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Abstract:  A risk-averse firm’s financial hedging activity can impact the decision making in its 

daily operations.  We introduce a CE-based approach that can help the firm to simplify the 

procedure in making hedging-consistent decisions.  A key feature of this new approach is that it 

allows for the existence of nonfinancial random factors, which give rise to the risk exposure that 

cannot be hedged in the financial market.  By using a CE operator, we show that the optimal 

operational policy can be obtained by maximizing the CE-based value function.  Although the 

CE operator may bring additional nonlinearity to the value function, we find that the commonly 

desired base-stock policy can remain optimal under specific conditions.  We hope that this new 

approach can help pave the way for future investigation on joint operations management and 

financial hedging problems in dynamic settings.  

Keywords: operations management; financial hedging; exponential utility; risk aversion 

 

1.  Introduction 

When making procurement, inventory, and production decisions, firms are usually exposed to 

uncertainties such as volatile commodity price, fluctuating foreign exchange rates, as well as 

uncertain customer demands.  Such risk exposures are undesirable for risk-averse firms, but they 

could be controlled by financial hedging, typically using available hedging instruments like 

commodity futures, options, and currency swaps from the financial market.  As reported by a 
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recent empirical study (Bartran et al. 2009) on 7,319 nonfinancial firms across 50 countries, over 

half (60.3%) of the surveyed firms have implemented some form of hedging using financial 

derivatives.  These hedging activities are found to have some significant implications on the 

operational decisions made in firms’ daily operations (see, e.g., Ding et al. 2007, Chod et al. 

2010).  In particular, financial hedging can reduce at least part of the risk exposure faced by a 

risk-averse firm.  Such reductions in risk exposure, according to Eeckhoudt et al. (1995), will 

then lead to an increase or decrease in the optimal purchasing quantity of the firm.  As a result, 

there is a need to investigate how to make the optimal operational decisions that are consistent 

with a risk-averse firm’s financial hedging activities.  

      Our interest in studying the aforementioned hedging-consistent operational decisions was 

motivated by the increasing availability and widely use of financial hedging instruments 

nowadays.  Nevertheless, how to quantify the economic implications of financial hedging on 

operational decisions remains a challenging problem despite the growing academic and research 

effort.  To simplify the analysis, some researchers have resorted to the complete market 

assumption; that is, assuming that the risk exposure involved in the firm’s operations can be fully 

replicated by a “perfect” financial hedging portfolio in the market (Van Mieghem 2003).  Given 

the existence of the replicating portfolio, the well-known risk-neutral valuation method in the 

finance literature can then be transplanted to “value” the operational decisions (Birge 2000).  

Consequently, the hedging-consistent operational decisions can be made via maximizing the 

expected value of the profit with the risk-neutral probability measure (Goel and Gutierrez 2011).  

Thus, this approach is referred to as the EV-based approach (expected-value-based approach) in 

this paper.  The EV-based approach is appealing because it can help substantially reduce the 

number of decision variables when financial hedging is involved – the decision variables 

regarding the hedging positions are entirely eliminated from the Bellman equation.  However, 

there is a major obstacle when applying this approach in practice – the complete market 

assumption may not be entirely justified.  As Birge (2000, pp. 22-23) writes, “an investor might 

only be able to remove part of the market risk and then have some uncontrollable portion that 

still remain.  This remainder would cause a limit to the extent that a market can value our 

decision.” To appropriately account for the “remainder risk”, the complete market assumption 

must be relaxed.  
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      By relaxing the complete market assumption, we develop a CE-based approach (the 

certainty-equivalent-based approach) for risk-averse firms to make the hedging-consistent 

operational decisions in dynamic settings.  The CE-based approach is a novel extension of the 

EV-based approach because it allows for the existence of nonfinancial random factors in 

addition to financial random factors.  For nonfinancial firms, the distinction between the 

financial random factors and nonfinancial random factors is the key to differentiate the financial 

risk that can be hedged using derivatives from the remainder risk that cannot.  On the one hand, 

financial random factors refer to the risk factors associated with the price processes of some 

financial securities/indices, such as the fluctuating commodity price and volatile currency rates.  

On the other hand, nonfinancial random factors represent the idiosyncratic disturbances (e.g., 

uncertain customer demand, random production yield) that are unrelated to the financial market.  

Both types of random factors can disturb a firm's operating profit in significant ways.  For 

example, the operating profit of a multinational firm is exposed to both the volatile currency 

rates and uncertain global demand.  The currency risk can usually be hedged using currency 

derivatives (Ding et al. 2007), so it should be recognized as a financial random factor.  In 

contrast, the demand uncertainty is the remainder risk that cannot be hedged in the financial 

market, and thus should be treated as a nonfinancial random factor.  When the nonfinancial 

random factor exists, the complete market assumption cannot apply, and the EV-based approach 

is no longer optimal.  In this situation, the proposed CE-based approach can still be applied to 

simplify the procedure of making hedging-consistent operational decisions.  The advantage is 

that the CE-based approach helps reduce the number of decision variables as the EV-based 

approach does.  Moreover, we also investigate some structural properties of the CE-based value 

function, which allows us to prove that the commonly desired base-stock policy is optimal under 

a set of sufficient conditions.  In addition, we present some straightforward numerical results to 

show that the CE-based approach dominates the EV-based approach in most of the cases.  

      This paper is closely related to the growing research on the interface of operations 

management and finance.  In recent years, it is found that there exists complex interplay between 

the operational and financial hedging decisions.  As shown by Chod et al. (2010), financial hedge 

and operational flexibility can be either complementary or substitutable under different situations.  

Another interpretation of this complicated relationship is that operational decisions can be 

significantly affected by financial hedging in different ways.  As a consequence, many 
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researchers have investigated how to make the hedging-consistent operational decisions for risk-

averse firms.  Gaur and Seshadri (2005) have shown that a risk-averse newsvendor should 

increase its order quantity when financial hedging is adopted to mitigate the demand risk.  In 

another contribution, Ding et al. (2007) have investigated the implications of a global 

manufacturer’s financial hedging activity against currency risk on its operational decisions.  For 

other examples regarding the impacts of financial hedging on operational policies, see Caldentey 

and Haugh (2006), Caldentey and Haugh (2009), and references therein.  However, these papers 

typically assume a newsvendor setting in their models (i.e., single-period problems), which may 

have limitations in practice.  One exception is Kouvelis et al. (2012), who have analyzed the role 

of financial hedging in a multi-period commodity procurement and storage problem using a 

mean-variance utility criterion.  In contrast, we present a new approach that can pave the way for 

investigating a class of multi-period joint operational and financial hedging problems by using 

the exponential utility criterion.  

      This research is also related to the real option literature.  This stream of research concerns the 

valuation of real options embedded in risky projects such as R&D projects (Santiago and Vakili 

2005), supply chain network design (Huchzermeier and Cohen 1996), and capacity investments 

(Birge 2000).  A central assumption in the real options theory, as analogues to ours, is that the 

cash flows from the real assets are correlated with the stochastic price processes of some traded 

securities or indices in the financial market.  Then, the financial option pricing method is applied 

to value these risky projects due to the non-arbitrage argument or the existence of replicating 

portfolios (Duffie 2001).  For more examples on the application of real option theory, see 

Dentskevich and Salkin (1991), Copeland and Antikarov (2001), Berling (2008).  Our paper 

differs from this literature in that we do not focus on valuation.  Generally speaking, valuation of 

real options can be performed without virtually trading financial securities in the market.  In 

contrast, we aim at quantifying the economic implications of financial hedging on operational 

policies when a risk-averse firm can trade securities in an accessible financial market to construct 

the desired hedging portfolio.  

      The remainder of this paper proceeds as follows: In section 2, we introduce a general 

modeling framework for both the operations management and financial hedging.  An illustrative 

example is provided to show its applicability.  In section 3, the exact procedure of the CE-based 

approach is introduced and discussed in detail.  In section 4, we numerically compare the CE-
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based and EV-based approaches.  In section 5, we summarize the main results and present some 

concluding remarks.  Finally, in the Online Appendix we present (i) all the missing proofs, (ii) an 

introduction of the EV-based approach, and (iii) a discussion on how to identify a pair of 

independent financial and nonfinancial random factors by transformation.  

2.  Operational Decisions and Financial Hedging - A General Modeling Framework 

The planning horizon under consideration is [0, ]T .  Without loss of generality, T  is assumed to 

be a positive integer.  Then, the entire planning horizon is separated evenly into T  periods, each 

of which contains a unit time and is indexed as 0,1,..., 1k T= − .  For period k , the associated 

time interval is [ , 1]k k + , whereby the index k  also represents the exact time instant at the 

beginning of that period.   

2.1.  Operational Decision Making  

For each period k  ( 0 1k T≤ ≤ − ), the operations of the firm are characterized by the state 

vector 
k
y , the operational decision (vector) 

k
x  and the resulting operating profit ( , )

k k k
R� x y .  

First, the state 
k
y  is realized at the beginning of that period, and updated periodically by a 

transition function:  

1 1
( , )

k k k k+ +
=y y x y           (1) 

Secondly, the decision 
k
x  is made at the beginning of the period once the realized state vector 

k
y  is observed (For simplicity, we assume that the decision 

k
x  can take value in a feasible 

region that will not change with k , i.e., 
k X

∈ Ωx ).  Thirdly, ( , )
k k k

R� x y  is realized at the end of 

period k , given that the state 
k
y  has been realized and the decision 

k
x  has been made.  

      The operations of the firm at period k  would be disturbed by both financial and nonfinancial 

random factors, denoted by 
1k

ω
+

 and 
1k

ξ
+

, respectively.  Note that the subscript 1k +  here 

indicates that these factors are realized at the end of period k , or equivalently, the beginning of 

next period 1k + ; so they should still be regarded as random variables at the beginning of period 

k .  The financial and nonfinancial random factors are distinguished from each other, in a sense 
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that the financial random factors are associated with the random price movement in the financial 

market, while nonfinancial random factors are not.  Intuitively, one can expect that financial 

hedge can only cover the risk exposure arising from the financial random factors, so the 

“remaining” exposure after financial hedging should arise from nonfinancial random factors.  

Thus, it is assumed that the financial and nonfinancial random factors are independent with each 

other.   

Remark 1.  There are two reasons to justify the above independence assumption between the 

financial and nonfinancial random factors.  First, this assumption can avoid unnecessary 

complications in subsequent analysis and simplify the presentation of our main results.  Second, 

while the assumption may appear a bit restrictive, in fact it is not.  This is because the validity of 

the assumption relies on the choice of the financial and nonfinancial random factors used in the 

modeling.  In many practical cases, one can “circumvent” the issue of possible dependence 

between financial and nonfinancial random factors by appropriately transforming the random 

factors and converting the profit and transition functions, as will be shown in section 3.2.  

      We can now formalize the above idea that the operations of the firm would be disturbed by 

both financial and nonfinancial random factors.  First, at period k , the operating profit 

( , )
k k k

R� x y  as well as the transition function 
1
( , )

k k k+
y x y  should rely on the financial and 

nonfinancial random factors 
1k

ω
+

 and 
1k

ξ
+

, i.e., 
1 1

( , ; , )
k k k k k k

R R ω ξ
+ +

=� � x y  and 

1 1 1 1
( , ; , )

k k k k k k
ω ξ

+ + + +
=y y x y .  Moreover, it is also possible that the operational result of the firm 

at period k  can rely on the financial and nonfinancial random factors (
t

ω  and 
t

ξ ) for the 

previous periods ( 0 t k≤ ≤ ).  As a result, the general functional form of the operating profit 

and the transition function should be written as 
0 1 0 1

( , ;{ } ,{ } )
k k k k t t k t t k

R R ω ξ
≤ ≤ + ≤ ≤ +

=� � x y  and 

1 1 0 1 0 1
( , ;{ } ,{ } )

k k k k t t k t t k
ω ξ

+ + ≤ ≤ + ≤ ≤ +
=y y x y .  However, for notational ease, we will suppress the 

dependence on all these factors (
0 1

{ }
t t k

ω
≤ ≤ +

 and 
0 1

{ }
t t k

ξ
≤ ≤ +

) and write ( , )
k k k

R� x y  and 

1
( , )

k k k+
y x y  for convenience.   
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      To show the applicability of the above modeling framework, an illustrative example is 

provided below.  We will use this example throughout this paper to illustrate how to apply our 

theoretical results.  

An illustrative example: Commodity procurement and storage under financial hedging 

Commodity procurement is one of the key business activities for many manufacturers who use 

the commodity as production inputs.  Due to the high volatility in the commodity price nowadays, 

manufacturers are overhauling their ways to manage the commodity supply, especially in terms 

of buying and hedging smartly in the commodity market (Wiggins and Blas 2008).  In this 

context, some of the notations above are reinterpreted to provide a better description of the 

framework.  

      Consider a manufacturer who needs to procure a storable commodity from the spot market to 

satisfy the commodity demand in the production of the end-products.  At the beginning of each 

period k , the manufacturer should determine how to adjust its commodity inventory with the 

commodity spot market.  If the inventory level is too low, the manufacturer may replenish the 

inventory by purchasing from the commodity spot market.  In rare cases that the inventory level 

is too high, the manufacturer also has the freedom to sell an amount of its stored commodity to 

the spot market if it is profitable to do so.  Then, the adjusted commodity inventory can be used 

to satisfy the uncertain commodity demand 
k

D�  at that period.  Any unsatisfied demand is 

backlogged and any excessive inventory of the commodity is carried over to the next period.  

Excessive inventory for the ending period, if any, is sold to the spot market.  Let 
k

y  (state 

variable) be the initial inventory level at period k  while 
k

x  (decision variable) the adjusted 

inventory level immediately after buying from or selling to the spot market at that period.  Then, 

the procurement quantity is 
k k

x y− , and the transition function of the state variable can be 

formulated:  

1k k k
y x D

+
= − �           (2) 

      Let h , q , and r  be the unit inventory holding cost, the backlogging cost, and the unit sales 

revenue of the commodity, respectively.  We can write out the operating profit for period k :  
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( , ) min( , ) ( )
k k k k k k k k k k k k

R x y r x D h x D q D x S x y
+ +

= − − − − − ⋅ −� � � �    (3) 

where | | max(0, )z z+ = , and 
k

S  is the commodity spot price.  

      The manufacturer is risk averse, and it seeks to mitigate its risk exposure by hedging against 

the volatile commodity price using commodity derivatives (futures and options), as in Kouvelis 

et al. (2012).  In this setting, one may intuitively recognize the random variations in the 

commodity price as a financial random factor (
k

S  as 
k

ω ), while the uncertain demand as a 

nonfinancial random factor (
k

D�  as 
1k

ξ
+

).  See section 3.2 for a detailed discussion.  

      Apart from the multi-period inventory problems, the above modeling framework may also be 

applied to describe many other operational activities, such as production planning (Ding et al. 

2007), product sourcing (Caldentey and Haugh 2009), and materials distribution (Goel and 

Gutierrez 2011).  Moreover, it is also possible to extend our model by introducing some capacity 

constraints on the decision vector 
k
x  (Birge 2000).   

2.2.  Financial Hedging Portfolio 

As is standard in the finance literature, given a probability space ( ), ,QΩ F  that describes the 

possible states of the financial market, the financial market is characterized by the price vector 

( )
t t t

ω=X X  of a set of securities at any time t .  Here, we use the term “security” to denote all 

the relevant financial hedging instruments (e.g., commodity futures and options) available in the 

financial market.  Let 
0

{ }
t t T≤ ≤
F  be the natural filtration generated by the stochastic process 

t
X .  

Without loss of generality, the probability measure Q  is the risk-neutral probability measure, 

which amounts to requiring that 
t
X  is a Q -martingale, i.e., 

0

Q

t
E   = X X  (Duffie 2001).  For 

the moment, the risk-free interest rate is assumed to be 0, and this assumption will be relaxed in 

section 3.3.   

      To avoid unnecessary complexity and without loss of generality, the “building blocks” that 

we use to construct the hedging portfolio are the attainable contingent claims. A contingent claim 
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G  is said to be attainable if and only if there is a predictable self-financing strategy θθθθ  such that 

( )G G=θθθθ , where the gain process ( )G θθθθ  is defined as follows:  

0
( ) ( )

T

t
G t d= ⋅∫θ θθ θθ θθ θ X  

See Duffie (2001) for a detailed technical discussion of the attainable contingent claims as well 

as self-financing trading strategy.  Further, following Caldentey and Haugh (2009), we assume 

that the financial market itself is complete in that any 
T
F -measurable contingent claims are 

attainable.  Such a complete financial market assumption relaxes the aforementioned complete 

market assumption – it does not exclude the existence of the nonfinancial random factors that are 

irrelevant to the financial market.  The completeness of the financial market is also equivalent to 

the uniqueness of the risk-neutral probability measure Q  (Duffie 2001).  Given the complete 

financial market assumption, any 
T
F -measurable contingent claims must be attainable, thus 

allowing us to avoid the tremendous complexity of solving for the self-financing trading 

strategies for the financial hedging.  For more discussion of the attainable contingent claim, self-

financing trading strategy, and complete financial market, see Harrison and Kreps (1979), and 

Duffie (2001); for a detailed justification of the complete financial market assumption, see 

Caldentey and Haugh (2009).   

2.3.  The Joint Operational and Financial Hedging Decisions 

The risk-averse firm, seeking to maximize the expected utility of terminal wealth, must choose 

the best operational policy in accordance with financial hedging.  During the planning horizon, 

the operational decisions made in all periods are summarized by the operational policy α  as 

follows:  

{ }
1

0

T

k k
α

−

=
= x            (4) 

Given α , the overall operating profit ( )αΠ  is 

1

0

( ) ( , )
T

k k k
k

Rα
−

=

Π = ∑ �� x y           (5) 
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As to financial hedging, let ( )
h h

G G= θθθθ  be the financial hedging portfolio to be constructed, 

where 
h

θθθθ  is a self-financing strategy.  To describe the firm’s risk aversion in decision making, an 

exponential utility function is employed:  

( ) exp( )u z zγ= − −  

where the parameter γ  denotes the absolute risk aversion.  A larger γ  represents a higher 

degree of risk aversion and vice versa.   

      Given the above notation, we can formulate the firm’s decision-making problem as the 

following joint operational and financial hedging model (JOFM):  

( )
,
max ( ) ( )

h
h

E u G
γα

α Π + 
�

θθθθ
θθθθ          (6) 

which is subject to constraints (1), (4) and (5).  

      Before proceeding to analyze the proposed model JOFM, three clarifying remarks are in 

order:   

Remark 2.  The use of the utility function in the JOFM belongs to the broad class of the so-

called “interperiod” utility functions, which is described and axiomatized by Sobel (2006).  It is 

consistent with the empirical result that firms should control the volatility of the aggregated 

random profits of a certain planning horizon (e.g., the overall profit of a fiscal year, see Graham 

and Smith 1999).  Similar interperiod-utility formulation is also applied in Ding et al. (2007) and 

Kouvelis et al. (2012).  

Remark 3.  There is a caveat on the time consistency and applicability of the proposed model 

JOFM.  As suggested by Sobel (2006), the interperiod utility is especially suitable to describe a 

firm’s risk-averse behavior over a short- or medium-term horizon (e.g., one year).  From the 

finance literature, a firm’s risk aversion in decision making is mainly induced by several key 

determinants, including the progressivity in tax rates, the financial distress costs, and the agency 

costs; see Smith and Stulz (1985), and Graham and Smith (1999) for a detailed discussion.  All 

these determinants are unlikely to change in a short run (e.g., the managerial compensation 

package that can incur the agency costs may change in 10 years, but it is unlikely that such a 

change could happen in a year).  However, in the long run (e.g., 10 years), a firm might gradually 
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become less risk averse as its financial hedging activity substantially lowers the risk exposure 

borne by the firm.  Modeling the possible changes in a firm’s risk attitude in the long run is 

beyond the scope of this paper, and it would be an interesting direction for future research.   

Remark 4.  Besides, we would like to explain why it is necessary to employ the exponential 

utility function, rather than other forms of utility function, to describe risk-averse behaviors in 

the proposed model.  The reasons are two-folds.  First, the exponential utility has certain 

appealing decision-theoretic properties – strictly increasing and concave, constant absolute risk-

averse, etc. (Pratt 1964) – in describing risk-averse behaviors; so it is widely used in the 

literature, see Bouakiz and Sobel (1992), Eeckhoudt et al. (1995), and Chod et al. (2010).  

Second, the use of the exponential utility can avoid possible speculative/gambling activities in 

the name of “financial hedging” when making the multi-period joint financial and operational 

decisions.  According to Henderson and Hobson (2013), for any increasing and strictly concave 

utility functions other than exponential, a supposedly risk-averse decision maker may exhibit 

counter-intuitive behaviors that are actually locally risk-seeking.  Such unexpected behaviors, as 

explained by Henderson and Hobson, can be attributed to the local convexity in the wealth level 

of the decision maker's utility value at the point of indifference, as the local convexity will lead 

to the preference to a "fair gamble" in the financial market.  Indeed, such a situation could arise 

if the operational decisions contain implicit timing options to defer the realization of part of 

operating profits/costs (e.g. deferring the procurement/production/sales of a particular item).  It is 

this counter-intuitive risk-seeking activity that contradicts the purpose of financial hedging.   

      Finally, we emphasize that our main purpose is to develop a “short-cut” for operations 

managers to obtain the optimal hedging-consistent operational policy *α  in the JOFM.  As a 

consequence, we have to limit the investigation on financial hedging.  Specifically, we will only 

solve for the optimal financial hedging portfolio in the form of attainable contingent claims 

( )
h h

G G= θθθθ , without exploring the exact form of 
h

θθθθ .  In fact, there would be some duplication in 

the broad variety of financial derivatives available in the market, e.g., a futures contract can 

always be replicated by two option contracts.  Considering the potential duplication in 

constructing the hedging portfolio is beyond the scope of this paper.  Therefore, in what follows, 

the optimal financial hedging strategy is solved only in terms of attainable contingent claims.  
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3.  Coordinating Operational Decisions with Financial Hedging Activities 

We firstly present the exact procedure of the CE-based approach for determining the hedging-

consistent operational decisions.  We then present some analytical results on the structural 

properties of the CE-based value function.  A set of sufficient conditions are established for the 

base-stock-type operational policy to be optimal.   

      To simplify the following discussion, let us introduce some notational rules regarding the 

expectation operator.  Let z�  be a random variable dependent on both financial and nonfinancial 

random factors.  We use 
k

E z  �  to denote the expected value of z�  calculated at the beginning of 

period k  (0 1k T≤ ≤ − ), that is,  

{ } { }
1 1

T T

t tt k t k

k
E E E

ω ξ
= + = +

 
   ⋅ = ⋅    

 
 

In this way, we have 
0

E z E z   =   � � .  Similarly, we use Q

k
E  ⋅   to denote the expectation with 

respect to the risk-neutral probability measure Q , that is,  

{ } { }
1 1

T T

t tt k t k

Q Q

k
E E E

ω ξ
= + = +

 
   ⋅ = ⋅    

 
 

3.2.  The Certainty-Equivalent-Based Approach 

In this section, a new approach (the CE-based approach) is established to simplify the procedure 

to obtain the hedging-consistent operational policy.  First of all, we need to introduce a CE 

operator.  For an arbitrary random payoff z�  whose value relies on the realized value of a random 

variable η , the CE operator CE
η
 ⋅   is defined as follows:  

( ){ }1
log expCE z E z

η η
γ

γ

−    = − ⋅   
� �        (7) 

The value of certainty equivalent CE z
η
  �  has a deep economical meaning: it is the guaranteed 

amount of money that the decision maker would regard as equally desirable as the random 

payoff z�  (see, e.g., Smith and Nau 1995).  This operator is applied here to help quantify the 

economic impacts of nonfinancial random factors on the hedging-consistent operational policy.  
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As in Pratt and Zeckhauser (1987), we can use the CE operator to quantify the cash equivalent of 

the uncertain profit streams earned by the firm given the financial hedging.  Formally, for each 

period k  ( 0 1k T≤ ≤ − ), we define the CE-based value function ( , )
k k k

V x y  – the cash 

equivalent of the uncertain operating profits from period k  onward – in an iterative manner as 

follows (Recall that { }kξ  denotes the nonfinancial random factors):  

( )
1

*

1 1 1
( , ) ( , ), ( , ) ( , )

k

Q

k k k k k k k k k k k k k k
V E CE V R

ξ
+

+ + +
  = +   

�x y x x y y x y x y  

where 0
T

V = , and *

1
( , )

k k k+
x x y  is the optimal operational decision made at the beginning of 

period 1k + .  As will be shown, *

1
( , )

k k k+
x x y  maximizes the CE-based value function at each 

period.   

      With the CE-based value function, we can dynamically identify the risk exposure to be 

hedged in the financial market at each period, that is, the equivalent financial risk exposure 

( , )
k k k

J x y :  

( )( )
1

*

1 1 1
( , ) ( , ), ( , ) ( , ) ( , )

k
k k k k k k k k k k k k k k k k

J CE V R V
ξ

+
+ + +

= + −�x y x x y y x y x y x y   (8) 

An important feature of the exposure ( , )
k k k

J x y  is that, at period k , it is independent of the 

nonfinancial random factors in the subsequent periods (i.e., { }
1

T

j j k
ξ

= +
); so it is 

T
F -measurable.  

In addition, this exposure has zero mean ( 0Q

k k
E J  =  ).  Hence, there exists an 

T
F -measurable 

contingent claim 
,r k

G  that satisfies 
,

0Q

k r k
E G  =   and solves  

,
( , ) 0

r k k k k
G J+ =x y           (9) 

In this way, a dynamic replicating portfolio { }
1

, 0

T

r k k
G

−

=
 can be constructed over the planning 

horizon.  Then, the optimal financial hedging portfolio can be obtained by combining this 

replicating portfolio with a financing portfolio 
f

G , which is defined as follows:  

( )*

0 0 0 0
max ( ,

f
fG

E u G V
γ

 +
 

x y          (10) 
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Given 
f

G  and { }
1

, 0

T

r k k
G

−

=
, we obtain the optimal 

h
G :  

1

,
0

T

h f r k
k

G G G
−

=

= + ∑           (11) 

      The optimality of the above CE-based approach is guaranteed by Theorem 1.   

Theorem 1.  The optimal solution of JOFM can be obtained by the CE-based approach.  

Specifically, the optimal operational policy { }
1

* *

0

T

k k
α

−

=
= x  can be obtained by solving the 

following dynamic program (
* 0

T
V = ):  

( )
1

* *

1 1
( ) max ( , ) ( , )

k
k

Q

k k k k k k k k k k
V E CE V R

ξ
+

+ +
  = +  

�

x
y y x y x y     (12) 

Once the optimal operational policy is obtained, the optimal financial hedging portfolio can then 

be constructed using (9), (10) and (11).  

      The Bellman equation (12) reveals an important feature of the CE-based approach: we can 

obtain the optimal hedging-consistent operational policy *α  without knowing the exact 

composition of the optimal hedging portfolio.  As a result, the CE-based approach can help 

reducing the number of decision variables.  To understand this, consider the commodity 

procurement example.  In practice, there are at least 12 commodity futures contracts (with 

different maturity dates) available in the market, not to mention the commodity options.  Hence, 

we need a twelve-dimensional vector 
h

θθθθ  to represent the hedging positions for these commodity 

futures.  Together with the inventory decision variable 
k

x , we have totally 13 decision variables 

in the original JOFM, which makes the problem extremely difficult to solve.  Fortunately, we can 

use (12) to simplify the problem, in order to obtain the hedging-consistent procurement policy 

{ }
1

* *

0

T

k k
xα

−

=
=  as follows:  

( )
1

* *

| 1
( ) max ( )

min( , )

k k k
k

Q

k k S S k k k k k kDx

k k k k k k

V y E S x y CE V x D

r x D h x D q D x

+
+

+ +

 = − − + −
+ − − − − 

�

�

� � �
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m�  as the new nonfinancial random factor instead of the 

, and rewrite the transition function (2) and profit function (3) as follows: 

based approach in Figure 1.  

 

the financial and 

the distinction between 

make two key points 

the nonfinancial random factor as the 

of financial random factor.  This point is 
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1
( , )

k k k k k
y x f S m

+
= − �  

( , ) min[ , ( , )] ( , ) ( , ) ( )
k k k k k k k k k k k k k k k k k k

R x y r x f S m h x f S m q f S m x S x y
+ +

= − − − − − ⋅ −� � � �  

Given the conversion, all else being equal, the Bellman equation (12) applies.   

      The second point is about the recognition of financial random factor, which is restricted to 

the firm’s access to the financial market.  An uncertain factor should be recognized as a financial 

random factor if and only if the risk exposure, associated with this uncertain factor, can be 

readily hedged with the related financial instruments in the accessible financial market.  If a 

random factor is just correlated with the price process of a financial security, but this security is 

not available for the firm to use it, then the random factor should also be treated technically as 

nonfinancial.  For instance, consider a local manufacturer who needs to procure two different 

commodities, namely, A and B (e.g., copper and nickel), from the local commodity market to 

serve its production of the end products.  The price volatilities of both commodities can be 

regarded as market risks in the finance literature.  However, the manufacturer may have limited 

access to the commodity derivatives market.  Specifically, the manufacturer can trade the 

derivatives for the commodity A in the local market, but not for B, perhaps because commodity 

derivatives for B are only traded in some remote foreign markets.  In such a case, the 

manufacturer can construct a market portfolio to hedge against the variations in the price of A, 

which should be treated as a financial random factor.  However, the price volatility of 

commodity B should be treated as a nonfinancial random factor.  A more complicated situation is 

that the random prices of A and B may be correlated, but this can be resolved by using our first 

point above.   

3.3.  Further Extension and Analysis 

To further facilitate the application of the CE-based approach, we present several extensive 

results in this section.  First, we relax the former assumption that the interest rate is zero.  Next, 

we investigate the structural properties of the CE-based value function, and show that the base-

stock-type policy is optimal under a set of sufficient conditions.  

      Let’s consider a non-zero interest rate, or equivalently, a nontrivial discounting factor β  

(0 1β< < ).  In this situation, one can replace the original operating profit ( , )
k k k

R� x y  and the 
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security price vector 
t
X  with their discounted versions, namely, the discounted operating profit 

and the discounted security price vector defined as follows: ( , ) ( , )k

k k k k k k
R Rβ′ =� �x y x y  and 

t

t t
β′ =X X .  Then, we have an important result of Harrison and Kreps (1979): any trading 

strategy θθθθ  is self-financing with respect to the original security price vector 
t
X  if and only if it 

is self-financing with respect to the discounted security price vector 
t
′X .  Accordingly, we can 

establish a generalized version of the CE-based approach, which is summarized in Theorem 2.  

Theorem 2.  Given a nontrivial discounting factor β  ( 0 1β< < ), the optimal operational 

policy { }
1

* *

0

T

k k
α

−

=
= x  can be obtained by solving the following dynamic program (

* 0
T

V = ):  

( )
1

* *

1 1
( ) max ( , ) ( , )

k
k

Q k

k k k k k k k k k k
V E CE V R

ξ
β

+
+ +

  = +  
�

x
y y x y x y     (13) 

Once the optimal operational policy is obtained, the optimal financial hedging portfolio can then 

be constructed using (9), (10) and (11), but the security price vector 
t
X  must be replaced by its 

discounted version 
t

t t
β′ =X X .  

      Next, we embark on a discussion on the structural properties of the CE-based value function 

defined in the Bellman equation (13).  As shown by Smith and McCardle (2001), one can usually 

characterize the optimal solution of a Bellman equation by deriving several desired structural 

properties of the value function (e.g., monotonicity and concavity), and this can be done easily if 

the Bellman equation involves only linear operators.  Unfortunately, the CE operator is nonlinear, 

which makes it difficult to analytically characterize the optimal solution of the Bellman equation 

(13).  However, the difficulty can partially be relieved by the following result of Proposition 1, 

which shows that the CE operator preserves concavity – a commonly desired structural property 

in characterizing optimal solutions.   

Proposition 1.  The CE operator CE
η
 ⋅   preserves concavity.  Specifically, if a function 

( )W ;ηy  is concave in y  for any realized value of the random variable η , so is the value 

function ( ) ( )V CE W ;
η

η =  y y .   
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      From Proposition 1, one can expect that the CE-based value function *( )
k k

V y  is concave in 

k
y  under appropriate conditions.  In particular, we can establish a set of sufficient conditions 

which restrict the functional forms of the operating profit function ( , )
k k k

R� x y  and the transition 

function 
1
( , )

k k k+
y x y :  

(A1) The transition function is affine, i.e. 
1
( , )

k k k k k k k k
A B c

+
= + +� � �y x y x y , where the coefficients 

k
A�  and 

k
B�  are (random) matrices while 

k
c�  a (random) vector.   

(A2) The condition (A1) holds and 0
k

B =� , i.e. the transition function does not rely on the 

current state vector 
k
y .  

(A3) The profit function is separable: ( , ) ( ) ( )
k k k k k k k

R J L= +� � �x y x y , where ( )
k

J ⋅�  is concave 

while ( )
k

L ⋅�  is both concave and independent of the nonfinancial random factor 
1k

ξ
+

.  

      In general, condition (A1) ensures that the value function *( )
k k

V y  inherits the concavity from 

the operating profit function ( , )
k k k

R� x y ; conditions (A2) and (A3) then ensures that a base-stock-

type policy is optimal.  These results are summarized in Theorem 3.  

Theorem 3.  (i) Suppose that condition (A1) is true.  Then, if the operating profit ( , )
k k k

R� x y  is 

concave in ( , )
k k
x y  for each period k , the CE-based value function 

*( )
k k

V y  will also be concave 

in 
k
y .  

(ii) Suppose that conditions (A2) and (A3) are both true. Then, for the Bellman equation (13), a 

base-stock-type policy is optimal, that is,  

( )
1

* *

1
argmax ( )

k

Q k

k k k k k k k k
x E CE V A c J

ξ
β

+
+

  = + +
  

� ��x x      (14) 

      As a direct application of Theorem 3, we can show that a base-stock policy is optimal for the 

commodity procurement example presented in section 2.  From equation (3), we know that the 

transition function is affine and does not rely on the current inventory level; so, conditions (A1) 
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and (A2) are satisfied.  Then, from equation (2) it is straightforward to verify that condition (A3) 

is also satisfied.  From Theorem 3, we know that a base-stock policy is optimal; see Corollary 1.  

We note that this result is analogous to the Theorem 1 of Bouakiz and Sobel (1992), who have 

also concluded that a base-stock policy is optimal for a finite horizon inventory model under the 

exponential utility criterion.  However, Bouakiz and Sobel made the assumption that the 

purchasing price of the inventory item is deterministic; therefore, financial hedging is not 

considered in their model.  

Corollary 1.  For the commodity procurement and storage problem formulated in (2) and (3), 

the CE-based value function 
*( )
k k

V y  is concave in 
k
y .  Moreover, the optimal hedging-consistent 

operational policy is of the base-stock type.  

4.  Numerical Experiment 

So far, we have shown that for a risk-averse firm who uses financial derivatives to hedge against 

its risk exposure, its optimal operational policy can be obtained through the CE-based approach.  

While the CE-based approach is optimal, the EV-based approach is simpler (see the Online 

Appendix for a discussion).  Thus, a natural question arises: is it possible to use the simpler EV-

based approach to achieve a near-optimal result?  To answer this question, a “mini” numerical 

experiment is conducted, and some simple yet straightforward computational results are 

presented to illustrate the effectiveness of the CE-based approach.   

4.1  Experimental Setup 

We continue to use the commodity procurement example, which is introduced in section 2.  Our 

choice of the base-case parameters closely follows Kouvelis et al. (2012).  Specifically, 

following Kouvelis et al., both the spot price and demand are assumed to follow the geometric 

Brownian motion (GBM) in the planning horizon, i.e. 
2

1 /2

1
/S k S

B

k k
S S e

σ σ χ+
−

+
=  and 

2
1 /2

1
D k D
W

k k
D D e

σ σ
+

−

+
= , where 

1k
B

+
 and 

1k
W

+
 both follows standard normal distribution.  To 

account for the potential price elasticity of demand, 
1k

B
+

 and 
1k

W
+

 may be negatively correlated 

with each other, with a correlation coefficient ρ− , where [0,1]ρ ∈ .  In the base case, we set 
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0ρ = , and other parameters in the GBMs are 0.9758χ =  and 0.114
S D

σ σ= = .  Moreover, 

the sales revenue is set to $15 per unit and the inventory holding cost (backlogging cost) is set to 

$3 per unit ($5 per unit).  In addition, the initial inventory level is set to zero.  Finally, according 

to Chod et al. (2010), a moderate degree of risk aversion is set at 2γ = .   

      We then introduce a measure to facilitate the comparison of performance between the CE-

based and EV-based approaches.  In general, it is cumbersome to directly compare the value of 

the negative exponential utility function.  Instead, from Theorem 2, it is more convenient to 

directly compare the CE-based value function *( )
k k

V y .  Moreover, the CE-based value has an 

economic meaning: the cash equivalent of the risky operating profit earned by the manufacturer 

considering the financial hedging; see Pratt (1964) and Pratt and Zeckhauser (1987) for more 

details.  Accordingly, a performance gap Γ  is defined to measure the percentage difference in 

the performance between the CE-based and EV-based approaches:  

* *

0 0

*

0

100%
V V

V

−
Γ = ×

�

  

where *

0
V  is the maximized CE-based value when the operational policy is solved by the CE-

based approach, i.e., by using the Bellman equation (13); and *

0
V
�

 is the CE-based value if the 

operational policy is just approximately solved by the EV-based approach.  From the definition, 

the performance gap measures by how much the suboptimal CE-based value obtained by the EV-

based approach falls short of the optimal CE-based value obtained by the CE-based approach.  

Equivalently, the ratio 1 − Γ  measures the effectiveness of the EV-based approximation to the 

optimal solution.  Hence, a lower Γ  indicates a better approximation produced by the EV-based 

approach.   

4.2  Numerical Results 

We compute the performance gap Γ  under different key parameter values, namely, γ , 
S

σ , 
D

σ , 

and ρ .  As shown in (7), γ  plays an important role in the CE operator.  Besides, 
S

σ  and 
D

σ , 

respectively, capture the significances of the financial and nonfinancial random factors.  If 

0
D

σ = , the complete market assumption will apply, and the CE-based approach will be 
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degenerated to the EV-based approach ( 0Γ = ).  If, alternatively, 0
S

σ = , the proposed model is 

then reduced to the one considered in Bouakiz and Sobel (1992).  Further, if there exist a 

significant correlation between the price and demand factors ( 0ρ < ), one should apply the 

conversion introduced at the end of section 3.2 to formulate the Bellman equation.  See Figure 2 

for the related sensitivity analysis regarding these key parameters.  

 

 

Figure 2.  Summary of the sensitivity analysis  

 

      We first look at Figure 2 (a), where the performance gap Γ  is plotted against the degree of 

risk aversion γ , which takes value ranging from 0 to 10.  We observe a clear trend as Γ  grows 

with γ .  Such growing trend corroborates the common intuition that a firm’s risk aversion 

motivates the firm to hedge against risk.  Then, we observe two extreme scenarios in this plot: (i) 

the performance gap Γ  becomes remarkably large (more than 15%) when γ  is sufficient high 

( 8γ ≥ ); (ii) Γ  diminishes quickly as γ  approaches zero.  This observation suggests that the CE-

based approach is especially valuable for firms with relatively high degree of risk aversion, but it 
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will degenerate to the EV-based approach in the risk-neutral case.  For firms having moderate 

risk aversion ( 2γ = ), the CE-based approach still dominates the EV-based approach ( 5%Γ ≈ ).   

       Next, let us look at Figure 1 (b), where the effect of the price-demand correlation is 

examined.  Recall that the correlation coefficient is ρ− , the range of ρ  is set to [0, 1] to reflect 

the typical negative price elasticity of demand in reality.  We observe that Γ  is a monotonically 

decreasing function of ρ , implying that the EV-based approach becomes more effective for a 

deeper price-demand correlation.  Moreover, Γ  reduces to zero for a perfect correlation ( 1ρ = ).  

This result is expected because, under a perfect correlation, the complete market assumption that 

underpins the EV-based approach applies.  

      We then look at Figure 2 (c), where the performance gap Γ  is charted as a function of the 

price volatility 
S

σ , which takes value ranging from 0.05 to 0.25.  Surprisingly, we can see that 

the performance gap increases monotonically as the price volatility grows, though the increase 

appears moderate (from 4.5% to 6%).  This result implies that when nonfinancial random factor 

exists, the EV-based approach can become less effective as the financial random factor (i.e., the 

price volatility) becomes more significant, despite the intention that the EV-based approach is 

designed to incorporate financial random factors and financial hedging (Birge 2000).   

      Finally, let us look at Figure 2 (d) to examine the effects of demand volatility 
D

σ  on the 

performance gap Γ .  Similarly, the range of 
D

σ  is set to [0.05, 0.25].  We observe that as 
D

σ  

grows in this range, Γ  increases substantially from nearly zero to nearly 20%.  This observation 

suggests that the EV-based approach can deteriorate quickly as the nonfinancial random factor 

(demand volatility) becomes more significant, which is consistent with the fact that nonfinancial 

random factor is the “culprit” to flaw the complete market assumption.  In addition, we see that 

Γ  can become quite small when the demand volatility shrinks to nearly zero, implying that the 

EV-based approach can produce near-optimal results when the nonfinancial random factor is 

negligible.  

      From the above results, we can infer that the EV-based approach can produce near-optimal 

results only in two special cases: (i) the firm is just slightly risk-averse, and (ii) the nonfinancial 
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random factors are nearly negligible.  In most of the cases, however, the CE-based approach 

dominates the EV-based approach.  

5.  Concluding Remarks 

We have developed a CE-based approach for a risk-averse firm to make hedging-consistent 

operational decisions in a simplified way.  This new approach overcomes some of the 

shortcomings embedded in the existing EV-based approach while retaining its major advantage.  

In particular, the complete market assumption that underpins the EV-based approach is relaxed 

by allowing for the existence of nonfinancial random factors, which enables the CE-based 

approach to be applied in a much broader risky environment.  Although the CE operator may 

introduce additional nonlinearity into the Bellman equation, the commonly desired base-stock-

type policy can remain optimal under certain conditions.  Besides, the CE-based value function 

can also help identify the equivalent financial risk exposure that should be hedged in the 

financial market.  Therefore, this paper is a contribution to the growing literature on the interface 

of operations management and finance.  

      For risk-averse firms, the procedure of the CE-based approach has an interesting managerial 

implication.  Specifically, this approach allows us to eliminate the financial hedging decision 

variables in the Bellman equation when making hedging-consistent operational decisions, despite 

our initial intention to integrate the two decision-making processes in JOFM.  This implies that it 

is still optimal for a risk-averse firm to make the operational decisions at first, perhaps by an 

operations manager, followed by the financial hedging decisions made by the firm’s finance 

department.  The only necessary change is the use of CE-based value function as the objective 

function to determine the operational policy.  Hence, our results support the separation of the 

operational decision-making process from the financial hedging, in a sense that the operations 

manager does not need to know the exact formation of the financial hedging portfolio.  

      This paper has some limitations and can be extended by future research.  First, it would be 

interesting to further incorporate some capacity constraints (e.g., ( , ) 0
k k

x yψ ≥ ) into our model 

(JOFM).  A key difficulty in analyzing such kind of constraints is that the solution space of the 

decision variable 
k

x  will change with 
k
y , which can significantly complicate the problem.  In 
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some special cases, we may circumvent this difficulty by introducing a new decision variable.  

For example, consider a linear constraint: 0
k k

x y− ≥  (a constraint that can be found in most 

multi-period inventory models when there is no spot market).  This constraint amounts to 

requiring that the solution space of 
k

x  depends on 
k
y , i.e., [ , )

k k
x y∈ ∞ .  Thus, we can define a 

new decision variable: 
k̂ k k

x x y= − .  Its solution space is ˆ [0, )
k

x ∈ ∞ , which implies that our CE-

based approach can be applied again by using 
k̂

x .  Unfortunately, this method (to circumvent the 

complexity of capacity constraints by using new decision variables) may not be extended to 

general cases, especially when the constraint ( , ) 0
k k

x yψ ≥  is nonlinear.  Nevertheless, our CE-

based approach can still serve as starting point for future research on joint operations 

management and financial hedging problems with complex capacity constraints.  

      Besides, it is also possible to further incorporate the potential changes in the firm’s degree of 

risk aversion in decision making over time, which is especially relevant for operational problems 

with a long planning horizon (e.g., 10 years).  Our model is limited to consider only the short or 

medium term cases, which allow us to employ the interperiod utility in modeling and assume that 

the firm’s risk attitude is unchanged.  To extend the present model to allow for possible changes 

in risk attitude, one may need to explore an appropriate combination of the interperiod and 

intraperiod utility functions (Sobel 2006) in modeling, which deserves future investigation.  

Moreover, a third possible extension is to explore the monotonic properties of the base-stock 

policy in Theorem 3.  As suggested by Smith and McCardle (2001), this may involve exploring 

new sufficient conditions and structural properties of the Bellman equation to ensure that the 

value function preserves supermodularity, which is challenging.  
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Online Appendix 

Appendix A: Proofs 

To prove Theorem 1, we need to introduce the following lemma (Lemma A.1).   

Lemma A.1:  For 0 1k T≤ ≤ − , the following equation holds: 

( )
1

*

, 1 1 1
( , ) , ( , )

k
r k k k k k k k k k k

CE G R V V
ξ

+
+ + +

 + + =
 

� x y x y x y      (15) 

[Proof]:  From equation (9), we know that 
,

( , )
r k k k k

G J= − x y .  Using the fact that ( , )
k k k

J x y  is 

the equivalent financial risk exposure independent of 
1k

ξ
+

, we have  

( )
( )

1

1

*

, 1 1 1

*

1 1 1

( , ) ,

( , ) , ( , )

k

k

r k k k k k k k

k k k k k k k k k

CE G R V

CE R V J

ξ

ξ

+

+

+ + +

+ + +

 + +
 
 = + −
 

�

�

x y x y

x y x y x y
 

Then substituting expression (8) into the above equation, we get  

( )
1

*

, 1 1 1
( , ) , ( , )

k
r k k k k k k k k k k

CE G R V V
ξ

+
+ + +

 + + =
 

� x y x y x y  

Note that due to the financial hedging with contingent claim 
,r k

G , the left-hand side of the above 

equation does not depend on the financial random factor 
1k

ω
+

.  �    

Proof of Theorem 1.  We can prove the optimality of *

k
x  by induction.   

      First of all, we make the statement that for period k  (0 k T≤ ≤ ), the Bellman equation (12) 

holds, and the following equation is also true:  

( ) ( )

( )

*

, 1 1 1
0

1
*

,
0

max ,

( , )

k

k

k f r j j k k k
j

k

k f r j j k k k
j

E u G G R V

E u G G R V

γ

γ

+ + +
=

−

=

  
+ + +  

   
  

= + + +  
   

∑

∑

�

�

x
x y

x y

     (16) 

By letting 
1
0

T
V

+
=  and recalling the fact that 0

T
V = , both sides of (16) are then reduced to (6), 

i.e., the objective function of JOFM; so (16) stands for k T= .  Similarly, we know that (12) 

stands for k T= .   
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      Next, suppose that (12) and (16) holds for period 1k +  onward ( 0 1k T≤ ≤ − ), which 

implies that at period k , the optimal operational decision *

k
x  must satisfy the following 

optimization problem:  

( ) ( )*

, 1 1 1
0

max ,
k

k

k f r j j k k k
j

E u G G R V
γ + + +

=

  
+ + +  

   
∑ �

x
x y   

Now, it is straightforward to check the following decomposition:  

( ) ( )
1

, , ,
0 0

( , )
k k

r j j r j j r k k k k
j j

G R G R G R
−

= =

+ = + + +∑ ∑� � � x y . 

Using the above decomposition, we have  

( ) ( )

( )

( )

( )

1

*

, 1 1 1
0

1

,
0

*

, 1 1 1

1

,
0

max ,

max ( , ) ,

max ( , )

k

k
k

k

k

k f r j j k k k
j

k

k f r j j
j

r k k k k k k k

k

k f r j j k k k
j

E u G G R V

E u G G R

CE G R V

E u G G R V

γ

γ

ξ

γ

+

+ + +
=

−

=

+ + +

−

=

  
+ + +  

   
 

= + + 
 

 + + +   
  

= + + +  
   

∑

∑

∑

�

�

�

�

x

x

x

x y

x y x y

x y

 

The first equality follows from the ∆-property (see Smith and Nau 1995) of the utility ( )u
γ

⋅ ; the 

second equality follows from Lemma A.1.  Therefore, the optimal operational decision *

k
x  must 

maximizes the CE-based value for period k :  

* argmax ( , )
k

k k k k
V=

x

x x y          (17) 

It follows that the following equation holds for period k :  

( ) ( )

( )

*

, 1 1 1
0

1
*

,
0

max ,

( , )

k

k

k f r j j k k k
j

k

k f r j j k k k
j

E u G G R V

E u G G R V

γ

γ

+ + +
=

−

=

  
+ + +  

   
  

= + + +  
   

∑

∑

�

�

x
x y

x y
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Thus, we have proved that the equation (16) must hold for period k .  Besides, from (17), we 

know that the operational policy can be obtained by maximizing the CE-based value, i.e. the 

Bellman equation (12) stands for period k  also.  

      We now turn to prove that the hedging portfolio 
h

G  defined by (9), (10) and (11) is optimal.  

Given the optimal operational policy { }
1

*

0

T

k k

−

=
x , let the corresponding replicating portfolio be 

{ }
1

, 0

T

r k k
G

−

=
.  We have:   

{ } { }
( )

( )

1 1
* *

0 0

1 1

0 0 ,
0 0,

*

0 0

max max max

max

T T
f

h k k
k k

f

T T

h k f r k kG
k kG

fG

E u G R E u G G R

E u G V

γ γ

γ

− −

= =

− −

= =

        
+ = + +       

        
 = +
 

∑ ∑� �

x x  

The first equality follows directly from (11), while the second equality is derived by applying (16) 

iteratively from the final period 1T −  to the initial period 0.  �   

Proof of Theorem 2.  From Harrison and Kreps (1979), we know that if the original financial 

market characterized by the price vector 
t
X  is complete with respect to 

0
{ }

t t T≤ ≤
F , so is the 

financial market characterized by the discounted price vector t

t t
β′ =X X .  Then the validity of 

the dynamic program (13) follows directly from Theorem 1.  �   

Proof of Proposition 1.  Consider an arbitrary function ( )W ;ηy  which is concave in y .  For 

any 
1
y , 

2
y , and [0,1]φ ∈ , let 

1 2
(1 )

φ
φ φ= + −y y y .  We have:  

( ) ( ) ( )

( ) ( )

1

1 2

1

1 2

exp ( ) exp ( ) exp ( )

exp ( ) exp ( )

E W ; E W ; W ;

E W ; E W ;

φ φ

η φ η

φ φ

η η

γ η γ η γ η

γ η γ η

−

−

  − ⋅ ≤ − ⋅ − ⋅    

   ≤ − ⋅ − ⋅   

y y y

y y

 

The first inequality follows from the concavity of ( )W ;ηy , while the second inequality follows 

from the Hölder inequality.  From (7), we can directly verify the following inequality:  

1 2
( ) ( ) (1 ) ( )CE W ; CE W ; CE W ;

η φ η η
η φ η φ η     ≥ + −    y y y   

It then follow that the value function ( ) ( )V CE W ;
η

η =  y y  is concave.  �   
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Proof of Theorem 3.  The first part of this theorem is proved by induction.  It is clear that 

* 0
T

V =  is concave.  Then, suppose that at period 1k +  ( 0 1k T≤ ≤ − ), the value function 

*

1
( )

k
V

+
⋅  is concave also.  To finish the induction, we need to prove that *( )

k k
V y  is also concave.  

Note firstly that concavity is a C3 property (closed convex cone property, see Smith and 

McCardle 2001).  From Proposition 2 and Proposition 3 in Smith and McCardle (2001), we 

know that both the expectation operator Q

k
E  ⋅   and the maximization operator max( )

k

⋅
x

 preserve 

the concavity of value functions.  In addition, from Proposition 1 in this paper, we know that 

concavity is also preserved by the CE operator 
1k

CE
ξ

+

 ⋅  .  Then, from (13), we can deduce that 

*( )
k k

V y  is concave if the composite function ( )*

1 1
( , )

k k k k
V

+ +
y x y  is concave with respect to 

k
x  and 

k
y . This is evident since the condition (A1) requires the transition function 

1
( , )

k k k+
y x y  to be 

affine.   

      We now turn to the second part of the theorem.  Using conditions (A2) and (A3), the 

Bellman equation (13) can be rewritten as:  

( )
1

* *

1
( ) max ( ) ( )

k
k

Q k Q k

k k k k k k k k k k k k
V E CE V A c J E L

ξ
β β

+
+

    = + + +    
� � ��

x
y x x y   

Then, it is straightforward to see the validity of (14).  �   

Proof of Corollary 1.  From (2) and (3), conditions (A2) and (A3) can be satisfied if we let:  

( ) min( , )
k k k k k k k k k k

J x r x D h x D q D x S x
+ +

= − − − − −� � � �   

and ( )
k k k k

L y S y=� .  Applying Theorem 3, we know that the value function *( )
k k

V y  is concave 

and a base-stock policy is optimal.  �   

 

Appendix B: The Expected-Value-Based approach 

Under the complete market assumption (i.e., { }
0

T

k k
ξ

=
 do not come into play), the uncertain 

operating profit ( )αΠ  can always be replicated by a dynamic hedging portfolio.  Thus, we can 
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use the risk-neutral valuation technique to “value” the operating profit, simply by calculating the 

expected value of the random payoff using the risk-neutral probability measure Q .  As a result, 

an EV-based approach can be established to solve the JOFM in this situation.  Following Birge 

(2000), we can write the operational problem in the form of Bellman equation as follows (Let 

* 0
T

V = ):  

( )* *

1 1
( ) max ( , ) ( , )

k

Q k

k k k k k k k k k k
V E V Rβ

+ +
 = + 

�

x
y y x y x y      (18) 

 

Theorem A.1.  Suppose that the complete market assumption holds.  Then, the optimal 

operational policy { }
1

* *

0

T

k k
α

−

=
= x  can be obtained directly by solving the dynamic program (18).  

That is, the EV-based approach applies.  

Proof.  As { }
0

T

k k
ξ

=
 do not come into play, the validity of Theorem A.1 follows immediately from 

Theorem 2.  �   

 

      When compared with Bellman equation (13), Bellman equation (18) does not involve the 

nonlinear operator 
1

[ ]
k

CE
ξ

+

⋅ .  As a result, it would be easier to derive some structural properties 

for the value function of (18) and then characterize its optimal solution, by using techniques 

summarized in Smith and McCardle (2001).  However, as noted above, the EV-based approach 

is derived under the complete market assumption, which would be too restrictive in many cases.  

      In some recent papers (e.g., Birge 2000, Goel and Gutierrez 2011), the EV-based approach is 

extended to incorporate nonfinancial random factors.  Generally, the associated Bellman 

equation can be formulated as follows:  

( )
1

* *

1 1
ˆ ( ) max ( , ) ( , )

k
k

Q k

k k k k k k k k k k
V E E V R

ξ
β

+
+ +

  = +  
�

x
y y x y x y     (19) 

The difference between Bellman equations (13) and (19) is that the nonlinear CE operator 

1

[ ]
k

CE
ξ

+

⋅  in equation (13) is replaced by the linear expectation operator 
1

[ ]
k

E
ξ

+

⋅  in equation (19).  



32 
 

As aforementioned, it would be easier to analyze a Bellman equation with just the linear 

expectation operator.   

 

Appendix C: A discussion on creating independent random variables by transformation 

This appendix provides a technical discussion on how to construct a new pair of independent 

random variables from two originally correlated random variables.  In our context, this can be 

interpreted as identifying a new nonfinancial random factor that is independent of the financial 

random factor.  It typically requires finding an appropriate transformation of a random variable.  

Unfortunately, as far as we know, there is no guaranteed method that can find such a 

transformation in general cases.  Therefore, we present three different methods that can help 

identifying the required transformation in many cases.  We believe that this is already sufficient 

to demonstrate that the independence assumption between the financial and nonfinancial random 

factors is not very restrictive (see Remark 1 in section 2.1).  For simplicity, we assume that all 

functions in this appendix are sufficiently smooth, i.e., at least have continuous second-order 

derivatives.  

      Let us formally introduce the concept of independent random variables.  Consider two 

random variables x�  and y�  that have a joint probability density function ( , )f x y .  Then, we have 

the following definition of their independence.  

Definition B.1.  The two random variables x�  and y�  are said to be independent if and only if the 

joint density function ( , )f x y  has the following separating property:  

1 2
( , ) ( ) ( )f x y g x g y=  

where 
1
( )g x  and 

2
( )g y  are the marginal density functions of x�  and y� , respectively.   

If the above separating property does not hold, then the two random variables are said to be 

dependent or correlated.  In this case, we may apply some transformations to create a new pair of 

random variables from x�  and y� .   
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      First, if x�  and y�  are (jointly) normally distributed, the required transformation is easy to 

obtain.  Indeed, one can define a new random variable p�  through a linear combination of x�  and 

y� :  

2

cov( , )

y

x y
p x y

σ
= −

� �
� � �           (20) 

where cov( , )x y� �  is the covariance between x�  and y� , while 
y

σ  the standard deviation of y� .  By 

doing so, we obtain a new pair of independent random variables ( , )p y� � .   

      Second, suppose that x�  and y�  do not follow the normal distribution, but can still be 

represented as functions of other normally distributed random variables; that is, 
1
( )x a x=� �  and 

1
( )y b y=� � , where 

1
x�  and 

1
y�  are normally distributed (e.g., lognormal distributions).  Then, the 

formula (20) can be applied on 
1

x�  and 
1
y�  to create a new random variable p�  through a linear 

combination of 
1

x�  and 
1
y� :  

1

1 1

1 12

cov( , )

y

x y
p x y

σ
= −

� �
� � �   

Because p�  is independent of 
1
y� , it is also independent of 

1
( )y b y=� � .   

      Besides, one may also employ some established empirical/statistical results to identify the 

independent financial and nonfinancial random factors.  Because this method is rather 

straightforward, we just illustrate it by a simple example:  Kouvelis et al. (2012) have discussed 

the correlation between volatile commodity price and demand, which are modeled as lognormal 

random variables.  Their formulation essentially implies a log-linear equation that links price and 

demand:  

1 1 1
log( ) log( )

k k k
D S Constρ ε

+ + +
= + +  

where 
1k

ε
+

 is a random variable independent of 
1k

S
+

.  Thus, one can use the new pair 
1k

S
+

 and 

1k
ε

+
 as the respective financial and nonfinancial random factors when applying the CE-based 

approach.   
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      Finally, we introduce a general method on how to create a new pair of independent random 

variables.  This method is quite theoretical, and involves solving a difficult partial differential 

equation (PDE).  Thus, it may only be regarded as the “last resort” if all the above methods fail 

to work.   

      Let p�  be a new random variable such that we can express x�  as ( , )x g p y= .  Then, the joint 

density function for the new pair of random variables ( , )p y� �  is ( ( , ), ) ( , )
p

f g p y y g p y .  By 

definition, if p�  and y�  are independent of each other, then the new joint density function must 

have the separating property, that is, there are two density functions 
1
( )m p  and 

2
( )m y  such that 

1 2
( ( , ), ) ( , ) ( ) ( )

p
f g p y y g p y m p m y= , or 

1 2
log[ ( ( , ), ) ( , )] log[ ( )] log[ ( )]

p
f g p y y g p y m p m y= +  (To 

avoid triviality, we proceed over the support of the joint density function to avoid potential zero 

points of the probability density function).  Thus,  

2

log[ ( ( , ), ) ( , )] 0
p

f g p y y g p y
p y

∂
=

∂ ∂
        (21) 

Calculating the derivatives and rearranging the terms, we get a PDE for ( , )g p y :  

2 22 ( ) 0
xy p x py xx x p y x y p x p py

ff g ff g ff f g g f f g ff g g+ + − − + =  

We can obtain the desired transformation by solving this PDE for ( , )g p y .  Once ( , )g p y  is 

obtained, from (21) there exist two functions ( )a p  and ( )b y  such that the joint density function 

of ( , )p y� �  takes the following separating form: ( ( , ), ) ( , ) ( ) ( )
p

f g p y y g p y a p b y= .  Thus, we have  

2 2

( ( , ), ) ( , ) ( ) ( ) ( , ) 1
p

R RR R

f g p y y g p y dydp a p dp b y dy f x y dxdy= ⋅ = =∫∫ ∫ ∫ ∫∫  

It follows that 
1
( ) ( ) ( )

R

m p a p a z dz= ∫  and 
2
( ) ( ) ( )

R

m p b y b z dz= ∫  are the respective marginal 

density functions for p�  and y� , and that ( , )p y� �  is a pair of independent random variables.  

      Generally, we can solve the PDE using a variety of numerical methods (e.g., the finite 

element method, see Renardy and Rogers 2004), providing that the solution exists.  So we would 

like to provide a discussion on the existence of solutions for PDEs.  According to the Cauchy–

Kovalevskaya theorem (Renardy and Rogers 2004), a sufficient condition for the existence of the 
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solution is that the coefficients of the PDE are (locally) analytic functions.  In our case, this 

amounts to requiring that the probability density function is analytic in its support.  Instances of 

such density functions include many commonly-used density functions (e.g., normal/lognormal 

density) in continuous space.  Still, it is worth noting that in rare cases, a PDE where the 

coefficients are not analytic may not have conventional smooth solutions, and one may need to 

explore possible “weak solutions” for the equation (Renardy and Rogers 2004).  However, 

mathematical methods on these “weak solutions” of PDEs, which may involve complex 

generalized functions and complicated functional space analysis, are well beyond our current 

scope.  For more discussions on the solutions to PDEs, see Renardy and Rogers (2004) and 

references therein.  
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Highlights: 
 
� A new approach to quantify the effects offinancial hedging on operational policies. 
 
� Theapproachalleviatessome of the difficultiesarising from market incompleteness.  
 
� A certainty equivalent operator is employedto formulate the Bellman equation. 
 
� The base-stock policy can remain optimal under specific conditions.  

 




