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 

Abstract— This paper proposes a probabilistic framework for 

optimal demand response scheduling in the day-ahead planning of 

transmission networks. Optimal load reduction plans are 

determined from network security requirements, physical 

characteristics of various customer types and by recognising two 

types of reductions, voluntary and involuntary. Ranking of both 

load reduction categories is based on their values and expected 

outage durations, whilst sizing takes into account the inherent 

probabilistic components. The optimal schedule of load recovery 

is then found by optimizing the customers’ position in the joint 

energy and reserve market, whilst considering several operational 

and demand response constraints. The developed methodology is 

incorporated in the sequential Monte Carlo simulation procedure 

and tested on several IEEE networks. Here, the overhead lines are 

modelled with the aid of either seasonal or real-time thermal 

ratings. Wind generating units are also connected to the network 

in order to model wind uncertainty. The results show that the 

proposed demand response scheduling improves both reliability 

and economic indices, particularly when emergency energy prices 

drive the load recovery. 

 
Index Terms— Optimal demand response, reliability, 

sequential Monte-Carlo, real time thermal rating, risk 

NOMENCLATURE 

The symbols used throughout this paper are defined below.  

A. Indices 

j Index of generating units running from 1 to J 

i Index of load points running from 1 to N 

s Index of load types running from 1 to s4 

t Index of hours running from 1 to T 

y Index of simulation days running from 1 to Y 

B. Parameters 

s

iVOLL  Value of lost load at load point i and load type s  

ˆ
iBEDI   Normalized value of expected duration 

interruption index in the base case 
s BASE

iD   Duration of interruption of load type s at load 

point i under the base case  
max

gP  Maximum power output of a generation unit 

min

gP  Minimum power output of a generation unit 
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max

dP  Maximum forecast load 

,maxs

iVL  Upper limit of the voluntary load reduction for 

customer type s 
,maxs

iIVL  Upper limit of the involuntary load reduction for 

customer type s 

B  System matrix including potential contingencies 

win  Per unit window for load reduction sampling  

rs  Random number between {0,1} 

MAXt   Maximum hour limit of load recovery  

s

RECf    Customer’s availability to recover the load  

ciV  Cut in wind speed 

rV  Rated wind speed 

coV  Cut out wind speed 

rP  Rated power output of wind turbine 

 cT t  Conductor temperature at hour t 

 R t   AC conductor resistance at operating temperature 

Tc at hour t 

 cP t  Convection heat loss at hour t 

 rP t  Radiated heat loss at hour t 

 sP t  Solar heat gain at hour t 

 I t  Conductor current at hour t 

( )mV t  Wind speed at hour t 

( )angleK t  Wind direction at hour t 

( )aT t  Ambient temperature at hour t 

C. Variables 

 jPg t   Active Power output of generation unit j at hour t 

  Phase angles of nodal voltages 

( )i t   Nodal marginal price of load point i at hour t 

( )s

i t  Slope coefficient for load recovery at node i, type 

s, hour t 
max

fP   Overhead line real-time thermal rating 

( )d iP t  Power supplied to load point i at hour t 

( )s

i t  Marginal offer value for voluntary load reduction, 

load type s at load point i at hour t 

( )s

iVL t   Amount of voluntary load reduction of load type s 

at load point i at hour t  

( )s

iIVL t   Amount of involuntary load reduction of load type 

s at load point i at hour t  
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( )s

iD t  Duration of interruption of load type s at load 

point i at hour t 

 s

iPc t  Total load shedding of load type s at load point 

i at hour t  

( )s
REDf t  Load type s availability to respond to a demand 

response call at hour t  

( )s
iCVL t  Contracted voluntary load reduction of load 

type s at load point i at hour t 

D. Functions 

( )jGR    Revenue of generator j 

( )iLC     Cost of delivered demand at node i 

( )iVLR  Revenue for voluntary load type s reduction at 

node i 

( )iIVLR  Revenue for involuntary load type s reduction 

at node i 

ˆ ( )s

iR    Ranking order for load type s at node i 

( )   
s

i
   Size of load reduction for load point i type s 

    
s

i
   Size of load recovery for load point i type s 

( )s

iSavings  Customer savings for load point i type s in the 

event that demand response materiliazes 

 s
payback iC  Payback cost due to load recovery at node i 

type s 

( )s
i  Profit of load customer at load point i type s 

( )NR

aVaR  Value at risk for network rewards at confidence 

level α 

VaR
NC

1-α Value at risk for network costs at confidence 

level 1-α 

( )P  Wind turbine power output for wind speed Vm 

I. INTRODUCTION 

HE ever increasing integration of intermittent renewable 

energy into the electricity network, combined with a 

constantly growing demand, is likely to cause much greater 

stress on existing networks increasing the probability of severe 

contingencies [1]. To avoid this, several preventive and 

corrective actions, including demand response (DR), spinning 

reserve scheduling, application of real-time thermal ratings 

(RTTR) and energy storage scheduling, can be deployed to 

relieve stress in particular areas of the network.  

DR strategies currently under investigation consider 

distribution level [2,3], but their potential in transmission 

networks is often overlooked. Research related to the impact of 

DR on network reliability is very limited [4, 5, 6]. The model 

proposed in [5] evaluates short term operational benefits in 

terms of generation and interrupted energy costs from 

interruptible loads by using the contingency enumeration 

technique; however, it does not fully address the customer 

perspective because there is no modelling of load recovery and 

associated costs, characteristics of different load and DR types 

and probabilistic nature of available interruptible demand. 

Even if a probabilistic approach is used to assess the DR 

contribution [6], only single contingencies are analysed. 

Physical characteristics of different types of load customers 

need to be adequately represented in the studies. Domestic and 

small commercial loads are analysed in [7-9] but fail to assess 

how critical each customer type is for a network’s load point in 

terms of interruptions. Next, examining different sizes and 

shapes of both load reduction and recovery is essential for a 

complete and accurate network assessment; however, load 

recovery is usually ignored in the studies [4]. Load reduction 

and recovery can be based on electricity market prices in order 

to eliminate price spikes during peak hours [4,10]. However, 

these studies often ignore operational and security constraints 

of the transmission networks and are performed for intact 

networks only. Enumeration techniques, as opposed to Monte 

Carlo simulation, are often used to calculate the DR 

contribution, and thus fail to include the whole set of 

contingencies and a number of uncertainties a network might 

experience [11]. Finally, instead of applying DR every time a 

contingency occurs, DR should only be used when the 

reliability is improved and when savings are higher than the 

expected payback costs. 

This paper proposes a probabilistic approach for optimal 

demand response scheduling in the day-ahead planning of 

transmission networks. Uncertainties related to forecast load, 

network component availability, available amount of demand 

response and wind speeds are incorporated into the sequential 

Monte Carlo simulation framework. Synchronous and wind 

generating units, as well as four types of load customers (large, 

industrial, commercial and residential) are modelled. Optimal 

nodal load reductions are calculated using the optimum power 

flow model, and are then dissagregated into voluntary and 

involuntary components. Recognizing that directly-controlled 

loads can certainly be shed and indirectly-controlled loads 

contain a probabilistic component that can affect the shedding, 

then optimal amounts of voluntary and involuntary nodal 

reductions can be determined using these principles. Different 

load recovery profiles for customer types are considered next 

within ‘payback periods’ and they are initiated when the load 

customer’s revenue is highest. Here, delivered load is priced at 

nodal marginal price, voluntary load reduction at marginal 

offer price and involuntary load reduction at damage cost.  

The whole modelling is implemented from the load 

customer’s perspective to maximise their revenues, whilst the 

load recoveries are controlled by the transmission system 

operator (TSO); they may represent either physical paybacks 

from specific appliances or controlled paybacks whereby the 

TSO schedules its customer loads so as to have the desired 

shape. In addition, a ‘real-time’ thermal rating model of 

overhead lines (OHL) is also implemented to furhter increase 

TSO’s flexibility and reveal the true potential of the DR. The 

outputs of the model also include financial risk quantifiers as 

thresholds for minimum revenues, or maximum costs. 

II. OVERVIEW OF THE METHODOLOGY 

Optimal DR scheduling is determined using the sequential 

Monte Carlo probabilistic approach. The main features of the 

T 
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proposed DR modeling framework are: a) Load reduction 

scheduling driven by network security; b) Optimal scheduling 

of load recovery using economic criteria; c) Modelling of real-

time thermal ratings of overhead lines; and d) Modelling of 

renewable energy sources, such as wind generation. 

The overall methodology is realized within two independent 

sequential Monte Carlo simulation (SMCS) procedures. The 

first SMCS is the initialization module, which is used to 

calculate several components required by the second SMCS 

that determines optimal day-ahead operation of the power 

system. The main building blocks of the first SMCS procedure 

are: a) Calculation of reliability indices needed for ranking of 

load types for demand reduction; b) Calculation of real-time 

thermal ratings of overhead lines; and c) Determination of 

nodal marginal prices and several economic indicators used for 

finding the optimal schedule of load recoveries. 

The second SMCS consists of four modules: a) The demand 

reduction scale module; b) The load recovery scale module; c) 

The demand reduction and load recovery (DRLR) control 

module, and d) The outputs module. The first module contains 

ranking of different load types for demand reduction, 

calculation of required amounts of voluntary and involuntary 

DR, as well as the customer revenues. The load recovery scale 

module considers load recovery profiles and sizes, and 

determines a matrix with the most appropriate schedule hours 

for load recovery. The DRLR-control module contains logics 

for initiation of load reductions and load recoveries, whilst the 

outputs module includes optimal load reduction and recovery 

schedules, as well as reliability and financial indicators. 

III. METHODOLOGY 

The proposed demand scheduling methodology is aimed at 

determining the optimal demand response plan for the next 

day, when the committed generation units, status of network 

switching devices and forecast loads are well defined. 

However, several uncertainties in the day-ahead operation are 

still present, so that the overall problem is formulated as a 

probabilistic model and solved with the SMCS. The proposed 

DR methodology is applied for post contingency states; 

however it is general enough to also consider pre-contigency 

events. The main building blocks are described below. 

A. Sequential Monte Carlo Simulation 

SMCS simulation performs analysis of time intervals in 

chronological order whilst taking into account various 

uncertainties [11]. It can model the chronological phenomena, 

such as load reduction and recovery, real-time thermal ratings 

and wind generations. The following uncertainties are assumed 

for a day-ahead operation of the transmission network: 

 Load varies in a window around the forecast hourly loads. 

The uncertainty window is defined by the Mean Absolute 

Percentage Errors (MAPE) of the short-term forecast by 

hourly intervals obtained using the neural network 

approach [12]. 

 Availability of all generation and network units was 

modelled with the aid of two-state Markovian model with 

exponentially distributed up and down times [11]. 

 Hourly wind speed predictions and a window around the 

predicted values are applied within the random sampling. 

An alternative approach is to use wind speed probability 

distribution functions (PDFs) by hourly periods. 

 The amount of voluntary load reduction that varies by 

customer and DR type. For example, DR from residential 

customers responding to price signals is highly uncertain, 

whilst DR from incentive-based contracted commercial 

customers has much less uncertainty – see section III.D. 

One SMCS period is equal to 24 hours and simulations are 

repeated until convergence is obtained. Any failure that goes 

over the planning horizon (i.e. 24:00) is considered in the ‘next 

day’ simulation. The same simulation principles were applied 

in both SMCS procedures. 

B. Initialization Module 

The initialization module is used to calculate several 

quantities required by the main simulation loop. Following the 

data input, the network model with real-time thermal ratings 

and load customer characteristics is built and fed into the first 

SMCS procedure, as shown in Fig. 1. The outputs from this 

stage are some pricing and reliability indicators. 

a) Input data 

The input data include network, reliability, customer, 

economic data, overhead line (OHL) data and weather data. 

Beside the standard network data, forecast in-service 

generation units with technical characteristics and 

chronological hourly load point demands are input. Reliability 

data are failure rates and repair times of all components, whilst 

customer data encompass customer and DR types, contracted 

voluntary load reductions, normalized load recovery profiles 

and customer availability to respond to a DR call. Essential 

economic data are generation costs, values of lost load (VOLL) 

and marginal offer prices for voluntary load reduction. 

Average VOLL data by customer types were obtained from the 

latest UK national study [13]. 

Weather data include ambient temperatures, wind speeds 

and directions required for the calculation of RTTRs of OHLs, 

as well as either forecast hourly wind speeds or hourly wind 

speed PDFs used to calculate wind generations. OHL data 

include conductor design properties and environmental 

parameters required for the RTTRs.  
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Fig. 1: Computations within the initialization module 
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The input data are fed into the thermal ratings and network 

modelling modules, whose outputs are then used by the SMCS 

procedures. 

b) Thermal Ratings of Overhead Lines 

Two different OHL rating models are used in the developed 

simulation procedures, the seasonal thermal rating (STR) and 

the RTTR. The STR is defined by seasons that allow for the 

different maximum conductor operating temperatures [14]. The 

lowest ratings are for summer conditions and design 

temperature of 50
0
C [15]; they are of conservative nature. 

RTTR calculations are based on a time-varying thermal 

rating analysis performed on an hourly basis. The analysis 

considers the steady-state thermal equilibrium achieved within 

each hourly period. The thermal balance model described by 

IEEE [15] is implemented and equates heat dissipated by 

convection and conductor radiation with solar and Joule heat 

generated. In the applied IEEE model, the convection heat loss 

varies with the change in wind speed (Vm), wind direction 

factor (Kangle) and the difference between the conductor (Tc) 

and ambient air temperature (Ta). The radiation heat loss is the 

energy of the electromagnetic waves emitted to the ambient 

space; it is a function of the temperature difference between 

the conductor and air, and the emissivity of the conductor. The 

solar radiation is a function of several parameters including 

solar azimuth, total radiated heat flux rate, etc. Finally, Joule 

(I
2
R) losses are calculated in the standard way using AC 

resistance dependent on conductor temperature, so that the 

RTTR of OHLs is determined as: 

  ( ( , , , ) ( , ) ) ( )c c a angle m r a c s cI P T T K V P T T P R T    (1) 

where Pc(·) is the convection heat loss, Pr(·) is the radiated heat 

loss, Ps is solar heat gain and R(Tc) is the conductor resistance 

at operating temperature Tc. The conductor temperature needs 

to be set to one of the standard design values (i.e. 50
o
C, or 

65
o
C, or 75

o
C) to get the OHL ampacity; an increased value 

can be used during system emergencies. 

The hourly average values of 5-year weather data were 

obtained from the BADC MIDAS meteorogical stations for 

Aonach, UK [16]. 

c) Analysis within the SMCS Procedure 
 

The initialization module is used for two puposes; the first is 

to determine the base expected duration interruption (BEDI) 

index of loads needed for ranking of loads within the demand 

reduction scale module. The second is to compute the 

probabilistic energy nodal prices used within the DRLR-

control module to find the optimal load recovery strategy. The 

probabilistic nodal prices at different confidence intervals α are 

further analysed to make decision about the most appropriate 

load recovery times. 

Each hour within the simulation period is characterized by 

available generating units, transformers and circuits, as well as 

nodal loads and operational constraints. An optimum power 

flow (OPF) model is solved to find the levels of voluntary and 

involuntary load reductions and revenues to generator and 

demand customers. The formulation of the OPF model is a 

modification of the market-clearing model proposed in [17]; 

the main difference is that there is no preventive control and 

corrective scheduling is applied to the already sampled 

contingent case. The mathematical equations of the model are: 

g j

j J

Min C
    

 
     

 
  s s s s

g j i i i i

i I s S i I s S

P VOLL IVL VL  (2)  

subject to:                    0  g dP P B                (3) 

 

                     fP H                      (4)  

 

 
max max  f f fP P P                    (5) 

 

   
min max  g g gP P P              (6) 

 
,max0  s s

i iVL VL            (7) 

 
,max ,max0   s s s

i i iIVL IVL VL                         (8)  

 

     
max max    s s

d d ds s
P IVL VL P P          (9) 

The objective function to be minimized (2) is the sum of the 

offered cost functions for generating power plus the sum of the 

cost of involuntary load reduction for all load nodes and types 

plus the sum of offered costs for voluntary load reduction for 

all load nodes and types. The involuntary load reduction is 

valued at VOLL that is dependent on the general load type; 

dependency on the connection node is taken into account 

because there may exist special loads whose curtailment must 

be avoided. Voluntary load reduction is priced at the rates 

offered by consumers to provide this service. They are closely 

linked to the offers made by generators for the ‘up-spinning 

reserve’ in the joint energy and reserve market [17]. It is again 

envisaged that the rates can vary with customer type and 

connection location. Finally, note that the time index t is 

omitted for simplicity. 

Using a dc load flow model, constraints (3) represent the 

nodal power balance equations for the considered state, which 

includes potential contingencies within the system matrix B. A 

Lagrange multiplier (or dual variable) µi is associated with 

each of the equations. Constraints (4) express the branch flows 

in terms of the nodal phase angles, while constraints (5) 

enforce the corresponding branch flow capacity limits. Here, 

modelling of OHL ratings can be done using the RTTR model, 

in which case limit Pf
max

 is a function of the time step t. 

Constraints (6) set the generation limits for the considered 

state, while considering available units and requirements for 

the down- and up-spinning reserve in the analysed time step 

[17]. Reserve requirements depend on the system load and 

contingency state [17]. For the non-controllable units, such as 

wind turbines, upper and lower limits are the same. 

Constraints (7), (8) and (9) set the limits of the demand; they 

are expressed as inequality constraints on the voluntary and 

involuntary load reductions and the total delivered load. The 

upper limit of the voluntary load reduction ,maxs

iVL can contain 

a probabilistic component for some DR types, which is 

dependent on the considered time step. As a consequence, the 

upper limit of the involuntary load reduction is the difference 

between the absolute limit ,maxs

iIVL  and the voluntary load 
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reduction limit ,maxs

iVL . Finally, the delivered demand Pd is 

equal to the forecast load in the considered time interval Pd
max

 

if there is no load reduction. The lower limit is specified in 

terms of the forecast load, voluntary and involuntary load 

reductions, which are a part of the optimal solution.  

Solving the optimization model (2) to (9) gives the optimal 

values of the unknown variables, as well as dual variables 

associated with the constraints of this problem [18]. The 

signifance of the dual variables is dicussed below. 
 

d) Nodal Marginal Costs 

The optimal solution of the problem (2) to (9) is equal to the 

optimal solution of the corresponding dual problem whose 

unknowns are dual variables associated with the constraints 

(3) to (9) [18]. The objective function of the dual problem is a 

sum of products of the dual variables and the right-hand sides 

of the constraints, showing that the total optimal cost can be 

recovered in another way using the dual variables as charging 

rates. The dual variables represent the additional cost of 

changing the right-hand side of the constraints by unity; they 

are therefore called marginal costs or prices [19]. 

Dual variables µ are the nodal marginal costs of meeting the 

power balance at each system node for the considered 

operating regime. The nodal marginal costs have been 

extensively used for electricity energy and reserve pricing [6, 

9, 20]. The nodal marginal prices vary over the system nodes 

and during the day due to load variation and congestion in the 

system [21]. The greatest variation of marginal prices is 

experienced due to unexpected failures of lines and/or 

generator units [6]. Consequently, these prices should be 

carefully considered for the load recovery scheduling.  

In our approach, we have applied a concept similar to the 

real time pricing scheme proposed in [22]. The following 

quantities are calculated in each time step t:  

 The revenue of generator j: 

 ( ) ( ) ( ) j j jGR t Pg t t           (10) 

 The cost of demand i delivery: 

 ( ) ( ) ( )i d i iLC t P t t                (11) 

 Revenue for voluntary load i reduction: 

    
4

1

( ) ( )


 
s

s s

i i i

s

VLR t t VL t        (12) 

 Revenue for involuntary load i reduction: 

4

1

( ) ( ( ))


 
s

s s

i i i

s

IVLR t VOLL IVL t          (13) 

We have defined VOLL by load types in the initialization 

module, as presented in equation (13). However, in the second 

SMCS there is an option to use a look-up table where VOLLs 

are functions of interruption duration [23]. The interruption 

duration is estimated as: 
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Fig. 2: Optimal demand response computational framework 

 

   

 

,

,

 
 



s BASE s s BASE

i i is

i
s s s BASE

i i i

mean D if D mean D
D

D if D mean D
           (14) 

where 
s BASE

D
i

 denotes the interruption duration calculated in 

the initialization module. The estimated duration of 

interruption is equal to the mean base value unless the 

interruption already lasts for more than the base value; it then 

takes the actual duration value. 

C. Optimal Demand Response Scheduling 

The computational framework for optimal demand response 

scheduling is illustrated in Fig. 2. The load reduction and 

recovery scale modules feed into the DRLR control module. 

Ranking of different load types and calculation of available 

sizes for voluntary load reduction is performed within the load 

reduction scale module. The order of ranking the load points 

and types is represented by r(i,s) in Fig. 2. Hence, in the load 

reduction matrix, if load reduction takes place at hour t1 the 

load reduction of r1(i,s)  customer will be evaluated first, while 

the rk(i,s) customer will be evaluated at the end.   

The load recovery scale module computes the most 

appropriate schedule hours for load recovery, as well as the 

potential recovery sizes and profiles. The order of ranking the 

load points and types is represented by rc(i,s) in Fig. 2. Hence, 

in the load recovery matrix, if load recovery takes place at hour 

t1 the load reduction of rc1(i,s)  customer will be evaluated first, 

while the rck(i,s) customer will be evaluated at the end. Both 

load reduction and recovery are managed by the DRLR control 

module in which the OPF is used to detertmine optimal 

voluntary and involuntary load reductions, and the developed 

control scheme gives the optimal load recovery profiles. The 

outputs module finally gives optimal DR and LR schedules, as 

well as financial and reliability indicators. 
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D. Load Reduction Scale Module 

Load reduction scale module is required for each load point 

and load type when load shedding takes place at the considered 

hour tRED. The physics of demand response are presented first, 

which is followed by the ranking and sizing. 

Four load types, industrial, commercial, large user and 

residential, have been defined in our approach. Different 

characteristics have been associated with these four types, such 

as temporal load variations, total amounts available for 

voluntary and involuntary load reductions, relative load 

recovery profiles and economic data. Two categories of 

demand response have been recognised, namely direct and 

indirect load control [24]. In direct load control, the contracted 

customers (usually large and industrial) are directly 

disconnected during emergency conditions and they receive 

revenue for participating in the ‘reserve market’ [25]. The 

contracted amounts are certain and they are of deterministic 

nature. In indirect load control, incentive- and price-based 

demand responses can be distinguished. The former group 

refers to the customers contractually incentivised to curtail 

load during system emergencies [26,27]. This category can be 

considered semi-probabilistic; we have used sampling within a 

window around the contracted value. Finally, in price based 

demand response customers move their consumption from 

periods of higher to periods of lower prices. This demand 

response is a probabilistic quantity which can vary from zero 

up to the estimated maximum amount. 

Load ranking at each node i and for each load type s at the 

considered hour tRED is based on the financial implications of 

reducing the load. The ranking order is a product of the 

normalized value of the base expected duration interruption 

index (BEDIi) calculated in the initialization module, the 

normalized marginal offer price ˆ s

i  for voluntary load 

reduction or customer interruption cost s

iVOLL for involuntary 

load reduction, and the required load shedding s

iPc . This is 

shown in relations below: 

ˆ ˆ ,
ˆ ( )

ˆ ,

  
 

 

s s

i i is

i RED s s

i i i

BEDI Pc voluntary load
R t

BEDI Pc VOLL involuntary load


     (15) 

4

1 1 1  

 
sY T

s s BASE

i i i

y t s

BEDI D Y        (16) 

Relation (15) shows how independent ranking lists for 

voluntary and involuntary load reductions can be built. 

Ranking of all ‘voluntary customers’ is based on submitted 

marginal offer prices, which can be normalised with the 

average price of up-spinning reserve in the energy-reserve 

markets [17]. On the other hand, involuntary load reductions 

are ranked using VOLL. The VOLL is defined either by load 

types, or customer damage functions are used; it is normalised 

using the average VOLL in the entire GB [13]. The base 

expected interruption index BEDIi is found from the number of 

interruptions s

i  having duration s BASE

iD  across the entire 

simulation period. 

The total required amount of load reduction s

iPc  is 

determined from the OPF model and it consists of voluntary 

and involuntary components. When considering industrial and 

large customers under the direct load control, it was assumed 

that available voluntary load reduction is equal to the 

contracted voluntary reduction ( s

iCVL ). Then the (part of) 

voluntary load reduction is: 

 (
( ) , ( ) ( )

( ) , ( )
)

( )


 

 





 

s s s

i i i

s s s

i i

Ei
i

s

R D

Pc t if Pc t CVL t

CVL t if Pc t L t
t

CV
         (17) 

Available voluntary load reductions from industrial and 

commercial incentivised customers and residential customers 

contain a probabilistic component that can be determined using 

random sampling. It is calculated using the availability factor 
s

REDf : 

 
1 ( 1) , &

,

 
 


s

RED

rs win industrial commercial
f

rs domestic customers
      (18) 

where rs is a random number generated from the uniform 

distribution between {0,1} and win is the per unit window. In 

case of incentivised (industrial and commercial) customers, the 

available amount is based on average probability that the 

contracted amount is available; for example, if the probability 

is 0.9 then win=0.2. Residential customers respond to price 

signals and the uncertainty window is the entire available 

range. The available voluntary load reduction is then calculated 

by multiplying the availability factor (18) and the contracted 

value ( s

iCVL ) in case of incentivised industrial and commercial 

customers, or estimated maximum load reduction of residential 

customers. 

After having obtained available voluntary load reductions 

for all types of customers s at node i, the total voluntary and 

involuntary load reductions are calculated using the ranking 

order and a relation similar to expression (17). The minimum 

amount of involuntary load reduction is always used to meet 

the network security constraints. 

E. Load Recovery Scale Module 

This module determines the amounts of potential load 

recoveries in the period following load reduction in time slot 

tRED. The actual load recovery is determined in the DRLR 

control module using the hourly nodal marginal prices. 

Load recovery profiles can be very different for the 

considered customer types, and moreover, for different 

customers within a single group; a good example is industry 

[28]. We applied a general normalized load recovery profile of 

triangular shape, which is modelled by two straignt lines in 

disrete form. The upward line models load pick-up after the 

customer reconnection, whilst the downward line brings it 

back from the ‘overshot point’ to the pre-disconnection value. 

The discrete modelling is done using the upward/downward 

slope coefficients in consecutive time intervals. 

The amount of load recovery at time period tREC+t, 

( )   
s

RECi
t t , is computed by using the following expression: 

( ) ( ) ( )             
s s

s s

REC RED i REC RECi i
t t t t t f        (19) 
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where ( )  
s

REDi
t  is amount of load reduction of load type s at 

node i, ( )s

i RECt t is upward or downward slope coefficient 

and s

RECf  is the availability factor of type s load recovery. This 

factor was introduced because not all customers may come 

back when supplies are restored or signalled [29]. In the 

current approach, availability factors 
RECf are deterministic 

quantities defined by customer types and network nodes. It is 

also worth noting that the load recovery can be higher than the 

amount of the initial load reduction [28]; the slope factors can 

take values greater than unity. 

Modelling of load recovery profiles over a specified time 

period introduces additional complexities in the developed 

SMCS methodology. Each time a load recovery is initiated, the 

corresponding nodal load needs to be modified over a specified 

period in line with the load recovery profile. Besides, a record 

must be kept of all load recoveries at different time steps, 

because they cannot be considered for further load reduction. 

This is reflected in the next DRLR module. 

F. Demand Reduction Load Recovery Control Module 

The DRLR control module is used to control the initiation of 

load reductions and recoveries and to produce their optimal 

schedules within the forecast 24 hourly period. The control 

principles are listed below: 

 Loads whose recovery process is underway cannot be 

considered for load reduction. 

 Loads eligible for load reduction will not be disconnected 

if there is no improvement in the energy-not-served 

following the load reduction. 

 Only those loads, whose reduction including recovery 

generates revenue to the customers, will be actually 

disconnected and reconnected. 

 The best timing of load recovery is determined using the 

(forecast) nodal marginal prices over the recovery period. 

When the OPF analysis has generated non-zero load 

curtailments, then the loads which are not a part of previous 

load recoveries are ranked and the sizes of voluntary and 

involuntary reductions are determined. The first load reduction 

from the ranking list is applied and is checked with the aid of 

the OPF whether the total energy-not-served has reduced. If 

this is the case, the nodal customer profits are computed based 

on the savings acquired due to the load reduction and the 

projected payback cost due to the load recovery. The optimum 

load recovery always takes place when the nodal marginal 

prices are ‘low’ over the recovery window. If the load 

customer projected profit is negative, the load reduction is not 

activated even if the reliability of the network might improve. 

Calculation of customer savings, costs and profits is 

presented below. 

a) Customer Savings 

The customer savings incurred during load reduction are the 

consequence of reduced load payments to the generators. 

These payments are valued at nodal marginal prices  i t , as 

shown in equation (11), which are in turn dependent on the 

considered regime. The customer savings are therefore 

calculated from two OPF runs: the first without load reduction 

and the second with load reduction. The change in load 

payments, ΔLC, represents the customer savings at tRED:  

( ) ( ) ( )  s s NO DR s DR

i RED i RED i REDLC t LC t LC t           (20) 

The total savings are then found for the entire interval when 

the load reduction is in place: 

         ( ) ( )


 
REC

RED

t
s s

i RED i

t t

Savings t LC t                 (21) 

b) Payback Costs 

If customer savings are positive then the algorithm proceeds 

to the load recovery stage to project the optimal load recovery 

schedule. The optimization is based on the following 

principles: 

 Load recovery is always scheduled after the corresponding 

load reduction and it can continue into the ‘following’ 

simulated day. There are periods within a day when the 

load recovery does not take place; for example between 

12am and 5pm on weekdays for residential customers. 

 Load recovery blocks due to involuntary load reduction 

are always committed before voluntary load recovery 

blocks. They are prioritized based on their VOLL; where 

the VOLL is the same, ranking is based on the size of load 

reduction, the largest loads being reconnected first. 

Similar criteria are applied to voluntary load reductions, 

where marginal offer prices are used instead of VOLL. 

 Optimal timing of load recovery is determined by finding 

the weighted average of (base) nodal marginal prices over 

the recovery window. The weights are equal to the slope 

coefficients ( )s

i RECt t of the normalized recovery profile. 

The window with the smallest average nodal marginal 

price is selected for the load recovery. This approach is 

the best for load customers, because they will be exposed 

to the least additional payback cost. 

 After having determined the optimal starting hour of load 

recovery, it will only be materialized if there will be no 

new load curtailments within the recovery window. This is 

checked by running OPF over consecutive time periods 

within the recovery window; where curtailments occur, 

the next best recovery window is examined and so on. 

The payback costs due to the selected optimal load recovery 

schedule are again computed from two OPF runs in each time 

step within the recovery window. Since load recovery 

increases the amount of load, additional cost ΔLC is calculated 

as the difference between costs with and witout load recovery 

over the load recovery period tREC to tMAX: 

 

       ( ) ( ) ( )  s s DR s NO DR

i REC i REC i RECLC t LC t LC t       (22) 

 ( )


 
MAX

REC

t
s s

ipayback i
t t

C LC t                             (23) 

c) Customer Profits 

The total customer profit ( )s
i REDt  needs to account for 

savings due to reduced load, costs due to load recovery, as well 
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as rewards for voluntary and involuntary load shedding. This is 

summarised in the equation below: 

   ( )
 

    
REC REC

RED RED

t t
ss s s s

i RED i i ipayback i
t t t t

t Savings C IVLR t VLR t (24) 

Only load customer with a positive profit ( )s
i REDt  evaluated at 

time tREC proceeds into the DR strategy. The analysis continues 

until the convergence criterion on expected energy not served 

is met. After having completed the SMCS procedure, the 

algorithm goes straight to the outputs module. 

G. Outputs Module 

The outputs module generates several results related to the 

load reductions, nodal prices, generation outputs, reliability 

and financial indicators. These are briefly discussed below. 

a) Optimal Load Reductions and Recoveries 

PDFs of voluntary and involuntary load reductions by load 

types and/or nodes are calculated for each hour in the 24-

hourly period. These can be directly converted into energy not 

served PDFs. The corresponding mean and percentile values 

show the ‘likely’ distributions in the next 24-hourly period. 

PDFs of daily totals are also computed. Besides, conditional 

PDFs of the load recovery initiation times given the load 

reduction at certain hour are also produced.  

b) Generation Outputs 

PDFs of generator hourly productions and costs, as well as 

total daily costs are computed. 

c) Nodal Marginal Prices 

PDFs of nodal marginal prices are produced for each hour in 

the considered 24-hourly period. Their expectations can be 

used as an indicator of what the prices for rewarding 

generation and charging load customers would be the next day. 

d) Reliability Indices 

Reliability indices relating to energy not served as well as 

frequency of customer interruptions and duration of 

interruptions are computed. For example, expected energy not 

supplied (EENS), expected frequency of interruptions (EFI) 

and expected duration of interruptions (EDI) are calculated as: 

4

1 1 1 1   


sY T N

s

i

y t i s

EENS Pc Y , 
4

1 1 1 1   


sY T N

s

i

y t i s

EFI Y            

        
4

1 1 1 1   

 
sY T N

s s

i i

y t i s

EDI D Y                (25) 

e) Financial Indicators 

PDFs of load customer payments (LC), voluntary (VLR) and 

involuntary load reduction rewards (IVLR) are computed by 

hours and for the considered day. The latter curves are then 

used to quantify the financial risk of implementing the 

proposed demand response scheduling. The concept of value-

at-risk (VaR) [30] was applied to measure the potentially ‘low’ 

revenues or ‘excessive’ payments. 

TABLE I 
CONDUCTOR PROPERTIES MODELED IN IEEE-RTS NETWORK 

NAME Rac 

(Ω/Km) 

Configuration SNORM 

(MVA) 

SEM-LONG 

(MVA) 

Dove 
(138kV) 

0.1003 @ 25°C 
0.1270 @ 75°C 

Single bundle 
95 

[60°C] 

138 

[75°C] 

Hawk 

(230kV) 

0.1154 @ 25°C 

0.1225 @ 75°C 
Twin bundle 

308 

[60°C] 

365 

[75°C] 

Assuming network reward (NR) denotes any category of 

revenues, the corresponding cumulative distribution function 

(CDFNR) is used to calculate the network reward NRX that 

exceeds the network reward at the confidence level α, NRa, 

with probability 1 – α. The value at risk is [31]: 

( ) inf{ R : ( ) }  NR

a X NRxVaR NR NR CDF NR       (26) 

Similarly, the CDF of any network cost (NC) can be used to 

determine value-at-risk at confidence level α. In this case, 

network cost NCX that does not exceed the network cost at 

probability 1 – α, NC1-a , is calculated as: 

     1 1 1( ) sup{ : ( ) 1 }     NC

a X a NCx aVaR NC NC R CDF NC     (27)  

IV. BULK ELECTRIC POWER SYSTEM  

This section describes some practical aspects of the 

ampacity calculation of OHLs, modelling of wind farms, as 

well as the designed case studies. 

A. Thermal Ratings of Overhead Lines 

The IEEE-RTS 96 test system does not provide any OHL 

data required for the hourly RTTR calculations. A simple 

ACSR technology is assumed with conductor sizes that 

provide similar ratings to those in the IEEE-RTS 96 system 

with AAAC and ACSR conductors. Table I provides the 

information on the conductors used in the analysis. Under 

normal operation conductor temperature, Tc, is set to 60
o
C. A 

line is considered in emergency state when another 

transmission line connected at the same bus fails. The 

maximum conductor temperature in emergencies is set to 75
o
C 

based on avoidance of the conductor annealing [32]. 

B. Integration of Wind Farms 

The power output of a wind turbine generator (WTG) is 

driven by the wind speed and the corresponding relationship is 

nonlinear. It can be described using the operational parameters 

of the WTG, such as cut-in, rated and cut out wind speeds. The 

hourly power output is obtained from the simulated hourly 

wind speed using the relations [33]:  

 2

0 ,0

,
( )

,

0 ,

m ci

m m r ci m r

m

r r mt co

m co

V V

A B V C V P V V V
P V

P V V V

V V

  
 

       
  

  
  

(28) 

where Pr, Vci, Vr, and Vco are, respectively, rated power output, 

cut-in wind speed, rated wind speed and cut-out wind speed of 

the WTG, whilst Vm is simulated wind speed at hour t. The 

power output constants A, B and C are determined by Vci, Vr, 

and Vco, as shown in [33]. All WTG units used in this study are 

assumed to have cut-in, rated, and cut-out speeds of 14.4, 36, 

and 80km/h, respectively. The failure rates and average repair 

times are assumed to be two failures/year and 44 hours. 
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C. Case Study Description 

OHL thermal ratings are modelled as STR or RTTR, as 

shown in Table II below. Three seasons (winter, summer and 

fall),denoted as λs=1, 2, 3, are studied. The first day of the 50
th

 

peak week of the year is used for winter (hours: 8425-8449); 

the 2
nd

 day of the 22
nd

 week of the year is used for summer 

(hours: 3721-3744) and the 2
nd

 day of the 32
nd

 week is used for 

fall (hours: 5401-5424). Availability factor s

REDf  is a random 

number, whilst availability factor for load recovery s

RECf  varies 

in the specified range. Load recovery is based on either hourly 

emergency energy prices (i.e. ϑREC=1) or load profiles (i.e. 

ϑREC=0). The presence of wind generators is denoted by wg=1. 

Eight scenarios are described in Table II. Scenario S1 is the 

base case, where the system is evaluated without DR 

scheduling and with STR for OHLs. Scenario S2 models load 

recovery by using the hourly load curve at each load point 

(ϑREC=0). Scenario S3 models all seasons and load recovery on 

the basis of expected marginal prices at each load point 

(ϑREC=1). Scenario S4 models time-varying load recovery 

profiles. Sensitivity studies are done here in order to assess the 

impact of different recovery sizes and profiles on DR 

performance. Factor s

RECf  is set from 0 to 1.2pu increasing in 

0.2pu increments; the 1.2pu is taken as a high-risk scenario. 

Scenario S5 incorporates the RTTR of OHLs without DR 

operation, while Scenario S6 includes the DR scheduling. 

Finally, Scenario S7 incororates wind farms without DR, while 

in Scenario S8 the benefits of demand response are evaluated 

incorporating wind generation (wg=1). 

The original IEEE-RTS 96 was modified: all scenarios 

assume an increase in load by 1.2pu compared to the original 

load, as well as increase of 0.55pu and 0.6pu transmission 

capacity for the 138kV and 230kV levels, respectively, and 

1.2pu in generation capacity. Next, the WTGs are connected at 

seven sites and it was assumed that they operate at power 

factor mode with power factor equal 35% [34]. Wind farms are 

designed to deliver 20% of the peak load [35], equivalent to 

684MW on the studied power network. Geographically, 70% 

of the wind farms’ maximum capacity is installed in the 

northern part of the network at buses 15, 17, 19, 20, 22, while 

in the southern part of the network, the remaining 30% of the 

wind capacity is installed to at buses 1, 2, 7, 8. The total wind 

farm capacity is 2394 MW obtained from a total number of 

240 WTG, each representing a nominal capacity of 10MW. 

There is significant transmission utilization in this modified 

system as the bulk of the generating capacity is located mainly 

in the northern areas and considerable power is transferred 

from the north to the south aiming to represent the existing 

topology of the UK network. The analysis will study potential 

low wind output conditions in combination with unexpected 

network components failures. 

V. CASE STUDY ANALYSIS 

The IEEE-RTS 96 is composed of 38 lines circuits, 32 

generating units and 17 load delivery points [36].  

TABLE II 
MODELING SCENARIOS OF DR METHODOLOGY 

 S1 S2 S3 S4 S5 S6 S7 S8 

p STR STR STR STR RTTR RTTR STR STR 

λs 1,2,3 1 1,2,3 1 1 1 1 1 
s

REDf  0 1 1 1 0 1 0 1 

s

RECf  0 1 1 0-1.2 0 1 0 1 

ϑREC  - 0 1 1 - 1 - 1 

wg 0 0 0 0 0 0 1 1 
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Fig. 3: Probability to respond to a DR signal for different customer types based 

on the voluntary load reduction amount at 17h00 

 

It is studied by using the algorithms developed in Matlab 

that make use of a modified version of Matpower and MIPS 

solver for the power flow calculations [37]. Essential study 

results on the eight scenarios related to the availability for load 

reduction, impact of nodal marginal prices, load recovery 

profile – availability, and impact of RTTR, DR and wind 

generation, are presented below. 

1) Customer Availability for Load Reductions 

In this section, the impact of the availability of customers 

responding to a DR call is examined. Uncertainty in load 

availability for each customer type is given by equation (18). In 

particular, domestic customers’ load reduction takes values 

from the entire possible range, while for industrial and 

commercial loads it is within the assumed window, win=0.8-

1pu. Scenario 3 (S3) is used to evaluate the impact of 

customers responding to a DR on the EENS, mean and VaR 

values of voluntary (VLR) and involuntary load reductions 

(IVLR) – eqs. (12) and (13). For VLRs, Fig. 3 (generated over 

the entire MCS period) shows that the probability for 

residential loads to give ‘small’ response (up to 25 MWh) is 

much higher than to produce ‘large’ response (up to 50MWh). 

However, industrial, commercial and large users are more 

likely to give ‘larger’ respones as they have bigger contracted 

amounts compared to residential users, and the uncertainty in 

response (if any) is much lower. For low load reductions, 

industrial loads have higher probability to respond than 

commercial and large users, while large users have the highest 

probability for larger amounts of load reductions ; they are 

followed by commercial and industrial users. 
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Fig. 4: Probability of voluntary and involuntary load reductions under DR for 

different hours in a day 

TABLE III 
VAR VALUES OF CUSTOMERS COSTS AND REWARDS (K£) 

Critical buses B6 B8 B14 

S1 S3 S1 S3 S1 S3 
LC

50%VaR  31.43 19.59 55.13 22.91 57.55 41.72 

LC

90%VaR  55.64 52.81 75.11 61.24 95.39 89.08 

VLR

50%VaR  - 1.3 - 1.8 - 1.5 

VLR

90%VaR  - 5.6 - 2.5 - 2.8 

IVLR

50%VaR  600 240 578 320 480 252 

IVLR

90%VaR  1344 420 1260 604 1284 546 

The PDFs for voluntary (VL) and involuntary (IVL) load 

reductions for different hours in a day are illustrated in Fig. 4 

and compared with the PDF of IVL without DR (IVL
NO DR

). 

The results show that the probability of having IVL is reduced 

when doing DR (IVL
DR

) with higher amounts (right side of x-

axis), while the probability is much higher for low amounts of 

IVL. This clearly shows the effectiveness of voluntary DR on 

the EENS. In particular, the mean value of IVL
DR

  at 17h00 is 

around 60% less than the mean value of IVL
NO DR

. A similar 

conclusion applies to all hours; for example, the mean of 

IVL
DR

 at 21h00 and 22h00 is, respectively, 61% and 60% 

lower when applying the voluntary DR. Applying voluntary 

load reduction (VL) helps eliminate the need for involuntary 

one (IVL
NO DR

), particularly when larger VL amounts are used. 

This is further highlighted when converting VL and IVL into 

the EENS index (see Table IV in Section V.2). 

Table III shows the mean (VaR50%) and the 90% confidence 

VaR (VaR90%) for the costs for demand (LC), for VLR and 

IVLR revenues for the most critical load points (B6, B8 and 

B14) under scenarios S1 and S3. Both the LC

50%VaR  and LC

90%VaR  

are much lower under S3 for all load points, since under DR, 

demand is recovered under cheaper nodal marginal prices. 

In addition, VLR

90%VaR  is much larger than VLR

50%VaR  since 

marginal nodal prices are significantly higher under emergency 

conditions.Furthermore, the IVLR

50%VaR  is much lower under S3 

than under S1, where it decreases by  60% for B6, 44% for B8 

and 47% for B14. This also shows that voluntary DR 

significantly decreases the need for IVL (an average VOLL 

value was assumed for all customer types). 

2) Impact of Nodal Prices on Reliability Analysis  

Most DR studies would recover reduced load during load 

troughs and/or system normal if only network adequacy were   

looked at.  
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Fig. 5: Hourly marginal prices and demand curve under emergency for Bus 6  
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Fig. 6: Emergency marginal price for different confidence levels 

However, we have used the approach to investigate impact 

of hourly nodal prices on load recovery and customers’ 

wellbeing. Fig. 5 shows an example of the nodal marginal 

price and the demand variation in time for the most frequently 

interrupted bus in the network (B6) under both intact and 

emergency conditions.  

When no failures occur, load can be recovered almost at any 

time since intact prices do not change significantly with respect 

to load. However, nodal prices under emergency conditions 

may vary considerably. For instance, a significant shape 

difference between intact and emergency nodal prices is shown 

at 15h00. Our analysis has proven that the magnitude of the 

emergency nodal price can be almost 5 times higher than the 

intact one. Thus, scheduling of ‘optimal’ load recoveries based 

on marginal nodal prices has proven effective in providing 

system security and customer benefits. Furthermore, 

comparative studies were conducted to quantify the 

improvements from implementing load recovery under nodal 

marginal prices rather than under load profile only. 

 The hourly nodal price at bus B6 for different confidence 

levels is given in Fig. 6. In the event of an emergency at B6, 

TSOs may be provided with the illustrated confidence level 

dependent prices to decide which load recovery hour would be 

the most appropriate to restore load. For example, the TSO can 

know that if a violation occurs at 11h00, the load can be 

recovered between 13h00 and 16h00, since there is an 80% 

probability that the price will be between zero and 90£/MWh 

and a 90% probability that the price will be between zero and 

420£/MWh. In this paper, a conservative confidence level of 

α=95% was selected. This gives flexibility to TSOs to apply 

operational decisions so they can guarantee making a profit for 

the demand customers for almost all nodal prices in the 

feasible range, since the load recovery will be at either the 

emergency nodal prices or (lower) intact prices. 
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TABLE IV 
RELIABILITY INDICES FOR SCENARIOS 1, 2 AND 3 

S EENS(MWh/day) EDI(*10-2h/day) EFI(int/day) 

λs 1 2 3 1 2 3 1 2 3 

S1 577 160.5 36.4 23.9 9.7 0.99 0.039 0.0156 0.00234 

S2 206 59.2 12.9 23.2 9.2 0.57 0.0385 0.0154 0.00231 
S3 196 42.8 4.8 23.3 8.5 0.35 0.0383 0.01532 0.00229 
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Fig. 7: Distribution of demand costs for load at Bus 6 

 

The results presented in Table IV show that DR strategy 

under scenario S3 improves the reliability of the network in 

terms of EENS by 66% in winter (
s 1 ) compared with S1, 

allowing for almost a 5% decrease in EENS compared to S2. 

The S3 strategy also substantially improves reliability indices 

for summer (
s 2 ) and fall (

s 3 ), which demonstrates the 

effectiveness of the algorithm throughout the year.  

In order to show the necessity to quantify the economic risk 

of DR operation, results for the base case S1 are compared to 

scenario S3 to investigate the VaR of the load cost (LC). Fig. 7 

illustrates the frequency of occurrence of various load costs 

seen at the most critical bus, B6, with and without DR. In 

particular, it is shown that there is a high variation in nodal 

costs at 11h00, resulting from outages of lines 12 and 13 that 

connect B6 with cheaper generators. Consequently, LC

90%VaR is 

55.64k£ under the base case, whereas it is only 52.81k£ under 

S3, which shows that DR can help reduce nodal costs by 5% 

(2.83k£). Clearly, both reliability and financial indices can be 

improved using nodal energy prices (S3) rather than the load 

profile only (S2). 

3) Impact of Customer Availability to Recover the Load  

The load recovery of a DR customer can be of different size 

compared to the corresponding load reduction. As a result, this 

can affect both the network performance and customer profits, 

as exemplified by scenario S4.  

Assuming load recovery size is specified by availability 

factor s

RECf , Table V shows an increase of around 5% in EENS 

for s

RECf =1.2pu compared to s

RECf =1pu. When load recovery 

sizes are lower than 100%, network reliability is improved 

compared to fREC=1pu. This is due to the higher probability of 

implementing voluntary DR since less load recoveries are 

required. There is also a substantial decrease in reliability 

indices EDI and EFI. 
 

TABLE V 
RELIABILITY INDICES FOR SCENARIO 4 

fREC (pu) 1.2 1 0.8 0.6 0.4 0.2 

EENS(MWh/day) 205.8 196 192.34 191.13 191.08 188.12 

EDI(h/day) 0.2334 0.2331 0.2330 0.229 0.227 0.227 

EFI(int/day) 0.0386 0.0383 0.0383 0.038 0.038 0.0378 

 
TABLE VI 

DIFFERENCE IN MEAN AND VAR FOR LC (£) AND PROFITS (£/KWH ) S4 VS. S3 

S5 
S4-S3 Values 

LC

50%VaR  LC

90%VaR  
50%VaR  

90%VaR  

fREC=1.2 +912 +1932 +0.05 +0.2 
fREC=0.8 -89 +775 +5.3 +8.1 

fREC=0.6 -101 -198 +6.3 +9.5 

fREC=0.4 -257 -2102 +8.8 +9.5 
fREC=0.2 -463 -2124 +10.2 +12.8 

 
TABLE VII 

IEEE RTS NETWORK EVALUATION WITH RTTR & DR  

                         Scenarios S3 S5 S6 

Reliability 

indices 

EENS(MWh/day) 196 475 183 

EFI (int/day) 0.0383 0.0381 0.0379 

EDI*10-2(h/day) 23.31 23.34 23.18 

Financial 
indices 

(k£) 

 LC

50%VaR  135.9 134.9 131.3 

LC

90%VaR  142.7 136.1 134.8 

VLR

50%VaR  1.6 - 1.2 

IVLR

50%VaR  2352 - 2196 

 

Differences in the mean (VaR50%) and VaR90% values for 

demand costs (LC) and customer profits (π) between scenarios 

S4 and S3 are shown in Table VI for different load recovery 

sizes s

RECf . This table gives the cost and revenue differences 

following various load payback sizes compared to applying 

DR with a load payback of 100% for a winter day-ahead 

operation. For instance, when S4 is modeled with fREC=1.2pu, 

the LC

50%VaR  is 912£ higher than under scenario S3. This is 

because as load recovery gets larger, the operating conditions 

become more difficult and the marginal prices increase, 

implying higher costs for demand. For low load recovery sizes, 

however, very high profits can be incurred (over 2,100£) as the 

demand cost VaR shows the largest decrease, thus suggesting a 

much lower probability of high LC. 

4) Impact of RTTR and DR on Network Reliability and 

Customer Costs & Revenues 

In scenario S5 only RTTR is used, whilst scenario S6 

combines DR with RTTR. Table VII shows that the more 

reliable and cheapest scenario is S6.  

The use of RTTR and DR under S6 results in, respectively, 

61% and 6.6% reduction in EENS compared with DR alone 

(S3) and with S5. Indices EFI and EDI are also improved. 

When RTTR is considered alone (S5), the greater utilization of 

the three most critical lines improves network performance by 

18% compared to S1. Besides, the load cost index for S3 
LC

50%VaR is slightly higher than LC

50%VaR  for S5. This is because 

RTTR allows greater generation from cheaper units.  

In terms of VLR and IVLR, both average values are lower 

under S6.  
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TABLE VIII 
IEEE RTS NETWORK EVALUATION OF WIND FARMS & DR  

                         Scenarios S3 S7 S8 

Reliability 

indices 

EENS(MWh/day) 196 496 189 

EFI (int/day) 0.0383 0.0388 0.0383 

EDI*10-2(h/day) 23.31 23.8 23.19 

Financial 

indices 

(k£) 

LC

50%VaR  135.9 135.3 129.3 

LC

90%VaR  142.7 141.9 136.8 

VLR

50%VaR  1.6 - 1.05 

IVLR

50%VaR  2352 - 2268 

 

We can note that DR provides the greatest benefits since all 

indices are drastically improved with DR, whilst benefits are 

only slightly higher under RTTR. 

5) Impact of Wind Farms and DR on Network Reliability and 

Customer Costs & Revenues 

In scenario S7, only wind farms are used, whilst scenario S8 

uses DR in conjunction with wind farms. Table VIII shows 

that  the more reliable and less expensive scenario is S8; the 

wind farms contribute to improving network reliability by 4% 

in EENS compared with S3 alone. Besides, a considerable 

reduction in EDI is achieved, whilst the frequency of 

interruptions, EFI, remains the same as under S3. If compared 

with S1, wind farms alone (S7) improve network performance 

by 14% due to wind farms’ network reinforcements. Also, 
LC

50%VaR  for S3 is slightly higher than LC

50%VaR  for S7 as wind 

farms are considered to have near-zero marginal costs. When 

wind farms are used in conjunction with DR (S8), this has the 

best effect on network performance and customer costs & 

revenues. This is because DR implementation helps when wind 

output is low and network components fail. Next, when wind 

output is high, spillage can occur as there is not enough 

capacity on the network to transfer the total amount of wind, 

thus leading to congestion when using STR for OHL operation. 

This can result in a small reduction of EENS.  

VI. CONCLUSIONS  

A probabilistic methodology for optimal scheduling of load 

reductions/recoveries in a day-ahead planning of transmission 

networks is proposed in the paper. The methodology 

recognizes several types of uncertainties, and finds optimal 

demand response scheduling using the network security and 

customer economics criteria. Impacts of wind generation and 

real-time thermal ratings of overhead lines are also studied. 

The developed case studies have demonstrated that the value 

of optimal demand scheduling combined with real-time 

thermal ratings can be significant when using nodal marginal 

prices compared to using the hourly loads only. In particular, 

both reliability and financial metrics can be improved by a 

factor of around 66% for expected energy not served and 

around 5% for value at risk for costs of demand. Improvements 

in other reliability indicators and expected generation costs 

were also observed. Nonetheless, the selection of the reliability 

indicator to base the operational decisions on demand 

scheduling can be of highest importance; having multiple 

indices can therefore help system operators to make more 

informed decisions on ‘best’ demand response practice. As a 

final comment, the consistent use of a probabilistic approach to 

model various network uncertainties and variability of nodal 

marginal prices provides a superior analysis compared to 

traditional analytical techniques.  

Future work considers inclusion of optimal energy storage 

scheduling to increase system reliability. Combined impact of 

energy storage, demand response and wind generation will be 

studied in greater detail. 
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