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Abstract 

The problem of effectively preprocessing a dataset containing a large number of performance 

metrics and an even larger number of records is crucial when utilizing an ANN. As such, this 

study proposes deploying DEA to preprocess the data to remove outliers and hence, preserve 

monotonicity as well as to reduce the size of the dataset used to train the ANN. The results of 

this novel data analytic approach, i.e. DEANN, proved that the accuracy of the ANN can be 

maintained while the size of the training dataset is significantly reduced. DEANN methodology 

is implemented via the problem of predicting the functional status of patients in organ transplant 

operations. The results yielded are very promising which validates the proposed method. 
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1. Introduction 

Organ transplants are one of the most viable treatment options for patients with organ 

failures and may also be their only option. Coupled with the cost of the operation and the lack of 

readily available organs, the need for pairings of organ donors and recipients which result in 

successful transplants is critical.  However, datasets on donors and recipients may contain a vast 

amount of information, both in number of records and in attributes of the donor, recipient, and 

their relationship.  The need to parse this data is therefore, acute and any single person 

attempting to perform a prediction may result in heavy bias as the consideration of the important 

attributes may be difficult, both due to their number and the way in which it may be difficult to 

determine which attributes contribute towards the outcome of the transplant.  There exists a need, 

therefore, to not only perform accurate predictions on a complex dataset, but also to parse this 

dataset in some way so as to reduce it to a manageable form.  Investigations into this have been 

performed using different approaches such as by Oztekin et al. (2011), who analyzed a lung 

transplant dataset using decision trees, and reinforced by studies as that by Zhuang et al.(2009) 

who demonstrate the effectiveness of data mining and machine learning for decision making by 

medical practitioners.  Meisel and Mattfeld (2010) also supported this idea by identifying key 

areas in which operational research and data mining can work synergistically to create innovative 

approaches towards solutions for problems concerning decision making. 

As the data here is ill understood, however, a prediction method that can cope with this 

lack of knowledge must be utilized.  Artificial neural networks (ANN) are one tool that are 

capable of being trained on a dataset containing attributes of which relationships may be rather 

complex and are capable of performing accurate predictions on a testing set.  ANNs might suffer 

from over-fitting, however, and may be sensitive towards data that contains conflicting 

observations, and therefore the dataset would be preprocessed by data envelopment analysis 

(DEA), a linear programming method for determining the relative efficiency of a set of 

observations.  This would hypothetically allow a reduction in the dataset used for training the 

ANN without greatly impacting its performance. 

ANNs consist of layers of neurons with distinct weights separating the neuron 

connections which allow the ANN to be trained on a complex dataset and determine its own 

understanding of the relationship of the attributes.  The medical field is one particularly well-



suited application of ANNs, for example the predictions of organ transplants by Dvorchik et al. 

(1996), cancer diagnosis by Abass (2002), or other clinical applications as shown by Dybowski 

and Gant (2001).  

On the other hand, DEA is a linear programming method for evaluating the relative 

efficiency of a set of decision making units (DMU) by analyzing their weighted inputs and 

outputs.  This method is flexible and allows the performance/efficiency of these DMUs to be 

analyzed based upon a set of selected performance metrics.  Seiford and Zhu (2003) show how 

DMUs can be stratified, separating them into layers of efficiency, which would be useful for a 

complex dataset (such as the one analyzed in this study).  In this work DMUs are individual 

transplant records.  Pre- and post-transplant variables may be considered as inputs and outputs, 

respectively.  Inefficient records may then be removed from the dataset as a preprocessing 

method.  Kotsiantis (2006) discusses the importance of data preprocessing for machine learning 

and states that it is this area in which DEA would hypothetically contribute and Liu et al (2013) 

demonstrate the high growth rate of DEA literature. 

These two methods would allow the poorly understood transplant dataset to be 

preprocessed so that the prediction method, in this case the ANN, is trained only on the most 

efficient data, which renders the prediction to be more efficient and effective. This would prevent 

contradictive data from being fed onto the ANN and weakening its understanding of the 

relationship amongst the performance metrics. 

The remainder of this paper is organized as follows: Section 2 outlines a background on 

DEA and ANN as well as covering the proposed hybrid methodology of this study and how they 

are integrated with respect to the dataset. Section 3 presents the results of the study performed 

and the strengths and weaknesses of this data analytic approach. Section 4 concludes the paper 

and also briefly mentions critical future research considerations. 

 

2. Literature Review 

Several research studies have been performed in different areas both from a DEA and an 

ANN perspective. A thorough comparison of the benefits and drawbacks of both DEA and 

ANNs was performed by Athanassopoulos and Curram (1996). They showed that one of the 



prime advantages the ANN has over strict DEA is that there is no causality required, which is 

very important in an organ transplant setting as in  the current study. ANNs also allow a 

combination of continuous and discrete data to be considered without further modifications that 

must be done for DEA. These advantages make ANN a suitable component in a two-step hybrid 

methodology composed of DEA and ANNs, as the benefits of DEA can be utilized to process the 

data and the ANN can perform the predictions, which draws upon the advantages of both. A 

hybrid approach was also performed by Samoilenko and Osei-Bryson (2010) in which DEA and 

ANNs are utilized in a joint effort to determine the complexity in determining relative efficiency 

when there are heterogeneous levels of input and output relationships amongst the DMUs. 

A non-hybrid approach was performed by Liu et al. (2009) who used a super-efficiency 

DEA model to rank the observations. Super-efficiency DEA model does not result in efficiencies 

that are constrained to being less than one. This is performed by removing the i
th

 observation 

from the set of inputs and outputs when the i
th

 set itself is analyzed. This is in contrast to normal 

DEA operations where every observation is included in each analysis, even the i
th

. These values 

are then the goal of the ANN. As such, when the ANN is trained using the set of training 

observations, these values must lie within a specified distance of the super-efficiency values of 

the DEA model, otherwise training continues. ANN is, therefore, being trained to perform the 

operation of the super-efficiency DEA model, and does not fit well suited for situations in which 

the relationships between the inputs and outputs is ill understood, the very basis in which ANNs 

should thrive. Furthermore, the super-efficiency DEA model is already an efficient algorithm 

that can handle large numbers of observations but is, however, fairly restrained when it comes to 

the missing data, which is the ANNs would be able to handle. This is, however, not investigated 

here. There is also no mention of preprocessing of the dataset, which may be vital in other 

applications where there is missing data or large numbers of inputs and outputs. Chen (2010) 

performed similar work, where pre- and post-predictions are classified using DEA to judge the 

effectiveness of the ANN. Ozdemir and Temur (2009) trained an ANN to predict the efficiency 

of the input-oriented DEA. 

Pendharkar and Roger (2003) and Pendharkar (2005) utilized DEA as a tool for 

preprocessing of a dataset that would be used for forecasting in an ANN. The preprocessing is 

performed in that case in an attempt to enforce monotonicity upon the inputs to the ANN. Doing 



so, DEA would allow those observations that do not meet this property to be identified and 

removed, allowing more accurate predictions. More accurate predictions arising from 

preservation of monotonicity of the input observations was shown by Wang (1995, 2003). More 

specifically, monotonicity results in a reduction of over-fitting, a perennial problem of prediction 

models. The DEA approach used in that study takes only those observations that lie on a specific 

frontier and that satisfy monotonicity. One variant of the DEA model is stratification (Seiford 

and Zhu, 2003), which allows all observations to be placed on a set of frontiers, where the first 

frontier contains the most efficient observations; the second contains all those which are the 

second best, and so on. A single frontier or combination of frontiers may be used to strictly or 

weakly satisfy monotonicity, respectively. The greater the number of frontiers used (and thus a 

greater number of inefficient observations), the greater the chance of the ANN developing a non-

monotonic prediction.  Another hybrid approach was performed by Samoilenko and Osei-Bryson 

(2013) which utilized DEA to obtain the efficiency of the observations and utilized this along 

with a neural network and other classification methods to create a decision support system for 

assessing the performance of organizations. 

Olanrewaju et al. (2011, 2012) assessed energy efficiency of an industrial sector using an 

ANN. DEA was then utilized to rank the predictions of the ANN, using as inputs the actual 

energy consumption and the predictions of the ANN as outputs. This allows the efficiency of the 

predictions to be seen. DEA only has the knowledge of the predicted and observed energy 

consumption and thus, the only conclusions that can be made concern those of the accuracy of 

the ANN. This can, however, allow outliers to be seen in the predictions of the ANN, which is 

not investigated in that study. This may warrant further investigation, both in the causes of those 

outliers and the benefits of this ranking in terms of refining accuracy of the ANN. 

One variation of DEA is referred to as super-efficiency, which arises when a specific 

DMU under evaluation is removed from the set being considered. This allows discrimination 

among the efficient DMUs as their efficiency score would no longer be a maximum of one. Chen 

(2005) analyzed super-efficiency when infeasibility may arise. Super-efficiency itself is a 

measure of a DMU’s stability in terms of its efficiency and therefore, infeasibility may arise 

when DMUs are stable to their input/output changes. A model was developed that solves these 

infeasibility problems, which may be useful for medical data in which a particular organ 



transplant is invariant towards a specific input or output but still needs to be considered in the 

wider scope of prediction. Super-efficiency was also studied by Zhu (2001) as a means of 

judging the sensitivity of a DMU. Super-efficiency was utilized by Nahra et al. (2009) for a two-

stage analysis of efficiency on data from the National Drug Abuse Treatment Survey. 

Another multi-stage process was performed by Kyo et al. (2010), where an ANN was not 

only used to perform a transformation on the dataset to remove the outnumbered inputs and 

outputs in relation to the number of observations, but also utilized an analytic network process 

(ANP) in conjunction with an ANN to constrain the weight range in DEA resulted in a more 

reasonable result, yielding weights which were in a range that were deemed acceptable given the 

dataset utilized. Although interesting and useful for DEA, in the organ transplant situation the 

number of observations far outnumbers the number of inputs and outputs and therefore this type 

of preprocessing is not necessary. 

One of the difficulties in using DEA is its difficulty to, or even lack of an ability to, 

handle fuzzy data or data that is not continuous.  A review by Hatami-Marbini et al. (2011) 

reviews fuzzy DEA methods and presents classification schemes considering many works 

published over a twenty year period.  These types of approaches with DEA would be mandatory 

for the future of a hybrid DEA approach considering such a varied dataset as the organ dataset 

used here and are of the utmost importance for future research in this area.  Cook et al (2014) 

also discuss the ability of DEA to handle mixed and raw data as well as the input and output 

selection.  Matin and Kuosmanen (2009) have developed a foundation for DEA that handles 

integer valued inputs and outputs, essential for the application in datasets that contain ordinal 

variables. 

Another important parameter to consider in ANNs is the training time.  Datasets are not 

only getting larger but there is an increasing trend towards deep learning and other complex 

neural networks that provide certain benefits over classical networks, as discussed by Arel and 

Rose (2010).  The need for reduction in dataset size is therefore essential in order to reduce 

training times.  The fact brings a critical issue along with it: the focus on optimal choice of 

observations in order to obtain high ANN accuracy.  The implementation of DEA would 

hypothetically assist towards this goal. 

 

 



3. Proposed DEANN Methodology 

As the dataset used in this study is rather complex and vast, there are many steps that are 

involved in this work. Figure 1 illustrates the generic DEANN methodology which can 

conveniently be used dealing with such huge datasets in various settings.  In this study, the data 

is preprocessed using DEA so that efficient organ transplants may be separated and the ANN 

trained on these.  The ANN is tested on the full dataset to determine its accuracy. The ANN can 

be retrained if the dataset is updated with new efficient transplants and continuously provide 

necessary predictions. 

The DEANN methodology integrates a data analytic method, i.e. DEA, to parse the large 

and complex dataset.  This processed data is then utilized by an ANN for training and testing 

purposes.  Finally, the impact of various stratified efficiency frontiers on the accuracy and 

training time of the ANN are analyzed. 

 

3.1 Data Preprocessing Using DEA 

In this part of the process the dataset is preprocessed.  Selection of variables and deletion 

of redundant or empty observations are performed before the consideration by DEA.  The 

selection of variables is conducted in light of the literature (Oztekin et al., 2011).   Once this step 

is performed, the result is then fed into DEA and separated into unique stratified efficiency 

frontiers, where the first frontier represents all observations containing the highest efficiencies 

(and are all equal).  The second frontier represents the second set of efficiencies, and so on.  The 

output is a selection of observations which have been ranked based on their relative efficiencies, 

where the output is the graft survival time and all other variables are considered as inputs. 

 

3.2 Training and Testing of the ANN 

The next part involves training and testing the ANN using the results of DEA.  Although 

DEA, in the preliminary phase, only considers continuous data, the ANN is capable of 

considering all variables, regardless of their type or complexity, and as such the full list of 

variables is utilized for training the ANN.  The observations are unsorted and ten-fold cross-

validation is used for testing of the ANN. 

 

 



3.3 Analysis of Stratified Efficiency Frontiers on ANN Accuracy 

The main objective of the DEANN methodology is to gain an understanding of the 

effects of preprocessing of DEA on the accuracy of the ANN and this part of the process is the 

analysis of the effects of the stratified efficiency frontiers on the accuracy of the ANN.  The 

impact of single and multiple layers are investigated.  The DEANN method will be validated 

through the accuracy of the ANN and reduction of training dataset size. 

 

Fig. 1. A pictorial representation of the DEANN methodology 

 

3.4 Overview of Data Preparation 

This work examines the Thoracic dataset provided by the United Network for Organ 

Sharing (UNOS).  This dataset consists of 16,771 records and 442 variables containing 

information on all lung and heart transplants performed in the US that have been reported to 



UNOS since October 1, 1987.  Each record contains copious amounts of information on both the 

recipient and donor as well as other metrics such as distance from donor to hospital, date of graft 

failure, etc.  The choice of variables for each segment of this hybrid study as well as the analysis 

of variables containing “codes” are both discussed next. This work only considers lung 

transplants in order to simplify predictions as this is the first study in literature utilizing ANN 

and DEA integration on healthcare data.  Any records containing missing data are removed 

which results in 12,744 records for further processing.  DEA reduces this even further but as the 

ANN is always trained on a subset of the entire dataset that is acceptable for this study. 

The choice of variables from the dataset is critical.  Oztekin et al. (2011) consider their 

past research (Oztekin et al., 2009; Delen et al., 2010) and select twenty-five variables to 

consider, aiming to predict the graft survival time and patient functional status.  Table 1 lists 

those variables which are utilized by DEA with inputs in the first section and outputs in the 

second.  DEA is best suited for continuous data and hence a selection of variables which are 

continuous was performed, though other data types may still be considered by DEA as depicted 

by Cook and Zhu (2006). 

 

Table 1. Variables Considered by DEA 

Attribute Description 

*BMI_TRR BMI of recipient at transplant 

*BMI_DON BMI of donor 

AGE Age of recipient (years) 

AGE_DON Age of donor (years) 

DAYSWAIT_CHRON Days for recipient on waiting list 

FUNC_STAT_TRR Functional status of recipient at transplant 

GTIME Survival time of graft (days) 

FUNC_STAT_TRF Functional status of recipient at follow-up 

*Those two attributes were not present in the UNOS dataset, but were calculated in this study. 

 

It should be noted that both BMI variables were calculated from the height and weight 

provided in the dataset.  The U.S. Renal Data System Coordinating Center (2013) researcher’s 

guide was utilized here.  Although the dataset was not obtained through the USRDS, their guide 



provided important descriptions of variables that were only vaguely stated by UNOS, as well as 

classifications of codes for certain variables such as FUNC_STAT_TRF, where the values take 

on numbers which are codes for certain patient statuses.  This variable in particular had to be 

analyzed for it took on not only values of 1,2,3 representing activity limitations of the patient, 

but also values of 4010, 4020, … , 4100 for functional status of 10%, 20%, …, 100% for adults.  

The 2000 codes were not utilized here as young adults constituted a small group within the 

dataset and therefore were excluded.  Using these codes, this variable is now represented as 10, 

20, …, 100 and can be utilized in the DEA study as a continuous variable.  As DEA treats larger 

values as large “amounts”, all variables excluding GTIME and both FUNC_STAT variables 

were inverted so that DEA would appropriately consider larger values as better.  If this was not 

performed, DEA would act as though a larger AGE, for instance, should result in a large 

GTIME, which is in fact counter-intuitive. 

 

Table 2. Variables considered by ANN 

Attribute Description 

BMI_TRR BMI of recipient at transplant (calculated) 

BMI_DON BMI of donor (calculated) 

AGE Age of recipient (years) 

AGE_DON Age of donor (years) 

DAYSWAIT_CHRON Days for recipient on waiting list 

FUNC_STAT_TRR Functional status of recipient at transplant 

AMAT A locus match level 

BMAT B locus match level 

DRMAT DR locus match level 

HLAMAT HLA match level 

HIST_ALCOHOL_OLD_DON Deceased donor –history of alcohol dependency 

HIST_COCAINE_DON Deceased donor-history of cocaine use 

HIST_HYPERTENS_DON Deceased donor-history of hypertension 

HIST_IV_DRUG_OLD_DON Deceased donor-history of  IV drug use 

HIST_CIG_DON Deceased donor-history of cigarettes 

HIST_CANCER_DON Deceased donor-history of cancer 

HIST_DIABETES Deceased donor-history of diabetes 



HIST_MI Deceased donor-history of Myocardial Infarction 

MED_COND_TRR Recipient medical condition at transplant 

ETHCAT_DON Donor ethnicity category 

ETHCAT Recipient ethnicity category 

GENDER_DON Donor gender 

GENDER Recipient gender 

GTIME Survival time of graft (days) 

FUNC_STAT_TRF Functional status of recipient at follow-up 

 

Table 2 lists the variables that were chosen for the ANN, closely following those chosen 

by Oztekin et al. (2011) with minor differences.  No variables are inverted for the ANN as it 

handles all data types naturally.  Ordinal data types are decoded into a set of binary variables 

whose size is dependent on how many different values the ordinal variable consists of.  

Continuous variables are normalized to zero mean, unit variance.  These result in seventy input 

variables to the ANN. 

 The TRR and TRF abbreviations on some variables are used to specify the type of data 

within the medical database, as certain descriptors may be applied to both recipient and donor, as 

well as in different time periods.  TRR represents a recipient’s feature at the time of transplant 

and TRF represents a feature at a follow-up (after the transplant has occurred).  There are many 

others within the overall database, but they are not discussed as they are not used here. 

 

3.5 Data Analytic Models Deployment 

DEANN methodology is composed of two famous data analytic methods, namely Data 

Envelopment Analysis (DEA) and Artificial Neural Networks (ANN), both of which are briefly 

outlined in the following subsections. 

 

3.5.1 Data Envelopment Analysis 

DEA is a tool that provides rankings of decision making units (DMUs) in terms of relative 

efficiency given their inputs and outputs (Zhu, 2014). DEA calculates the best frontier and all 

DMUs lying on the frontier have an efficiency of 1, whilst all others would have an efficiency of 

less than 1. In a constant returns-to-scale (CRS) situation this method takes the i
th

 DMU and 



seeks to contract the input vector xi to the inner-boundary that is in the frontier of the total set of 

DMUs. The constraints ensure that this point does not lie outside this frontier. θ  therefore is an 

efficiency metric that as stated previously ranges from 0 to 1. 

Eq. 1 represents the input-oriented multiplier form for the CRS frontier. K is the number 

of inputs, M is the number of outputs, and N is the number of DMUs. It can be seen that it aims 

to maximize the weighted outputs constrained to the weighted inputs and outputs. In this form 

there are N constraints. For situations in which the number of DMUs is very large (as is the case 

in medical data in which the number of records vastly outnumbers the total combined inputs and 

outputs), a transformation of this equation to a form that reduces the constraints to being in terms 

of the inputs and outputs would be beneficial. 

 

max               iy µ
� �

 

subject to   0ν µ− + ≤
� �

X Y             (1) 

 1ix ν =
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1. K is the number of inputs 

2. M is the number of outputs 

3. N is the number of DMUs 

4. iy
�

 is a 1xM vector of outputs for the i
th

 DMU 

5. ix
�

 is a 1xK vector of inputs for the i
th

 DMU 

6. µ
�

 is a Mx1 vector of output weights 

7. ν
�

 is a Kx1 vector of input weights 

8. X is a NxK matrix of inputs 

9. Y is a NxM matrix of outputs 

 

Eq. 2 represents the envelopment form of the input-oriented CRS frontier. In this form the raw 

efficiency metric θ  is optimized and there are K+M constraints. This form can also be used to 

calculate a variable returns-to-scale (VRS) frontier, merely by the addition of a constraint that 



sums λ
�

 to 1. Slacks can easily be introduced into the model which allow a determination of the 

amount of slack a specific DMU has for each input. Utilizing both the CRS and VRS 

efficiencies; the status of the frontier, such as decreasing or increasing returns, can be calculated. 
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1. θ is a scalar 

2. λ
�

 is a Nx1 vector of constants 

One variation of DEA allows the DMUs to be classified on distinct efficiency levels.  

This variation, called stratification, is incredibly useful for preprocessing in which the DMUs are 

being used as a training dataset for an ANN as it allows different levels to be chosen so that the 

ANN may be trained with specific levels of efficiency, reducing contradictive training data and 

improving the accuracy of the ANN. 

Eq. 3 is the stratified CRS input-oriented model. Here the efficiency is calculated and all 

those DMUs which possess an efficiency of 1 (thus lying on the frontier) are removed from the 

pool and the minimization is run again, repeating until there are no DMUs left. This allows l 

frontiers to be calculated (Seiford and Zhu, 2003). 
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The benefit of performing stratification is 

to be chosen and thus those DMUs can be separated from the entire pool

may be trained on only the most efficient layer, the two most effi

forth, to investigate the accuracy gained by the ANN.  These layers allow the ANN to be trained 

on non-contradictive data containing no outliers, which w

 

 

3.5.2 Artificial Neural Networks

Artificial Neural Networks provide significant contributions towards the pr

outcomes (Dayhoff & DeLeo, 2001)

neurons and how they are created. Due to the way in which ANNs are trained throug

learning, they are highly attractive towards datasets in which there are many complex attributes 

whose relationships may be ill understood. The medical field is one application of this, such as 

cancer classification or organ transplant surviva

resurgence due to this application. An ANN itself is comprised of an input layer, a set of one or 

more hidden layers, and an output layer, as shown in Figure 2.

Fig. 2. Representation of a

Each layer has weighted inputs and outputs. Consider a single neuron 
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The benefit of performing stratification is that it allows a specific layer, or sets of layers

to be chosen and thus those DMUs can be separated from the entire pool.  In this way, the ANN 

may be trained on only the most efficient layer, the two most efficient layers, and so on and so 

forth, to investigate the accuracy gained by the ANN.  These layers allow the ANN to be trained 

contradictive data containing no outliers, which would improve its accuracy.

Artificial Neural Networks 

Neural Networks provide significant contributions towards the predictions of medical 

outcomes (Dayhoff & DeLeo, 2001). ANNs themselves are inspired by the networks of living 

neurons and how they are created. Due to the way in which ANNs are trained throug

they are highly attractive towards datasets in which there are many complex attributes 

whose relationships may be ill understood. The medical field is one application of this, such as 

cancer classification or organ transplant survival prediction, and ANNs have seen a recent 

resurgence due to this application. An ANN itself is comprised of an input layer, a set of one or 

en layers, and an output layer, as shown in Figure 2. 
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where 
ij

w  are the weights assigned to the inputs to that neuron ix  (which are the outputs of the 

neurons of the previous layer) and 
j

θ  is the bias. The weighted sum 
j

Y  as in Eq. (4) is then 

passed through a normalization function, such as the Sigmoid function as represented via Eq. (5), 

which transforms it to be in the range of [0,1]: 
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The determination of these weights is performed during the training phase, where the 

network is exposed to training data and adjusts the weights to optimize the classification or 

prediction performed. The training data must be used in conjunction with a set of testing data, 

which is an integral part of the training process. If a neural network is trained heavily on a set of 

data, it may be over-trained and thus, lose its ability to generalize its predictions or 

classifications towards problems in general. 

The training process itself is most commonly performed following a back-propagation 

algorithms, which is a gradient descent algorithm that propagates the errors through the network. 

This minimizes the total error by adjusting the weights and the error most conventionally utilized 

being the root mean square error (RMSE) as in Eq. (6). 
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where tO  is the output of the t
th

 unit. Back-propagation training adjusts the weights according to 

Eq. (7): 
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where η  is the parameter governing the magnitude of steps to be performed. 

The final task is to determine its accuracy by testing the network with a set of validation 

data. The accuracy is a function of true and false-positives, if performing classification, and these 

two metrics are important in desiring a generalized neural network that has not been over-

trained.  In the case of continuous data, typical R
2
 or other metrics may be used to determine 

accuracy.  Ten-fold cross validation is utilized here to ensure that over-fitting does not occur 

(Kohavi, 1995). 

The data that the network is trained with is of the utmost importance. Artificial neural 

networks are typically referred to as a “black-box” due to the inability to determine what exactly 

has been conducted as the network is being trained. All that remains is a set of nodes with 

various weights attached to them that hold no physical/intuitive meaning. As such, the 

preprocessing of data for a neural network is very important. Contradicting data leads to poor 

predictions and data with fairly little variability would lead to a lack of generalizability. 

One property of the dataset that greatly benefits a neural network is monotonicity, which 

refers to the fact that the values do not increase and then decrease, or vice versa. This is another 

way of saying contradicting data. This may not, however, always be satisfied, especially with 

medical attributes which may be complexly related. Outlying data or highly contradictive data, 

however, should be removed through some form of analysis of the data. Here, DEA is deployed 

to perform this function. Preprocessing of the dataset for the ANN is where most of the effort 

should be focused, for it is here that increases the accuracy and also generalizability is ensured. 

 

3.5.3 DEANN Methodology Implementation 

All results in this work were obtained through scripts written in the R language.  Freely 

available lpSolve package (under LGPL 2) is utilized for the ‘lp’ function, which is a linear 

programming solver.  This allows DEA to be implemented and makes it highly modifiable and 

easily extensible towards new developments.  It also results in a fast run-time (considering the 

number of DMUs considered) and allows consideration of thousands of DMUs simultaneously.  

In this work, stratification is performed on the entire 12,744 records.  The RSNNS package by 

Bergmeir and Benitez (2012) allows use of an ‘mlp’ function, a multi-layer perceptron network 

that can be trained by a variety of methods and allows specific choice of number of hidden 



neurons, learning rate, and other parameters.  This package also contains many other useful 

functions that allow easy normalization, class decoding, etc. 

It should be noted that in standard ten-fold cross validation the one-tenth of the dataset reserved 

for testing is rotated through the entire set.  However, in this work, due to stratification, the 

training data are now scattered throughout the entire dataset.  In order to perform ten-fold cross 

validation those specific records which happen to be in the one-tenth reserved for testing are 

excluded from the training set and the analysis is continued as normal.  This allows specific 

efficient layers to be utilized for training and the entire dataset to be used for testing while 

reducing the risk of over-fitting.  The dataset was also randomized with respect to the records so 

that they were unordered to prevent bias within specific folds of the cross-validation. 

 

4. Results and Discussion 

To test the accuracy of the ANN a discrete multi-class error metric is used that allows for 

less error in those predictions which are placed in classes nearer to the actual.  Receiver operator 

characteristic (ROC) plots, used to show sensitivity and specificity, are not utilized here as 

FUNC_STAT_TRF is not a true class variable, merely a discretized continuous variable 

representing a percent of functional status (10%, 20%, …, 100%).  A discrete accuracy metric 

which is developed in this study is presented as in Eq. (8): 
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where n  is the number of records, x  is the actual value, x
�

 is the predicted value, and ,
max min

x x  

are the maximum and minimum of the actual values, respectively. 

The DEA stratification model was run on the entire subset utilized for this study, yielding twelve 

levels of efficiency.  Table 3 is the mean and variance of the FUNC_STAT_TRF variable of 

each individual level.  As the level number increases, the mean decreases, which means the 



patient status is decreasing, with the largest variance for the middle levels, at which there may be 

many efficient records both in terms of high and low patient status.  This shows that DEA is 

separating, by levels, high and low patient statuses based on their inputs.  This can also be seen 

in Table 4, which contains the correlations of single levels. 

Table 3. Mean and variance of individual efficiency levels from DEA 

Level Mean Variance 

1 92.63158 245.27 

2 86.81111 441.41 

3 83.21292 502.34 

4 79.82329 501.37 

5 77.73079 479.53 

6 70.73362 560.30 

7 56.95415 715.85 

8 51.34238 475.69 

9 47.42647 418.67 

10 50.10989 293.74 

11 27.51634 187.21 

12 25.42169 71.47 
 

 

Table 4. Correlation of FUNC_STAT_TRF with other variables for individual efficiency levels 

Level BMI_TRR BMI_DON AGE AGE_DON DAYSWAIT_CHRON FUNC_STAT_TRR GTIME 

1 0.08 0.25 0.09 0.13 -0.10 -0.10 -0.33 

2 0.14 0.11 -0.11 -0.03 -0.01 0.10 -0.29 

3 0.07 0.16 0.07 0.04 -0.18 0.20 -0.36 

4 0.18 0.11 0.17 0.10 -0.11 0.14 -0.31 

5 0.19 0.17 0.14 0.20 0.01 0.10 -0.26 

6 0.21 0.20 0.14 0.13 0.04 0.27 -0.04 

7 0.01 0.15 0.10 0.30 0.02 0.07 0.08 

8 0.00 0.00 0.05 0.23 0.01 0.11 -0.14 

9 -0.01 0.13 0.06 0.04 0.10 -0.09 -0.33 

10 0.39 0.40 0.32 0.42 0.10 0.01 -0.16 

11 0.19 0.25 0.26 0.27 0.20 0.37 -0.33 

12 0.09 -0.13 0.27 0.14 0.10 -0.03 -0.51 

 

Table 4 shows that individual levels still result in patient status being significantly 

correlated with one or more inputs.  Which variable it is correlated with changes due to each 



layer containing different patient statuses, as discussed in Table 3 earlier.  Level 12 effectively 

contains only very low patient statuses and is positively correlated with AGE and AGE_DON, 

which shows that younger age may not necessarily result in a better patient status (recall that 

inputs were inverted as they were tapped into DEA).  The number of days the recipient has 

waited is negatively correlated with patient status in the first few levels and as the levels 

increase, it becomes positively correlated, which makes medical intuitive sense considering that 

a longer time spent on the waiting list should have a negative impact.  Another interesting 

discovery of this study to note is that BMI of the donor and the recipient and FUNC_STAT_TRR 

(i.e. the functional status at time of transplant) are not strictly positively (or negatively) related to 

the functional status of the patient at follow up.  GTIME is also negatively correlated with 

recipient status for all levels.  This may be due to the fact that DEA only considers a limited 

number of variables compared to the many available, but it still shows an interesting relationship 

between the two. 

One other set of interesting DEA stratification results is tabulated as in Table 5, which is 

the correlation of the recipient status with level sums.  The results here illustrate how correlation 

of recipient status effectively decreases as records of individual levels are added together.  Level 

sum 12, for example, is the sum of all efficiency levels and would return the original dataset. The 

correlation of recipient status with all variables is very low, unlike for level 1, which considers 

only a single level, and has a significant correlation with many inputs.  This high correlation for 

individual levels is what would hypothetically be highly beneficial to machine learning 

processes.  Training with uncorrelated data results in contradictory observations tapped into the 

prediction method which may yield low accuracy.  Consideration of fewer efficiency levels 

reduces those contradictions. 

  



 

Table 5. Correlation of FUNC_STAT_TRF with other variables for sums of efficiency levels 

Level 

Sums 
BMI_TRR BMI_DON AGE AGE_DON DAYSWAIT_CHRON FUNC_STAT_TRR GTIME 

1 0.08 0.25 0.09 0.13 -0.10 -0.10 -0.33 

2 0.11 0.13 -0.04 0.01 -0.04 0.00 -0.29 

3 0.06 0.12 0.01 0.03 -0.12 0.07 -0.31 

4 0.07 0.09 0.05 0.03 -0.11 0.08 -0.29 

5 0.07 0.09 0.06 0.05 -0.06 0.06 -0.27 

6 0.07 0.08 0.05 0.03 -0.06 0.07 -0.22 

7 0.06 0.06 0.04 0.03 -0.05 0.03 -0.14 

8 0.04 0.04 0.04 0.03 -0.05 0.03 -0.06 

9 0.04 0.04 0.04 0.02 -0.04 0.03 -0.01 

10 0.04 0.03 0.03 0.01 -0.04 0.03 0.02 

11 0.04 0.03 0.02 0.00 -0.04 0.02 0.06 

12 0.04 0.03 0.02 -0.01 -0.04 0.02 0.08 

 

The ANN was configured to use back-propagation algorithm for weight determination 

with a hidden layer of twenty neurons.  The ANN was then trained on a sum of levels, such as 

the first, first plus second, so on and so forth up until the sum of all levels. Level one contains 

1045 records, levels one and two comprise 2845, and so on until the combination of all levels 

yields the original subset. 

The results of the ANN testing can be seen in Tables 6 through 8.  Table 6 represents the 

confusion matrix for the testing data of chosen level sums, while Tables 7 and 8 are for levels 1-

3 and levels 1-12, respectively, 12 being the maximum number of levels. 

 

  



 

Table 6. Confusion Matrix for Level One, First Fold. 

 Predicted 

Actual 

5 6 7 8 9 10 

1 0 5 0 3 5 51 

2 0 1 3 1 0 31 

3 0 0 3 2 1 34 

4 0 0 2 0 0 32 

5 2 0 3 0 1 48 

6 0 5 7 3 12 107 

7 0 0 5 2 0 101 

8 0 1 4 15 1 181 

9 0 3 5 2 12 192 

10 0 3 8 7 3 367 

 

 

 

 

 

Table 7. Confusion Matrix for Levels One-Three, First Fold. 

 Predicted 

 2 4 5 6 7 8 9 10 

 

 

 

 

 

Actual 

1 3 0 0 0 0 3 21 37 

2 4 0 1 0 0 2 12 17 

3 0 1 0 1 1 4 3 30 

4 0 7 1 0 0 2 8 16 

5 0 0 7 1 3 2 7 34 

6 0 1 0 6 3 9 26 89 

7 0 2 2 0 2 13 22 67 

8 1 1 0 1 3 70 40 86 

9 0 0 1 0 2 12 118 81 

10 0 0 0 9 0 14 19 346 

 

 

 



 

Table 8. Confusion Matrix for Levels One-Twelve, First Fold. 

 Predicted 

 2 3 4 5 6 7 8 9 10 

Actual 

1 1 1 0 0 8 4 11 13 26 

2 4 0 0 0 3 6 7 3 13 

3 3 3 0 0 4 2 11 6 11 

4 0 1 2 0 1 4 8 3 15 

5 1 3 0 7 9 9 4 5 16 

6 3 2 1 1 40 16 16 14 41 

7 5 2 1 1 10 34 15 10 30 

8 0 3 0 0 3 9 120 14 53 

9 0 2 1 0 10 4 7 146 44 

10 2 2 3 3 14 20 26 40 278 

 

The confusion matrices show that DEA reduces the generalizability of the dataset.  Many 

more records are predicted as a class 10 due to the way in which there are so many records that 

have a functional status of ten.  Using a single level results in almost no predictions as anything 

other than a 10 due to the fact that majority of records have a functional status of 10.  As the 

level sums are increased, the ANN regains the ability to generalize and the sum of the first three 

levels shows that predictions are again appearing on the diagonal.  In fact, this by itself signifies 

the power of the proposed integrated DEANN methodology. There are still great many more 

predictions as a class 10 compared to the actual, especially for lower values of the functional 

status, which DEA has most likely thrown out as inefficient due to its lack of ability to handle 

many of the variables that the ANN considers. Application in reduction of this oversampled class 

through random sampling or other methods designed to equalize class distributions might prove 

beneficial towards improving overall accuracy as well as detectability of rarer events. 

Using Eq. (8), Table 9 contains the accuracy for the ten folds of cross-validation as well 

as the mean for the same levels as was displayed in Tables 6-8.  It can be seen that in the worst 

case scenario, utilizing DEA with only level one, the accuracy is reduced from 81.6% to 73.9%.  

A significant decrease and therefore, the correct choice of level sum is further investigated next 

in Figure 3. 

 



Table 9. Accuracy for Ten-Folds for Levels One, One-Three, and One-Twelve. 

Fold Level 1 Levels 1-3 Levels 1-12 

1 0.742805 0.781266 0.811879 

2 0.730682 0.777778 0.811966 

3 0.739752 0.772458 0.815542 

4 0.733211 0.773155 0.816588 

5 0.741148 0.783098 0.829758 

6 0.744724 0.789116 0.825135 

7 0.736525 0.780045 0.805425 

8 0.736264 0.786325 0.821821 

9 0.740799 0.779260 0.809262 

10 0.744811 0.782138 0.813623 

Mean 0.739072 0.780464 0.816100 

 

Figure 3 summarizes the mean accuracy and record count for the training of the ANN at 

different level sums.  In this figure, the record count is represented as a percent of total, with 

100% representing the full 12,744 records.  The accuracy is fairly stable until level sum 6, at 

which each decrement in level sum reduces the record count by a significant amount, also 

decreasing the accuracy.  The difference in accuracy can largely be ignored for level sums 9 

through 12 due to slight variances when training the ANN.  It can be seen that for all level sums 

the accuracy remains fairly stable, with a maximum difference of roughly 8%. In either case, 

DEANN method proves superior and increases the performance of prediction for such a large 

dataset. 

 



 

Fig. 3. Accuracy and Record Count Totals as a Function of Efficiency Level Sums 

 

5. Conclusion 

The ANN provides a good baseline for the predictions of the functional status of patients, 

providing acceptable accuracy considering the complex relationship amongst the variables and 

the high volume of records.  On the other hand, DEA efficiency levels effectively separate 

records based on correlation of inputs and outputs.  Individual levels have varying levels of 

significant positive and negative correlation between inputs and outputs compared to the original 

dataset which has very low correlation.  Consideration of specific level sums maintains an 

accuracy metric while at the same time reducing the size of the dataset being considered by the 

ANN which, among other things, reduces the training time of the ANN considerably. This study 

presents a hybrid methodology, i.e. DEANN, that integrates these two data analytic methods and 

collectively utilizes the abovementioned features of the two. The viability of the complementary 

nature of ANN and DEA is presented in this study along with a complex, large, US-based nation-

wide healthcare dataset. Although the proposed DEANN method is validated here via a 

healthcare-based dataset due to its recent popularity in literature, the generic nature of the 

method renders it viable and practically applicable to other settings that deploy large datasets in a 

similar fashion. It would hypothetically provide more efficiency in computation of prediction 

and would be an effective way to deal with such voluminous datasets. 
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Since conventional DEA approaches work best with continuous data, this current study 

has utilized only continuous variables available in the UNOS database. However, much research 

has been done in DEA recently to consider other variable types and it is the authors’ intention 

that this work will be expanded to consider both ordinal and binary data types to better classify 

the transplants at another study. Future research directions also include the implementation of a 

modified DEA which considers ordinal and binary values, large scale pruning of the ANN, and 

reduction of oversampled outputs to further improve training of the ANN.  Nevertheless, this 

study itself provides a strongly acceptable baseline for which these future research goals would 

improve upon.  
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Highlights: 

• A hybrid methodology, DEANN, for prediction improvement was developed. 

• DEA was utilized to classify the dataset in efficiency frontiers. 

• Predictions were performed using an ANN due to the complexity of dataset. 

• Implementation was performed on an organ transplant dataset.  

• High accuracy rates with a reduction in training dataset size validate the DEANN. 

• This generic approach is readily applicable to a wide number of areas. 

 




