. Kagan Tumer, D. H. W. (2004). Collectives and the design of
complex systems. Berlin: Springer.

10. Kogekar, S., Neema, S., Eames, B., Koutsoukos, X., Ledeczi, A.,

& Maroti, M. (2004). Constraint-guided dynamic reconfiguration

in sensor networks. In: Proceedings of the 3rd international
symposium on information processing in sensor networks (IPSN-
04) (pp. 379–387). New York: ACM Press.

11. Krishnamachari, B., Wicker, S. B., Béjar, R., & Fernández, C.
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