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The assignment of service requests to emergency departments is of paramount importance both from a
life-threatening and an economical viewpoints. In the process of a more general project that aims at
defining optimal allocation policies of patients to regional hospital network facilities (together with the
potential reorganization of the facilities), the Department of Epidemiology of the Regional Health Service
of Lazio, Italy, was interested in obtaining a completely offline picture of the effect of an optimal
assignment of requests to emergency departments. This is in the spirit of evaluating the so-called Price of
Anarchy, where the fully centralized (admittedly unrealistic) allocation is used as a reference for both the
state-of-the-art completely decentralized approach and future reorganization ideas.

We have implemented and tested with real-world data of all service requests of 2012 a mixed-
integer programming model that computes such an optimal request allocation by minimizing travel and
waiting times and penalizing workload unbalance among emergency departments in the region. Within
the development process we have studied special cases and relaxations of the complete model showing
interesting mathematical properties that are, in turn, useful from a practical viewpoint, for example, in
obtaining a real-time version of the approach.

The present study is an important, quantitative step in the evaluation of centralized allocation strategies
like remote triage that could have a remarkable impact in making the allocation process much more efficient
and effective. More precisely, the developed methodology as well as the software tools are currently used by
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the DEP-Lazio for the reorganization of the regional networks of emergency healthcare.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Department of Epidemiology of the Regional Health Service
of Lazio, Italy (DEP-Lazio in the following), a regional center for
Health monitoring and management, is currently involved in a
project that aims at defining optimal allocation policies of patients
to regional hospital network facilities. The reorganization of health
centers in order to deliver services in an effective way by taking into
account economic sustainability is a topic of increasing importance
for Regional Health Services in Italy. In recent years several inputs
have been given, through financial laws, to reorganize hospitals
infrastructure in order to increase efficiency. Reorganization policies
can be considered, from a strategic point of view, as composed by
two main decision elements: the definition of the subset of hospital
facilities that should be active within the regional territory and the
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allocation of demand of services to active facilities. Because the
reorganization of a regional health system in terms of facility
location and service allocation is a task of great complexity regional
managers decided to start by focusing their attention on emergency
departments (ED). Indeed, EDs are a crucial access point to hospital
network facilities and as a consequence their management is a
critical factor in order to improve system effectiveness and effi-
ciency. In Italy it is possible to state that the role of EDs is even more
important than in other European countries because, in addition to
real emergency and urgency services, they have to face a set of
demands that should instead be managed by Primary care units or
by General Practitioners. This is due to historical reasons associated
with the development of the system and, recently, to the increase of
(often illegal) immigration. The 2013-2015 operational programs of
the Lazio region require the activation of new clinical care pathways
for emergencies, with a special priority for life-threatening diseases,
such as acute coronary syndrome, stroke and trauma. For these
situations, a timely medical intervention, performed in facilities
with the necessary equipment, can save the patient's life and
significantly improve the prognosis. For example, with respect to
patients suffering from ST Elevation Myocardial Infarction (STEMI),
it is suggested to perform a percutaneous coronary intervention
(PCI) in hospitals with high volume of activity, equipped with
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catheterization laboratory and highly qualified teams. Moreover,
according to clinical guidelines, it is strongly recommended to
perform PCI within 90 min from the onset of the early symptoms.
Therefore, it is essential that STEMI patients can immediately be
transferred to a specialized hospital. Unfortunately, preliminary
analyses showed that the current emergency networks are not able
to provide an appropriate and timely healthcare assistance to all
residents, especially in areas far from the city of Rome, generally
characterized by a lower socioeconomic status.

Emergency department characteristics. An emergency department
can be defined as an health facility that is dedicated to the
management of emergency and urgency treatments, that is to say
to that spontaneous or traumatic pathological conditions that need
to be treated within a short period of time. Emergency activities are,
for their own nature, nonelective and patients can reach ED
facilities both by their own (walk-ins) or with the support of an
emergency vehicle. Due to the impossibility of planning patients
arrival, EDs have to provide an initial treatment for a wide number
of diseases some of which can be life-threatening. Because the set of
patients that ask for treatments is heterogeneous from the patho-
logical point of view, the admission of patients is driven by a
priority-based policy. The stochastic nature of arrival times and of
pathological conditions can have a strong impact on workload and
as a consequence on patient waiting times and quality of care. It is
then fundamental that the priority assignment is properly managed
in order to meet patients' needs according to their critical condition.
The process of assigning priorities to patients is defined as triage
and it is usually coded at a regional or national level. Triage is a set
of procedures that ensure, in the best possible way, that patients
with a more critical condition are admitted before the others. The
priority level is usually represented by a color code (white, green,
yellow and red) that defines the increasing need of care. For each
patient the priority is usually defined just after the arrival by a
dedicated operator. The definition of triage procedures is then
fundamental to guarantee an immediate care for the patient, to
identify the priority level and the medical area that may treat him
and, ranking lower priority patients, to reduce waiting times. Triage
activities can directly address the patient to the most appropriate
hospital ward in case of complex treatments, for less serious ones
the patient can be directly treated by emergency department
physicians and discharged. It is then important for health managers
to plan EDs so as to meet a set of objectives that can be in some
cases conflicting. At first it is fundamental to guarantee quality of
care that is composed by treatment timeliness, according to the
patient health condition, and appropriateness, according to the
patient pathological condition. On the other hand the cost sustained
to provide services has to be reduced as much as possible by taking
into account a minimum standard of care.

Paper contribution. As already discussed, triage is currently the
first activity that is performed when a patient reaches the ED. This
means that ED triage is only in charge of determining the care
pathway within the hospital structure. In other words, the
possibility that a better quality of care and/or a shorter waiting
time could have been reached if the patient would have been sent
to another ED is not considered.

The objective of the present study is to develop an hybrid model
that considers both ED workload and service allocation, evaluating
what could be the impact of a remote triage management that,
anticipating the patient classification, can address population requests
to the first-aid structure, thus assuring the best possible service level.
In particular, the final allocation policy for emergency department
requests needs to maximize quality of care and service timeliness. In
order to develop a regional allocation approach we must suppose that
all requests can be filtered at a regional level. That is to say that walk-
in or ambulance referral that have not been screened by the triage
management center are not accepted. Clearly, this is only an

hypothetical scenario that is, however, potentially useful to define a
reference solution (as well as a reference methodology) in terms of
service quality (to be defined below), so as to evaluate, in comparison,
new and more sophisticated allocation policies. In other words, the
current case-study establishes a benchmark solution with respect to
which the cost of a completely decentralized and loosely planned
allocation is computed. In this sense we somehow follow the so-
called price-of-anarchy viewpoint [23] although the techniques
applied here do not exploit game theory in the computation of an
equilibrium. Instead, we have implemented and tested with real-
world data of all service requests of 2012 a mixed-integer program-
ming model that computes such an optimal request allocation by
minimizing travel and waiting times and penalizing workload unba-
lance among emergency departments in the region. Within the
development process we have studied special cases and relaxations
of the complete model showing interesting mathematical properties
that are, in turn, useful from a practical viewpoint. Finally, one of
those special cases allowed us to devise a real-time version of the
first-aid requests allocation approach, which can be used as a Decision
Support System for the Triage Center daily operations.

The present study is an important, quantitative step in the
evaluation of centralized allocation strategies like remote triage that
could have a remarkable impact in making the allocation process
much more efficient and effective. More precisely, the developed
methodology as well as the software tools are currently used by the
DEP-Lazio for the reorganization of the regional networks of emer-
gency healthcare. Our findings will be shared with the Regional
Directorate for health and social-health integration and the Regional
Healthcare Emergency Unit, which operatively manages the first aid
requests in Lazio. The joint analysis of the results by those who plan
emergency healthcare programs and by those who operationally run
them in the territory are expected to be helpful to develop and
quantitatively evaluate strategies to: (a) improve health assistance for
the population living in disadvantaged areas, (b) reduce waiting times
in emergency departments and (c) balance workload among EDs of
the Lazio region. More generally, considering that the technical
equipment is known for each hospital, this type of optimization
(possibly coupled with simulation) techniques can be effectively used
to reorganize the emergency networks in accordance with the
hierarchical levels of the hospitals equipment complexity. This is likely
to result in optimization of the current “Hub and Spoke” model, based
on the distinction of the emergency departments in basic EDs, first
level EDs and second level EDs, depending on the provided intensity
of care and on the dimension of the hospital catchment area. Basic or
primary care hospitals are characterized by a catchment area of
80,000-150,000 inhabitants and have a limited number of active
medical specialization departments. First level hospitals have a catch-
ment area of 150,000-300,000 inhabitants and radiology and ultra-
sound with X-ray CT as well as laboratory and blood transfusion
services should be available 24 h per day. Second level hospitals have a
catchment area of 600,000-1,200,000 inhabitants and are equipped
with all medical specialization departments. Those facilities are
supplied with the most advanced technological devices in order to
properly treat complex patients. Note that the current model does not
take into account ambulance availability, routing and dispatching,
which are important resource constraints. Future work plans involving
those resource constraints are discussed in the last part of the paper.

Paper organization. In Section 1.1 we review the literature
reporting ED and emergency medical services (EMS) management
approaches. In Section 2 we discuss the details of the problem and
we introduce the required notation and definitions. In Section 3 a
mixed-integer linear programming (MIP) approach is proposed
and several properties and relaxations are discussed. In Section 4
we extensively discuss computational experiments performed by
solving the MIP model on real-world instances provided by DEP-
Lazio. In Section 5 we propose a real-time algorithm for first-aid
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requests allocation. Finally, in Section 6 we draw some conclusions
and discuss the use of the proposed optimization approach in
current and future settings.

1.1. Literature review

Operations research has been widely applied to study ED
management issues, such as capacity planning and patient flows,
by using both optimization and simulation techniques. Literature
case-studies can be classified according to the set of decisions that
are taken into consideration, including capacity planning, staff
scheduling and general planning for future development of the
facility. Pure capacity planning case-studies evaluate the impact of
resource resizing on patients' waiting times. It is then important to
evaluate which is the degree of complexity of a comprehensive
simulation model. As an example, in [11] the authors consider triage,
prioritization and several staff level types as well as imaging studies,
laboratory studies, physical examination, nursing activity, consulta-
tions, and bedside procedures. However, the model does not
consider technical resources reducing the potential analysis of
supply shortages. In [4] the authors show how capacity planning
can provide an efficient patient flow by calculating the maximum
occupancy level of beds. In [33] the authors define an analytical
model to describe patient flows in emergency departments taking
into consideration scarce resources such as medical doctors, nurses,
beds and diagnostic machines. The model is used to evaluate the
impact of resource resizing policies. In a similar way in [21] the
resizing of different resources is compared in order to identify which
is the one that mainly influences ED performances. Patients arrival
pattern can be also simulated in order to level the peak of resource
utilization, leading to a significantly better planning of staff and
resources [29]. Similarly, in [30] arrival analysis allows a reduction of
patient turnaround times. Finally in [7] optimal control policy is
applied to define the number of resources that should be used in
order to prevent ED overcrowding. ED capacity management can be
also analyzed from a different perspective through the evaluation of
how budget restrictions and workforce reduction can be faced while
preserving operational performances [28]. In that case-study patient
flow patterns are fixed and the main goal of the problem is to
evaluate how staffing management can influence waiting times.

It is clear that ED performances cannot be improved only by
means of resource resizing; advanced prioritization models as well as
new organizational designs can turn out to be more effective than
simple capacity planning. In [22] the authors evaluate the introduc-
tion of the so-called split-flow concept that is an emerging approach
to manage ED processes by a split of the patient flow according to
their acuity and enabling parallel processing. The model, applied to a
real ED, aims at reducing patients' waiting times and system
congestion. In [9] a new prioritization model for patients is evaluated
by taking into consideration patient acuity mix, arrival patterns and
volumes and trying to minimize the walk-away for patients waiting
for a long time. In [3] simulation also proves to be of great potential
for the evaluation of future expansion of an ED by increasing the
understanding of the processes involved. An integration of simula-
tion and optimization techniques is presented in [35] to reduce
patient queuing time. Modeling the complex behavior of an ED is a
challenging task, due to interaction of human and physical resources.
Medical staff, for example, is rarely dedicated to one patient or task.
Instead, the staff treats several patients at a time while waiting for
other processes. This diversity of process interaction can be described
as multitasking, a common feature of ED operations even if rarely
considered in planning models (see, for example, [17]).

Till now we focused our review on emergency department
planning by considering this organizational unit as a unique
component that is externally influenced only by patient arrivals. It
is clear that ED inflow is strongly related to the definition of

catchment areas because a department, and Hospitals in general,
usually cover the health needs of a subset of the local population.
Through “covering” we mean that a specific (regional) population
cluster has as a reference point for health needs a specific hospital
that is usually defined on a distance basis. It is then clear that if we
widen the focus of analysis we can develop capacity plans for
hospitals and EDs taking into consideration the fact that a reorga-
nization can strongly influence the volume of activities and as a
consequence system performances both in terms of patient out-
comes and quality of service. As an example, in [8] the authors
propose a modeling framework to analyze the supply and demand
matching of public hospital beds addressing the planning issues of
hospital locations and service allocations, which include new
service distribution as well as existing service redistribution. In
[5] an optimization model is formulated using integer programming
and heuristics, the goal of the case-study being to maximize
coverage of severely injured patients by locating trauma centers
and aeromedical depots. Finally, in [18] the authors propose a
discrete-event geographical location/allocation simulation model
for evaluating various options for the provision of services including
the location of the service centers, service capacities, geographical
distribution of patients, and ease of access to the health services.
ED overcrowding can cause, as a domino effect, ambulance
diversions and an inefficient utilization of emergency medical
services (EMS) tying up resources and reducing response time [6].
As a consequence, a consistent branch of research integrates ED
workload management with ambulance management so as to
coordinate two services that are strongly interdependent. In [13] a
multi-dimension Markov chain queuing model is developed to
coordinate ambulance traffic in order to solve the ED crowding
problem. The case study takes into consideration two hospital EDs
and simulates both ambulance and walk-in arrivals. Similarly, in [2] a
Markovian queuing model is used to study ED crowding and
ambulance offload delays. An alternative approach to minimize
patients waiting time is proposed in [12], where the ambulance
diversion problem is analyzed by modeling a queuing game between
two EDs. In that article the authors demonstrate the potential benefit
of a centralized planner that maximizes the social optimum. A
comparison of hospital selection policies in order to identify the
one that mostly reduces ED crowding problems is reported in [25].
It is clear that ambulance management cannot be reduced to
the diversion problem analyzed in the previous paragraph. Ambu-
lance dispatching, after a first-aid request is collected, and its
relocation to the next waiting location are real-time problems that
emergency providers should efficiently solve. In [27] an approx-
imate dynamic programming approach is proposed to solve the
above-mentioned problem in a time-efficient manner.

2. Notation and definitions

Given a positive integer 7, the time horizon of our analysis is
modeled by discrete ordered set T:={1,...,7}, whose elements
represent time slots based on the shift work periods of ED medical
operators. Let U be the set of districts in which the territory under
the authority of Lazio region is partitioned, see Fig. 1. Let V = U be
the subset of districts in which an emergency department is located.
Let d(u, v) be the expected time duration of a trip fromue U tove V.
Throughout this paper we assume d(u,v) is constant over T. Of
course, this is not a completely harmless assumption because traffic
conditions might in fact play an important role, although emergency
vehicles are (far) less constrained by traffic. Let F be a set of first-aid
medical treatments that can be supplied by healthcare centers.

Emergency departments. Let S be the set of emergency depart-
ments operating under the authority of Lazio region. Each se S is
modeled by a quadruple composed by the following elements: (i)
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Fig. 1. Municipal districts of Lazio region.

vs e V is the district in which s is located; (ii) Fs = F is the subset of
specializations that s can offer; (iii) ws: R—R is a function
returning the expected time a patient has to wait at s before
receiving first-aid service; (iv) g e R!fs! reports the quality of
service for each specific medical treatment in Fs, according to Lazio
Region Evaluation Program for medical operations results.

Triage codes and pathologies of interest. Let C be the set of
emergency department codes that can be assigned by triage
diagnosis. Let P be a subset of pathologies that are known to be
significant within emergency department management. Each p e P
is characterized by a maximum estimated time t™®*(p) that a
person suffering p could wait without medical control. Let f, e F a
specific medical treatment for treating p.

Our analysis focuses on three pathologies, namely, ST Elevation
Myocardial Infarction, Acute Myocardial Infarction (AMI) and
Femoral Fracture (FF), which have a remarkable impact on Lazio
healthcare management system.

First-aid requests. Let R be the set of first-aid requests arising on
the Lazio region area, during time horizon T. Each r e R is modeled
by a quadruple (ur, t;, ¢, p;), where u,eU and t,eT are the
district and the time slot in which r arises, respectively, ¢, e C is
the expected triage code associated with r, namely, its presumed
emergency level, and p, is the expected pathology, as diagnosed in
terms of subjective symptoms.

First-aid requests assignment problem. We are given a set of
emergency departments S and a set of first-aid requests R arising
from a defined geographic area, during a fixed time horizon T. An
assignment of first-aid requests to emergency departments is
feasible if the following conditions are satisfied:

(a) each request r=(u,, tr, cr, p;) € R is assigned to exactly one
emergency department s = (vs, Ws, Fs, g;) €S;

(b) s supplies suitable medical treatment for p,;

(c) the expected duration of the trip from u, to v; does not exceed
the maximum estimated time for avoiding life-threatening,
i.e, t™*(p,).

The goal is looking for feasible assignments that allow to maximize the
overall benefit, in terms of efficiency and effectiveness of supplied
emergency department services. In addition, condition (b) enforces
the idea that the feasibility of requests assignment should be strongly
correlated to health care delivery appropriateness [24].

3. A mixed-integer programming approach

In this section we introduce a basic MIP model for the problem
(Section 3.1) and we then discuss some interesting and useful
mathematical properties (Section 3.2) and relaxations (Section 3.3).

3.1. The basic MIP model

In order to define the backbone of the basic MIP model we need
assignment variables and constraints. More precisely, we introduce
a binary variable x,5 with re R,s € S for each assignment, such that
Xrs = 1 if and only if request r is assigned to emergency department
s. Thus, the following constraints guarantee a feasible assignment:

Z Xrs =1 vreR M
I ks
. d(uy, vs)
Xrs <1—mingq 1, T () VreR, VseS )
Xs>0 VreR VseS 3)

Let us observe that (1) forces each request r to be assigned to
exactly one emergency department that is able to supply the
required medical treatment; thus, both conditions (a) and (b) are
satisfied. Moreover, (2) forbids any assignment that does not respect
condition (c).

Evaluating efficiency. As mentioned, the first required step is to
appropriately define service quality indicators. Our model allows
to evaluate the efficiency of each assignment in terms of time
components, and we do distinguish two in particular.

1. Travel time. An initial version of the model can evaluate how to
assign requests to emergency departments in order to mini-
mize the overall time needed to reach the first-aid facility. The
travel time between the place where the call is made and the
hospital is an element of paramount importance because, if the
patient has compromised vital functions (consciousness,
respiration, heart rate, shock) and is in life-threatening condi-
tions, then the time needed to reach the closest hospital can
strongly impact on the probability of surviving.

2. Waiting time. As a second factor the workload of the emergency
department, quantifiable as “waiting time”, has to be evaluated.
Using data from the Health Emergency Information System, it is
possible to empirically estimate the workload of the hospital for
each day of the week and time of the day. For each ED we used
2012 data to sample waiting times in correlation with the volume
of first-aid requests per time period. In this way we use the waiting
time function as a proxy of the ED capacity. As a consequence, the
choice of the structure may be evaluated considering penalty
coefficients “proportional” to the estimated waiting time.

The first cost contribution is easily given by d,,,,, whereas the
second is given by function ws, which depends on the number n of
patients waiting for medical treatment (at emergency depart-
ments). In particular, ws allows to estimate the needed waiting
time for processing all first-aid requests assigned to s with the aim
of penalizing emergency department overload situations. In our
analysis, we have obtained ED waiting functions from a statistical
study of DEP-Lazio. For each ED and for each time slot, DEP-Lazio
provided us a set of points explaining the stochastic relation
between the median waiting time and the number of patient
waiting for healthcare services. For any dataset that was statisti-
cally relevant, we have retrieved ED waiting functions by suitably
interpolating the provided data points. Of course, the function
obtained is only approximately convex but this approximation has
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been validated by the statistical office of DEP-Lazio. Finally, we
model w; as a (convex) piecewise linear function as follows.

Definition 1. Given k;+1 nonnegative integers ny:=0<n; <
- <ny, foreach sesS, let

0, n<ngp

an+by  ny <n<ng
S S

ak5n+b .

ws(n) : Vh=0,..,k—1 4)

n=ny,

such that the following conditions hold:

ay<a,,; Vh=0,. k-1 (5)

bS =0 ©6)

by 1 =by+(a,—a}. )npyr Yh=0,.. k—1 (7)

In our study, parameters aj, have been estimated by analyzing
real waiting time data provided by DEP-Lazio. Moreover, because
ws is a piecewise convex function, it is easy to check that the
following property holds:

ws(n) = max {ahn+b} ®)

i.e,, for any value of (the number of patients waiting for medical
treatment) n the slope of the linear segment such that
n; <n<n;, is the leading one in (8). This is depicted in Fig. 2.
For each time slot t e T, let z; be the average waiting time of all
emergency departments of Lazio. In order to balance the overall
regional emergency department workload in each t, we introduce
a fixed cost A, for each emergency department whose waiting time
w;s exceeds the constant z;. In our computational experience, we
discuss the impact of different choices of A,. Note that the work-
load threshold z; has been provided by DEP-Lazio based on a
stochastic analysis, which considers ED median waiting time and
the regional healthcare service target.

Evaluating effectiveness. We evaluate the effectiveness of each
assignment by considering the quality of healthcare service for
pathologies of interest. Each hospital can be classified according to
a penalty coefficient based on the quality of care provided, as
estimated by the indicators of outcome and process of the
Regional Program for the Evaluation of Outcomes [14,26]. If, at
the time of the request, the patient's symptoms are not clearly
defined, a summary measure of hospital quality of care (taking

W(N)f-——————————mmm—

S W,
Ry

o
=
W

) ny np

Fig. 2. Example of piecewise linear convex function.

into account some of the most relevant indicators and proceeding
to their synthesis) is applied. Otherwise, if a patient has more
defined symptoms, the penalty coefficient may be applied using
specific indicators according to the pathological area.

For each emergency department seS, vector ¢s; gives the
quality for each medical treatment supplied by s. In particular,
the quality of care service supplied by s for treating p is denoted by
qsp and it is computed according to two indicators, namely, the
ratio of medical treatments for p over the total number of medical
services supplied by s and the ratio of successful clinical interven-
tions for p. In our model, we relate gqs components to time
dimension by introducing a suitable parameter y, which expresses
the amount of time a patient is prepared to wait for achieving a
one-percentage point improved service.

MIP formulation. We are now ready to define the basic MIP
formulation. Let n{ be a nonnegative integer variable representing
the total number of first-aid requests assigned to emergency depart-
ment s during time slot t. Let z; the workload of s during t, estimated
by waiting time function w. Let y; be a binary variable such that
yi =1 if the total workload of s during t exceeds the fixed threshold
Z:. Moreover, let 71 be a nonnegative integer constant corresponding
to the expected total number of patients who have been waiting or
receiving medical treatments in s at starting time of first time slot of
T. Finally, let a; €[0,1] be a real-valued constant that reports the
expected ratio of patients who have required first-aid services during
t—1, but are still waiting or receiving medical treatments during t.

Thus, let MIP be the following mixed-integer (linear) formula-
tion of the first-aid requests assignment problem:

min > d@n voxs+ Y > (@A) -7 D 4y Zxrs 9)

reRseS teTseS seSpeP 1R
s.t

nyg=ns; VseS (10)
ni=> X5 VseS, VteT 11

TR
Z>an(ani_q+n)+by, Vhel0,.. .k}, VseS, vteT 12)
Zi<Zi+My] VseS, VteT (13)
X e AN{0,1})RI*IS1 wreR vseS (14)
njeZ VseS, VteT U {0} (15)
zZieR VseS, VteT (16)
¥i€0,1 VseS, VteT 17

where M is a suitably large real-valued constant and A c R/ RI*ISI
is the polytope given by assignment constraints (1)-(3).

Let us observe that any constraint (12) forces the corresponding
z; variable to assume the appropriate value of function w by
exploiting property (8). In particular, z; estimates the total waiting
time of s during t by considering all requests assigned at time slot t
and the partial number of requests assigned at time slot t—1,
obtained from ratio «,.

Moreover, it is easy to check that any constraint (13) forces the
associated yi to 1 if the total waiting time z; exceeds z;. Let us
observe that y; can get value 1 also when the previous condition is
not satisfied: in that case, the corresponding solution could be
feasible but not optimal because the objective function (9) is in
minimization form.
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3.2. Integrality property of the assignment variables

In the following we show how to simplify model (9)-(17) by
exploiting some integrality property of the assignment part of the
model. First of all, we need a preliminary result that characterizes
the polytope associated with assignment variables and constraints.

Proposition 1. Given |S| - |T| integers v3, let polytope P c R RI-ISI

be the intersection between A and the polyhedron in R'R"IS!I defined
by the inequalities:

Y Xs=1} VseS, vteT. (18)

reR:
tr =t fp, eFs

Then, P is integral and the problem of optimizing a linear function
over P is strongly polynomial.

Proof. Let H(N,A) be a digraph with node set N:=R U (S x T) and
arc set A such that (i) each node is in bijection with either a request
reR or a pair (s,t)eS x T; (ii) each arc is in bijection with an
ordered pair (r,(s,t)) that satisfies both conditions d(u;,vs) <
t"*(p,) and f,, e Fs. Moreover, consider the following formulation
of P:

> xs=1 VreR (19)
seS:

Ty < Fs.
d(ur.vs) < tMaX(pp)

> xs=1} VseS, VteT (20)
reR:

tr = tfp, Fs.

d(ur, v;t < tMaX(p)

O<x5<1 VYteR seS 21

where (19) and (20) are obtained by combining (2) respectively
with (1) and (18). Now, it is easy to check that the constraints
matrix associated with (19)-(21), called B, corresponds to the
incidence matrix of H, thus B is totally unimodular, so it follows
that P is integral. In particular, P corresponds to the feasible
region of a flow problem associated with digraph H with demands
d,= —1foreachreR,dss =i foreach (s,t) € S x T. Then, by [31],
we can conclude that optimizing a linear function over P is
strongly polynomial.o

Now, we are able to define an improved formulation in which the
number of integer variables is reduced from O(|R| - |S| +|S]| - | T|)
to O(|S| - | T|).

Theorem 1. Let MIP' be the mixed-integer program obtained from
MIP by relaxing the integrality of variables xs. Then, MIP and MIP’
have the same optimum value and an optimal solution to MIP can be
obtained from an optimal solution to MIP’ in strongly polynomial time.

Proof. Let @' and w be the optimal solution values of MIP' and MIP,
respectively. In general, @' < @ holds because MIP' is a relaxation of
MIP. Let y':=(x',n’,z’,y’) be an optimal solution of MIP" and let us
consider polytope P with 1§ =n’; forall se S, t e T. Then, let x* be an
optimal solution obtained by maximizing function >, _g> . s
d(ur, v)xes — steSZpe qupzrrﬂpxrs over P. Due to Proposition 1,

x* is integral and it can be computed in strongly polynomial time.

Because y*:=(x*,n’,z,y’) is feasible for MIP' and its corresponding
objective function value is less or equal to @’, we have that y* is an
optimal solution of MIP'. Moreover, because y* is feasible for MIP,
we can conclude that y* is optimal also of MIP. o

3.3. Relaxing Workload Balance

Let MIP, be the mixed-integer programming problem obtained
from MIP' by relaxing constraints (13) (and assuming 4 =0). In
particular, MIP, models the relaxation of MIP (9)-(17) in which

emergency departments' workloads are not required to be
balanced. In the following, we present a reformulation of MIPg
as a generalized min-cost flow problem on a suitable network.

Let D(N,A) be a digraph with node set N and arc set A, let b :
N— R be a demand function associated with nodes, let [, ;1 : A>R .
and a : A~ R be capacity, gain and cost functions associated with
arcs, respectively. A pseudoflow is a function ¢ : A— R such that
0 < ¢(i,j) < I(i,j) holds for all arcs (i,j) € A. The generalized min-
cost flow problem consists of finding a pseudoflow that minimizes
the overall cost 3~ . 4a(i,j)¢(i,j) subject to the generalized flow-
conservation constraints:

D @ap= > Gl =b@) VieN.
(ij)eA (i eA

For each e = (i,j) € A, let e:=(j,i) be the reverse arc correspond-
ing to e and let A denote the set of reverse arcs associated with A.
For reverse arcs, gain and cost functions satisfy y(e) =1/y(e) and
a(e)= —a(e)/y(e), respectively. Moreover, given a pseudoflow ¢,
the residual capacity function [,:AUA-R, is defined as
ly(e)=1l(e)—¢(e) for each ecA and [,(@)=y(e)p(e). Then, let
Dy(N,A,b,l,,7,a) be the residual network associated with ¢. The
gain of a cycle belonging to D, is the product of the gains of arcs
that compose the cycle. A cycle of D, whose gain is strictly greater
(resp. less) than one unit is called flow-generating (resp. flow-
absorbing). A bicycle is composed by a flow-absorbing cycle and a
flow generating cycle that are arc-disjoint and connected by a path
containing at least one node. We recall that a feasible pseudoflow
@ is optimal if and only if D, does not contain any unit-gain cycle
or bicycle. For further details, the reader is referred to [16,1].

The generalized min-cost flow is a well-known optimization
problem that has a wide range of applications in many scientific
area, as discussed in [1]. It belongs to the field of generalized flow,
so it reduces to min-cost flow by assuming y(e)=1 for all e e A.
Since generalized min-cost flow is a special case of linear pro-
gramming, it can be solved in polynomial time by the ellipsoid
method [20]. In the literature, many other polynomial algorithms
have been addressed, which are based on linear programming as
reported in [19,32], or exploit combinatorial approaches, like in
[15,34]. While min-cost flow can be solved in strongly polynomial
time [31], it is unknown whether the generalized min-cost flow
problem admits strongly polynomial algorithms. However, in [10]
it is shown that the problem is strongly polynomial if there is a
fixed number of arcs whose gain is either than one unit.

In the following we characterize an instance of generalized
min-cost flow, denoted by D(N,A,b,l,y,a), which gives a combi-
natorial description of MIP.

Let Ks={1,...,ks} x T for each seS, Ru={reR:t,=t}, Ri=R;,
R:=R, §':=S and T":=T. Then, let D(N,A) be a digraph with node set

N=RUSUGSxT)UK; U UKj5UE xT)URUS,
and arc set A= |J?_,A; such that

Ap={(r,(s,t)) : T € Ry, s€S, teT with d(ur,vs) <t™(p,), f, €Fs}
Ax:={(s,(s,t)):seS, t=1}

Az:={((5, 1), (k, b)) :s€eS, teT, (k,t)eKs}

Ag={((k, 1), (s',t)) :s'eS, t'eT, (k,t)eKs withs=5', t =t}
As={((s, 1), (s, t+1)): s’ eS, t' e T'\{r} with s=¢', t=t'}
Ag={((s,t'+1),1"):s' €S, t' eT'\{7}, ' e R}

A7={((s,t),1):5 €S, t' =1, eR}}

Ag:={((s',t'),s):s'eS, t'=1}.

Fig. 3 shows an example of D(N,A) for T={1,2}, S={s1,52},
R=Ry URy, ks, =4, ks, =3. Furthermore, let us consider the
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Fig. 3. Example of network D(N, A).

following functions:

-1, i=reR
+1, i=reR
bei —alﬁs, i=seS
W)= +ait’, i=seS
0, i=k t)yeKs; VseS
0, i=(,0)e(SxT), (s,telS xT)
1, ecAl UA;
onﬁs, ecAy UAg
le)— ng—ng_q, eeAs3 UAy, Vke{l,.. ks—1} withng=0
T ) |Re| —ny, eeAs UA, for k=k
IR, eeAs
at, echg
at, e€A5
’u(e): l/at, EEAG
1, CEA\(A5 U Ag)
d(ur,vs) —yqsp, €€h;
ae)=< a, ecAs
0, EEA\(Al UAg)

The following result states that the generalized min-cost
problem associated with D(N,A, b, l, i, a) is a relaxation of MIPy.

Lemma 1. For each feasible solution y to MIP, there exists a feasible
pseudoflow @, associated with D(N,A,b,l, u,a) such that y and @,
have the same cost.

Proof. Let y:=(x,n,z) be a feasible solution of MIP,. For each s e,
let h, be the largest integer in {1, ...,ks} such that hy <nj+an;_;.
Then, let @, be a pseudoflow associated with D(N, A, b, I, u, a) such
that, foreach ' =reR, s =seS, t'=teT

(PX(T, (5, 8) = X5 (22)
@, (s, D)=’ (23)
N —Mg_1, ke(1,..., hg}
§0;(((5, t): (k’ t)) = ni + atni—l - nhs ’ k = hs +] (24)

0, kel{hs+2,...,ks}
Pk .5, 1)) = @, ((5.0), (k. 1) (25)
@S, 1), (s, t+1) = n with te T\ {7} (26)

@, (s, t'+1), 1) =awx,s with teT\({z} 27)
@, (s, 7)., 1) =% withreR, (28)
@, (s, 1),s)=am’ (29)

It is easy to check that ¢, is feasible: capacity and pseudoflow
conservation constraints are satisfied. Moreover, observe that (22)
implies

D> | dwn v —r> Ay [Xs=>_> a6, )@, .. 0).  (30)

reRseS peP: reRseS
pr=p

By relation (8), the following condition holds:

zi=aj ,(on}_ +n;)+by ., VseS, VteT. 31

Then, by substituting (5)-(7) in (31), it follows that

hy 1
Z=a, (M +am] )+ Y (@ —a, s
h=0
hS
=aj, (e —np)+ Y (p—ny_1)aj,
h=1

=a((s, ), (hs+1,0)p, (s, 1), (hs +1,1))

hs
+ > as, 0, (h, )@, (5, t), (h, ). (32)

h=1
Thus, relations (30) and (32) imply that  and ¢, have the same cost.0

In general, the reverse is not true, i.e., there exist feasible
solutions of generalized min-cost flow over D(N,A,b,, u,a) that
cannot be mapped into feasible solutions of MIP,. However, latter
problems are equivalent under certain conditions, for example,
assuming a; =1 for each teT. In this case, the generalized min-
cost flow over D(N,A,b,l,u,a) reduces to the min-cost flow
problem over D(N,A,b,l a). Since demands and capacities are
integer, there exist integral optimal flows corresponding to fea-
sible solutions of MIP, that are optimal by Lemma 1. Furthermore,
we can show the following result.

Theorem 2. Let us assume

min_ Er;Lg{d(ur,vs)—d(ur,v;)} > maxsf:gs{ais —af)}. (33)
Then, optimal solution to MIPy can be computed in strongly poly-
nomial time.

Proof. Let ¢* be an optimal pseudoflow to generalized min-cost
flow problem associated with D(N,A, b, [, i, a). In general, ¢* is not
integral. Since the residual network D, corresponding to ¢* does
not contain negative cycles, it is easy to check that vertices
(s,t), (k. t), (s',t") form strictly positive cost cycles for each
seS, teT with s'=s and t’' =t. Thus, it follows that relation (32)
is satisfied. Moreover, (33) ensures that for each (r, (s, t)) € A such that
0 < *(r,(s, 1)) <1, there exists at least a null cost cycle in D~ that
contains arc (r, (s, t)) and ((s, t), (k, t)) with residual capacity greater
than or equal to 1—¢*(r, (s, t)). Thus, an optimal integer pseudoflow
@' can be obtained from ¢* by saturating O(|R|) null-cost cycles.
Then, we have that ¢’ corresponds to a feasible solution y’ of MIPy,
so we conclude that y’ is optimal by Lemma 1. Finally, by [10], it
follows that y’ can be computed in strongly polynomial time.o

4. Computational results

The computational experience focuses on a wide set of
instances that are based on real-world data from the Lazio
emergency department system during the entire year 2012.
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First-aid request characteristics have been retrieved from the
Hospitals Information System (HIS)! and the Emergency Room
Information System (ERIS)? of regional healthcare services author-
ity. In particular, HIS manages the Hospital Discharge Register
(HDR)? database, which maintains information of all hospital
admissions and discharges, by integrating patients' personal details,
healthcare services supplied and medical treatment results. Lazio's
HDR provides additional medical treatments information for STEMI,
AMI and FF, which are the pathologies of interest associated with
our analysis. The ERIS integrates HIS database by supplying specific
and detailed information only for emergency departments. The
description of regional emergency departments, with associated
quality of service information, has been retrieved from statistical
studies carried out by DEP-Lazio, which are based on regional and
national evaluation programs for medical operations results. For
more details, we refer the reader to [14,26].

The time horizon T naturally refers to a day of the year 2012
and it has been discretized into the following three time slots:
daytime (8:00 am to 15:59 pm), evening (16:00 pm to 23:59 pm),
and night (0:00 am to 7:59 am). Such decomposition has suitable
operational relevance in terms of service level and expected
number of requests. Moreover, the effects of emergency depart-
ment workloads balancing have been evaluated by considering
two different classes of values for A,. A first class referring to MIP,
allows to consider solutions with unbalanced workloads (4; = 0 for
all teT), whereas a second class referring to MIP' guarantees
workload-balanced solutions. In latter case, we fix A =Zz; for all
t e T, in order to avoid request allocations which cause undesirable
overloads of emergency departments with small capacity.

The computational experience has been carried out on a x86-
64 GNU/Linux machine (CentOS 6.3) with 8 cores @2 GHz and
16 GB of RAM. We have generated instances of MIP" and MIP, for
each day of year 2012 by considering all 50 operating emergency
departments of Lazio. Then, we have achieved optimal solutions
for all instances by using IBM ILOG Cplex 12.5.1.

Table 1 summarizes computational results for MIP’ instances by
reporting average values for each month: in particular, (i) the second
column reports the average number of emergency requests occurred in
each day; (ii) the third column reports the number of infeasible
instances, i.e., the number of days of the month in which at least one
request could not be correctly assigned according to the constraints of
our model; (iii) the fourth column shows the average optimal solution
value of each day, while columns five and six indicate cost contribu-
tions of waiting time functions (the sum of the z; variables in (9)) and
overall penalty time value (the sum of 4,y terms), respectively; (iv) the
last two columns report the average Cplex performance (in terms of
elapsed real computational time and total branch&bound nodes) that
has been observed for solving each (feasible) instance of the month.

The results in Table 1 show that MIP’ can be solved relatively
easily by a sophisticated MIP solver like Cplex 12.5.1. The number
of instances that turn out to be infeasible is relatively small,
namely, around 20%. The influence of the penalty term associated
with workload unbalance amounts at 10% of the term associated
with the waiting time. In order to evaluate how important is the
penalization of such an unbalance we also solved MIPy and the
results are rather easy to interpret. Because MIP; is a relaxation of
MIP’, as discussed in Section 3.1, optimal values to MIP, are on
average better of 5.36% than those of MIP', but at the price of an
increased waiting time cost contribution, on average of 0.74%, due
to the absence of workload balance. We omit detailed results on
MIP, instances but it is worth mentioning that they are very easy

1 Corresponding Italian acronym is SIO: “Sistema Informativo Ospedaliero”.

2 Corresponding Italian acronym is SIES: “Sistema Informativo per 'Emergenza
Sanitaria”.

3 Corresponding Italian acronym is SDO: “Scheda di dimissione ospedaliera”.

to solve both by using a combinatorial algorithm for generalized
min-cost flow or by solving MIP, with a general-purpose MIP
solver like Cplex. In the latter case, no branching is ever necessary.

Finally, concerning the impact of the property studied in Section
3.2 that led to a simplification of formulation MIP into MIP’, we have
a rather interesting situation. The simplified formulation MIP' is
faster than MIP, namely, 6.01% in geometric mean over the 270
solved instances. However, the number of explored nodes is much
higher, namely, 24.29%. In other words, in the case of MIP’ Cplex is
much faster in exploring nodes, which is quite strange because the
only difference between the two formulations is that some of the
variables are declared continuous instead of binary, thus the LP
relaxations should be identical. However, as an example, a generic
instance (January 17, 2012) goes from 186,006 binary variables to
only 150, which might explain the issue. Indeed, the presence of
186,006 binary variables potentially leads to many time-consuming
computational steps, for example, in the preprocessing, node pre-
processing, probing, cutting plane generation, branching selection,
etc. A “cleaner” formulation is overall preferable and, in practice,
leads to speed up the computation. Note, however, that it is a matter
of tradeoff because the node increase of MIP with respect to MIP
shows that the above time-consuming steps are in fact effective.

As pointed out in the Introduction, the aim of the present study is
to compute the optimal solution of a (unrealistic) fully centralized
allocation of first-aid requests to EDs, so as to be able to in the
evaluation of both the state of the art and future reorganization ideas,
some sort of Price of Anarchy evaluation. To achieve this we compare
in Table 2 real (observed) first-aid request assignments during year
2012 with the optimal solutions of model MIP'. Specifically, Table 2 is
organized as follows: (i) second and third columns indicate the
number of infeasible assignments with respect to the violation of
constraints (2) (each patient has to reach an emergency department
within a suitable time according to kind of health emergency) and (1)
(each request has to be assigned to an emergency department with a
suitable specialization that allows to supply appropriate medical
treatments), respectively; (ii) the fourth column exhibits the average
objective function value for each day, while columns five and six
specify cost contributions of waiting time functions and overall
penalty time value, respectively (analogously to Table 1); (iii) the
last three columns report the average relative gaps between values of
observed assignments and optimal solution for the overall value and
cost contributions of waiting and penalty times, respectively.

The numbers in Table 2 immediately show that the solutions
naturally obtained without a centralized allocation strategy (for
example, a remote triage) violate many of the constraints of MIP/,
especially constraints (1) associated with suitable specialization.
This information is especially interesting from a strategic (and
practical) standpoint: such a remote triage conducted in an
effective way could have a remarkable impact to significantly
reduce these violations that correspond to dangerous inefficiency
of the system. The rest of the numbers of Table 2 are instead
interesting but not easy to interpret. In a sense the objective
function (9) is completely disregarded by the observed request
allocation system but maybe the part of it associated with the
minimization of the travel time. Thus, the absolute and relative
difference of the components of the objective function are less
meaningful at this point in time, while they will be more and more
so when different reorganization settings will be evaluated.

5. Optimized real-time first-aid requests assignment

The offline assignment of all first-aid requests at once is very
interesting from a strategic viewpoint but does not immediately
provide a tool that can support health managers during the day-by-
day operations. In order to implement a regional remote triage
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Month (2012)

Mean |R| (day)

Infeas MIPs

Optimum (min)

Wiaiting time (min)

Penalty time (min)

Cplex time (s)

Cplex nodes (average)

1 4300.4 8 60,297.63 25,360.77 2899.85 111.316 3209.1
2 3980.9 6 55,943.78 23,570.66 2838.61 109.878 3387.1
3 43231 5 61,418.85 25,859.72 2888.61 122.203 32313
4 4287.2 5 60,861.64 25,599.72 2894.28 131.929 3384.2
5 4493.5 7 63,015.01 26,568.41 2924.67 137.239 3409.3
6 4590.0 7 64,929.66 27,427.35 2990.86 148.866 33711
7 4409.1 8 62,458.13 26,341.63 2977.74 139.629 3311.0
8 4229.0 4 59,870.97 25,180.69 2932.98 132.760 32574
9 3996.3 0 56,082.89 23,604.62 2859.93 113.067 3305.0
10 4154.2 10 58,111.27 24,425.29 2874.46 112.856 3395.1
11 4112.7 11 57,930.31 24,405.94 2902.58 114.509 33821
12 4025.8 8 56,399.67 23,862.90 2822.65 119.214 3295.8
Table 2

Comparing observed request allocations with optimized solutions.

Month Violated constr. Violated constr. Overall value Waiting time Penalty time Overall value (gap Waiting time (gap Penalty time
(2012) (2) (1) (min) (min) (min) %) %) (gap%)
1 2.0 360.4 101,437.07 47,964.39 3851.36 40.18 46.69 24.58
2 2.0 299.2 91,175.49 42,848.48 3818.35 38.86 45.01 25.79
3 1.6 362.6 102,101.16 48,415.55 3870.28 40.05 46.73 2538
4 2.0 361.1 101,898.65 48,231.42 3862.21 40.57 47.24 2513

5 1.5 370.4 105,827.41 50,405.02 3886.48 40.37 47.19 24.80
6 2.0 383.1 110,125.15 51,671.08 392345 41.27 47.19 23.76
7 1.8 3435 108,814.64 48,679.28 3944.40 42.90 46.07 2447
8 2.5 361.5 109,621.28 46,288.93 3949.02 45.15 45.39 25.72
9 1.9 301.8 93,799.83 43,309.37 3874.65 40.19 4543 26.19
10 2.0 320.5 96,755.77 45,338.37 3852.34 39.32 45.33 2532
11 1.7 335.2 95,445.33 45,136.85 3838.66 40.06 46.79 24.52
12 1.8 357.5 94,010.21 44,578.50 3818.23 40.00 46.22 26.16

approach it is then fundamental to define a real-time approach that
can manage the assignment of incoming requests (almost) online.

Section 3.3 has introduced a reformulation of the first-aid
assignment problem with unbalanced emergency department
workloads MIP, as a generalized min-cost flow problem on a
suitable instance D(N,A,b,l,y,a). For this purpose, the computa-
tional experience has shown that optimal solutions to one-day
instances can be efficiently computed requiring computational
time less than 1s. As a consequence, the high performance of
flow-based method give rise naturally to the investigation of real-
time optimization approaches for the first-aid requests assignment
problem. In this section, we discuss a basic real-time paradigm
that exploits the addressed flow-based reformulation.

The main idea consists in considering three sets of first-aid
requests, namely, Ry_;, Ry and Ry, where 9 e T represents the
current time slot. In particular, Ry _; is the set of requests that have
been assigned during previous time slot, Ry contains all requests
which have been assigned during the current time slot, whereas
Ry, is the set of forecast requests that are expected to occur during
the next time slot. We motivate this design feature by remarking that
closest past and future assignments have a notable impact on current
decision because of emergency department workload functions.
Moreover, observe that forecasted requests can be suitably computed
by analyzing the associated time series and considering stochastic
perturbation effects due to periodical and exceptional events.

A basic real-time scheme can be initialized by a generalized min-
cost flow instance D(N, A, b, 1, y, a) with T:={9 - 1,9, 9+ 1}, Rg:=p and
Ry_1, Ry, 1 containing requests assigned during &—1 and forecast
requests expected during 941, respectively. The main loop of the
real-time scheme is activated for each incoming request p, so instance
D(N,A,b,l,y,a) is consistently updated by considering both p and
workload balance information. Then, the instance is solved in order to
compute and fix the assignment of p. The workload balance penalty A
can be considered by computing the set P of emergency departments

that are close to saturation condition, expressed by time threshold Z.
In particular, given a current requests assignment, characterized by
variables nj for each s € S, we say that s € P, i.e, s is close to saturation,
if nj belongs to interval [n{ — 1, nf] with ng:=minj, _ L.k (@Z=b)/a)
for each s € S (in other words, 1§ is the threshold for requests number
of s such that wy(n{)=2). Thus, at each main loop iteration, the
workload unbalance penalty can be treated by temporarily adding the
fixed penalty cost A to the cost of arc (p,(s,9)) e A(D) for each s e P.
Algorithm 1 reports such basic real-time approach.

Algorithm 1. Real-time first-aid requests assignment algorithm.

Input: Ry_1, Ry 1
Result: Optimal real-time first-aid assignments
Ry« @;
N<Rg 1 URy,1;
Generate D(N,A,b,l,y,a);
P—;
foreach incoming request p do
Ry <Ry U {p};
N<Rg 1 URgURy,1:
Update D(N,A, b, L y,a);
a «a;
while P # @ do
Select s from P;
aip, (s, 9)) < a(p, (s, 9)+4;
P—P\{s};
end
Solve generalized min cost flow over D(N,A, b, l,y, a);
Assign request p accordingly;
a—da

end
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Algorithm 1 exploits several ingredients proposed in the
previous section, namely, the original MIP model, its relaxation
MIPy, and the availability of a quick combinatorial solution of it,
for proposing the first online first-aid requests allocation based on
a centralized triage. We have not yet investigated the computa-
tional performance of this approach because remote triage policies
are still under development in Lazio but this basic algorithm
constitutes the starting point of the follow-up of our project.

6. Conclusions and future work

The assignment of service requests to emergency departments is of
paramount importance both from a life-threatening and an econom-
ical viewpoints. Within a more general project that aims at defining
optimal allocation policies of patients to regional hospital network
facilities, the Department of Epidemiology of the Regional Health
Service of Lazio (Italy) was interested in obtaining a completely offline
picture of the effect of an optimal assignment of requests to emer-
gency departments. This is in the spirit of evaluating the so-called
Price of Anarchy, where the fully centralized (admittedly unrealistic)
allocation is used as a reference for both the state of the art completely
decentralized approach and future reorganization ideas.

We have implemented and tested with real-world data of all
service requests of 2012 a mixed-Integer linear programming model
that computes such an optimal request allocation by minimizing
travel and waiting times and penalize workload unbalance among
emergency departments in the region. Within the development
process we have studied special cases and relaxations of the
complete model showing interesting mathematical properties that
are, in turn, useful from a practical viewpoint. Finally, one of those
special cases allowed us to devise a real-time version of the first-aid
requests allocation approach, which can be used as a decision
support system for the Triage Center daily operations.

The present study is an important, quantitative step in the
evaluation of centralized allocation strategies like remote triage
that could have a remarkable impact in making the allocation
process much more efficient and effective. More precisely, the
developed methodology as well as the software tools are currently
used by the DEP-Lazio for the reorganization of the regional
networks of emergency healthcare. Our findings will be shared
with the Regional Directorate for Health and Social-Health Integra-
tion and the Regional Healthcare Emergency Unit, which opera-
tively manages the first aid requests in Lazio. The joint analysis of
the results by those who plan emergency healthcare programs and
by those who operationally run them in the territory are expected
to be helpful to develop and quantitatively evaluate strategies to:
(a) improve health assistance for the population living in disadvan-
taged areas, (b) reduce waiting times in emergency departments
and (c) balance workload among EDs of the Lazio region. A future
step in the direction of improving the above goals is to include
scheduling rules and patient priorities according to suitable func-
tions measuring single patient waiting times. A possibility under
investigation is to adjust the mathematical model by taking into
account the workload of each first-aid request based on its priority
code, thus obtaining a weighted version of constraints (11). More
generally, considering that the technical equipment is known for
each hospital, this type of optimization (possibly coupled with
simulation) techniques can be effectively used to reorganize the
emergency networks in accordance with the hierarchical levels of
the hospitals equipment complexity.

The MIP model we presented in Section 3 does not take into
consideration the management of territorial emergency medical
services. That is to say that ambulance availability, routing and
dispatching are not considered. That modeling strategy is a conse-
quence of the primary goals of the present case study that aims at

showing the Price of Anarchy of the current system management in
terms of first-aid requests assignment to EDs. We are aware that a
realistic ED management cannot overlook the importance of EMS
planning because emergency vehicles are limited resources that
influence system dynamics and operativeness. Lazio region is
equipped with 3 helicopters to support first-aid activities (located
in Viterbo, Rome and Latina) and 219 between ambulances and
medical cars. The emergency vehicles are located in 149 stations
throughout the region, grouped into 5 Operative Centers. As a
consequence the fleet management is the topic of the follow up
project “Optimization of the cardiac network in the Lazio region:
appropriateness, timeliness and equity in access to emergency care”.

The presented project and the follow up one are likely to result in
optimization of the current “Hub and Spoke” model, based on the
distinction of the emergency departments in basic EDs, first level EDs
and second level EDs, depending on the provided intensity of care.
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