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ABSTRACT 

Standard or black-box data envelopment analysis (DEA) evaluates the efficiency of the 

transformation of a DMU’s exogenous inputs into its final outputs by ignoring what is going on 

in its divisions (sub-DMUs). To cope with this problem, network DEA (NDEA), which can 

provide adequate detail to management, has been developed and applied empirically.  However, 

we show that some of the commonly used NDEA methods are inconsistent with the notion of 

Pareto-Koopmans efficiency. Since the original development of DEA, Pareto-Koopmans 

efficiency is a fundamental property used in DEA. From a Pareto-Koopmans efficiency 

perspective, therefore, we propose a two-phase NDEA approach that can provide information on 

both each DMU’s overall (system) efficiency status and its divisions’ efficiency scores. The 

proposed novel approach is developed based on the enhanced Russell graph model or 

equivalently the slacks-based model. We also propose several theorems and illustrate the 

proposed approach using two artificial numerical examples and a real-world data set. 

 

Keywords: Data Envelopment Analysis, network DEA, dominance, divisional efficiency, 

network Russell efficiency, Pareto-Koopmans efficiency, sub-vector efficiency 
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1. Introduction  

Standard or black-box data envelopment analysis (DEA) is a set of mathematical 

programming techniques for measuring the efficiency performance of decision making 

units (DMUs) that convert exogenous inputs into final outputs. In standard DEA, the 

internal production processes of DMUs are ignored and the exogenous inputs consumed 

and final outputs produced by the DMUs are the only consideration for efficiency 

evaluation. On the other hand, network DEA (NDEA) attempts to formulate the internal 

operations of the evaluated DMU and thus intermediate products (which are outputs 

coming from divisions (sub-processes) and inputs utilized by others) are explicitly taken 

into account. In other words, NDEA intends to open the black box so as to provide 

adequate detail to management and can provide detailed information on the efficiency 

of divisions (or sub-DMUs) at the assessed DMU as well as its efficiency status.  

NDEA can be thought of as a generalization of standard DEA.   

DEA researchers developed various NDEA models for evaluating the efficiency 

of DMUs (Färe and Grosskopf (1996, 2000); Lewis and Sexton (2004); Prieto and Zofio 

(2007); Kao (2009, 2014); Tone and Tsutsui (2009); Lozano (2011); Du,Chen and Huo 

(2015)) and other researchers focused on the efficiency performance of DMUs which 

have internal series (e.g., two-stage or three-stage) structures (Sexton and Lewis (2003); 

Kao and Hwang (2008); Liang, Cook and Zhu (2008); Fukuyama and Weber (2010) ; 

Cook, Liang and Zhu (2010); Fukuyama, Weber and Xia (2015); Halkos, Tzeremes and 

Kourtzidis (2014); Akther, Fukuyama and Weber (2013)). A review of the NDEA 

models can be found in Kao (2014). The management of the DMU often would like to 

know the sources of inefficiency within it, but some of the existing network DEA 

methods do not fully provide information on the DMU’s overall efficiency status that is 
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consistent with Pareto-Koopmans efficiency with the full consideration of internal flows 

or intermediate products. Obviously, adoption of Pareto-Koopmans efficiency stems 

from the possibility principle or free disposal hull which is for example given in the A3 

postulate of Cooper, Seiford, Tone and Zhu (2007). In NDEA Tone and Tsutsui (2009) 

used the possibility principle for only exogenous inputs and final outputs similar to 

standard DEA which doesn’t have intermediate products. 

In the DEA literature, there are two efficiency notions: weak efficiency and 

Pareto-Koopmans efficiency. The Farrell-Debreu measure is calculated based on the 

weakly efficient frontier and hence possibly existing nonzero slacks are ignored in its 

efficiency measurement. By contrast, the original model by Charnes, Cooper and 

Rhodes (CCR, 1978) is developed with the intension of incorporating the notion of full 

efficiency or Pareto-Koopmans efficiency. Charnes, Cooper and their associates have 

incorporated this efficiency notion with the use of the non-Archimedean infinitesimal.  

In a black-box setting, a DMU is Pareto-Koopmans efficient if and only if it is 

impossible to make an improvement in the utilization of any input or output without 

worsening some of the other inputs and/or outputs. Hence, Charnes, Cooper and their 

associates relate the CCR model to the notion of Pareto-Koopmans efficiency. See 

Charnes and Cooper (1984, 1985), Charnes, Cooper, Golany and Seiford (1985) and 

Cooper, Seiford, Tone and Zhu (2007) for detailed discussion of the difference between 

the two notions.  The additive model, Russell models and slacks-based models are 

alternative methods to incorporate Pareto-Koopmans efficiency. 

Another motivation for using Pareto-Koopmans efficiency is that we can provide 

a criterion to improve overall system efficiency in NDEA --- we will show how the 

notion can be utilized to obtain an efficient target based on this criterion. 



3 
 

The present study analyzes NDEA with respect to Pareto-Koopmans efficiency 

for the situation where intermediate products are not supplied or demanded outside the 

assessed system or DMU. Moreover, we assume that all intermediate products are 

desirable. The studies that are explicitly based on Pareto-Koopmans efficiency with 

respect to the evaluated DMU and its divisions, include Lewis and Sexton (2004) and 

Fukuyama and Mirdehghan (2012). In a two-stage problem where stage 1’s outputs are 

the only inputs to stage 2, Lewis and Sexton (2004, p.1374) stated that a necessary 

condition for a DMU to be overall efficient is that each division is fully efficient, but 

efficiency in all sub-DMUs or divisions is not sufficient for overall efficiency of the 

DMU. Their definition of overall system efficiency is based on Pareto-Koopmans 

efficiency, which is the situation where it is not possible for a DMU to improve any 

exogenous input, final output or intermediate product without worsening some other 

exogenous inputs, final outputs or intermediate products. In a general NDEA setting 

where each division can have the three types of production variables, Fukuyama and 

Mirdehghan (2012) showed how to identify the overall system efficiency status of 

DMUs for the fixed link1 formulation where each observed intermediate product is 

restricted between the intermediate output of one division and the intermediate input of 

another. For the free link formulation, however, a straightforward application of 

Fukuyama and Mirdehghan’s method (2012) does not always identify the overall 

efficiency status of the assessed DMU which consists of divisions or sub-DMUs. 

Therefore, the purpose of the present study is not only to implement the notion of 

                                                
1 The term “fixed link” is used by Tone and Tsutsui (2009) to deal with the situation where the 
linking activities of a DMU are fixed and hence the intermediate products are discretionary (beyond 
the control of management).  The present study develops an alternative general network framework 
that deals with Pareto-Koopmans efficiency.  For a more discussion on Tone and Tsutsui’s (2009) 
fixed link case, see Fukuyama and Mirdehghan (2012). 
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Pareto-Koopmans efficiency to the determination of a DMU’s overall efficiency status 

but also to show how to gauge divisional efficiencies within the free link network 

framework2. For this purpose, we provide a novel necessary and sufficient condition for 

a DMU to be Pareto-Koopmans efficient in general NDEA. Our two-phase approach3is 

based on the enhance Russell graph model of Pastor et al. (1999). We adopt this model 

because: (i) the original NDEA contributions have been made based on slacks-based 

models (Tone and Tsutsui (2009, 2014); Kao (2014)); and (ii) the original efficiency 

measurement framework for dealing with positive slacks, or equivalently asymmetric 

scaling factors, is developed under input orientation (Färe and Lovell (1978) ).    

The organization of the paper is as follows. Section 2 provides two motivating examples 

as well as the basics and then develops a new network efficiency measurement 

framework.  Section 3 makes comparisons with some other network models using two 

artificial numerical examples, and then shows the use of some existing approaches can 

lead to a non Pareto-Koopmans efficient solution. In section 4 we apply the proposed 

framework to the data of 27 Taiwanese banks as a real-life application. The last section 

concludes with several remarks. All the proofs of the Theorems are relegated to 

Appendix A. 

 

2. Dominance, motivating examples and Network DEA 

2.1Mathematical dominance and Pareto-Koopmans Efficiency 

The basic definition of efficiency in multiple criteria decision making, 

                                                
2This research focuses on a framework in which inputs and outputs are not shared.  See Castelli, 
Pesenti and Ukovich (2010) for a framework of shared inputs and outputs across divisions.  
3 In this paper the terms “model” and “measure” mean an efficiency measurement mathematical 
problem and its optimized objective function value, respectively. The two-phase “approach” is our 
proposed two-phase method, in which the Pareto-Koopmans efficiency statuses of DMUs are 
identified by solving two models in two phases. 



5 
 

particularly in DEA, is provided from a mathematical dominance (Pareto-Koopmans 

efficiency) perspective. However, Pareto-Koopmans efficiency is not necessarily 

utilized in NDEA. In actual fact, there are many NDEA studies, whose results are 

inconsistent with Pareto-Koopmans efficiency. That is, the evaluated DMU, rated as 

efficient in these NDEA models, can be dominated by another observed DMU, in which 

situation Pareto-Koopmans efficiency is violated.       

In order to deal with this problem (the violation of Pareto-Koopmans efficiency) 

we suggest a two-phase approach based on three dominance notions --- our suggested 

definition of overall system efficiency in NDEA exactly corresponds to the case where 

the NR measure is one(i.e., phase-1 efficient) and all divisions are efficient.  

We start with three mathematical dominance notions with respect to pair-wise 

comparisons: (i) full product vector dominance, (ii) sub-vector dominance, and (iii) 

dominance at the division level. DMUa , consisting of divisions or sub-DMUs, is said to 

fully dominate DMUb if the full product vector of DMUa  dominates the corresponding 

product vector of DMUb , where the full vector comprises the total amounts of not only 

exogenous inputs and final outputs but also intermediate products. DMUa  is said to 

sub-vector dominate DMUb if DMUa s′ sub-vector dominates the corresponding 

sub-vector of DMUb , where the sub-vector consists of only exogenous inputs and final 

outputs (without intermediate products). Therefore, the first definition of dominance 

considers all division’s intermediate products, whereas the second does not. The third 

definition only deals with dominance at a division level of the evaluated DMU. 

Here, we make pair-wise vector comparisons between different DMUs when 

internal flows exist. The three definitions are utilized to determine the 

Pareto-Koopmans efficiency status of the evaluated DMU. The three dominance notions 
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are formally presented in the next section. 

The adoption of vector dominance allows us to distinguish three kinds of 

efficiency: (a) Pareto-Koopmans efficiency, (b) sub-vector efficiency, and (c) divisional 

efficiency. Pareto-Koopmans efficiency at the evaluated DMU is determined by 

full-vector dominance. By contrast, the sub-vector efficiency status at the DMU is 

identified by sub-vector dominance. Sub-vector efficiency is often used to define 

efficiency in NDEA. Note that Pareto-Koopmans efficiency implies sub-vector 

efficiency but not the other way around. See Lewis and Sexton (2004, p.1374) and 

Castilli, Pesenti and Ukovich (2010, p.222) on this point.   

 

2.2 Motivating Examples 

In this subsection, we provide two motivating examples from a model building 

point of view. Consider Figure 1 that consists of two DMUs, each of which has two 

divisions, and the DMUs employ one exogenous input, two intermediate products and 

one final output. The amounts of exogenous inputs and final outputs of the two DMUs 

are the same and the only difference between the two DMUs is the amount of 

intermediate products. Division 1 of DMU2 produces a more amount of intermediate 

product than division 1 of DMU1, even though the two DMUs consume the same 

amount of exogenous input and produce the same amount of final output. Based on the 

notion of dominance at the division level defined in the previous sub section, we 

conclude that Division 1 of DMU2 and Division 2 of DMU1 are efficient and Division 1 

of DMU1 and Division 2 of DMU2 are inefficient. Now consider the two-stage 

constant-returns-to-scale network CCR (NCCR) model due to Kao and Hwang (2008).  

The NCCR model is a two-stage network model, in which the first division’s outputs 



7 
 

are the only inputs to the second stage. Clearly, the application of the NCCR model to 

Example 1 leads to the situation contradictory to Pareto-Koopmans efficiency because 

Divisions 1 and 2 are considered efficient for both DMUs.  

<<Figure 1>>about here 

Next, we show that the NCCR model does not find an efficiency score uniquely 

using Example 2 depicted in Figure 2. This result is of great importance because 

multiple solutions are inconsistent with Pareto-Koopmans efficiency. The efficiency of 

DMU2 using the NCCR model is obtained by solving the following linear program: 

 

1 2

1 2
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where ε  is the non-Archimedean infinitesimal. If we evaluate 1DMU and 2DMU , we 

see that 1DMU  is efficient and 2DMU  is inefficient with the efficiency score of 0.75.  

For 1DMU , Divisions 1 and 2 are efficient for all optimal solutions. However, we see 

that in evaluating inefficient 2DMU , the model produces multiple optimal solutions. 

One optimal solution is:   

 
1 2

1 1 1 1
, , , .

4 2 12 3
u v w w= = = =  

This optimal solution implies that Equation (1.3) is not binding and Equation (1.4) is 

binding, i.e., Division 1 of 2DMU  is inefficient and Division 2 of 2DMU  is efficient.  

In , there is another optimal solution: 

 1 2

1 1 1 5
 , ,  , .
4 2 24 12

u v w w= = = =  

In this solution, Equation (1.3) and Equation (1.4) are not binding, i.e., Divisions 
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1 and 2 of 2DMU  are inefficient. However, Division 2 of 2DMU should be efficient 

according to the definitions of dominance. Therefore, some optimal solutions from the 

NCCR model can be inconsistent with Pareto-Koopmans efficiency. Note that Division 

2 of 2DMU  is identified as efficient or inefficient depending upon which optimal 

solution is considered. An important implication of Example 2 is that NCCR model (1) 

does not provide the Pareto-Koopmans efficiency status4 for the case of multiple 

optima. The two-phase NR approach to be proposed in section 3 identifies the overall 

system efficiency status based on Pareto-Koopmans efficiency.   

<<Figure 2>>about here 

 

2.3Notation and Theoretical Results 

This section starts with some definitions for the efficiency evaluation of DMUs 

and their divisions. Consider J DMUs consisting of K divisions. Let k
N , k

M  and Q  

be the numbers of inputs and outputs of division k and intermediate products, 

respectively. Also we denote the link leading from division k to division h by ( ),k h and 

the set of links by { } { }KKL ,...,1,...,1 ×⊂ . Division k of DMU j  utilizes input vector 

k
Nk

jx +ℜ∈ and intermediate product vector
Qkh

jz +ℜ∈),(
, produced by division 

( )1,...,h h K= , where Lkh ∈),( , to produce output vector 
k

Mk

jy +ℜ∈ and intermediate 

product vector
Qgk

jz +ℜ∈),(
, consumed by division ( )1,...,g g K= , where ( , )k g L∈ . In 

                                                
4We are not claiming that conventional network DEA models are ill-defined.  Rather, we suggest 
using the two-phase NR approach when Pareto-Koopmans efficiency is relevant in efficiency 
evaluations. 
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other words, division k of DMU j
 consumes ( , )

( , )

,k h k
hj j

h k L

x z
∈

� �
� �
� �
�  to produce 

( , )

( , )

,k k g
gj j

k g L

y z
∈

� �
� �
� �

� . 

Next we introduce a NDEA approach for evaluating the efficiency status of the 

evaluated DMU, and then prove the nonexistence of any observed DMU that dominates 

an overall efficient DMU. The NDEA technology consists of a finite collection of 

observations, and a DMU is expressed by a full vector of exogenous inputs, 

intermediate products and final outputs in NDEA.  Considering these notations, we start 

with the following three definitions of mathematical dominance. 

 

Definition 1 (fullvector dominance). DMU j fully dominates DMU
o  if and only if  

 ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

, , , , , ,g g h g g h g g h g g h

j j j j o o o o

h h h h
h g L g h L h g L g h L

x y z z x y z z

∈ ∈ ∈ ∈

� � � �
� � � �− − − −
� � � �� � � �
� � � �

� � � �≥  (2) 

for each division 1,...,g K= , and 

 ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

, , , , , ,k k h k k h k k h k k h

j j j j o o o o

h h h h
h k L k h L h k L k h L

x y z z x y z z

∈ ∈ ∈ ∈

� � � �
� � � �− − − −
� � � �� � � �
� � � �

� � � �≠  (3) 

for at least one division { }Kk ,...,1∈ . 

 

Definition 2 (sub-vector dominance). DMU j sub-vector dominates DMU
o  if and only 

if ( ) ( )1 1 1 1,..., , ,..., ,..., , ,...,K K K K

j j j j o o o ox x y y x x y y− − − −≥
≠

. 

 

Definition 1 is concerned with full-vector dominance, at the evaluated DMU
o , in the 

full space of exogenous inputs, final outputs and intermediate products. By contrast, 

Definition 2 is concerned with only the subspace of exogenous inputs and final outputs 
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without the explicit consideration of the values of intermediate products. The following 

definition deals with divisional dominance. 

 

Definition 3 (divisional dominance). Division k of DMU j  dominates division k of 

DMU
o if and only if  

 ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

, , , , , ,k k h k k h k k h k k h

j j j j o o o o

h h h h
h k L k h L h k L k h L

x y z z x y z z

∈ ∈ ∈ ∈

� � � �
� � � �− − − −
� � � �� � � �
� � � �

� � � �≥
≠

 

 

An important characteristic of NDEA is that intermediate outputs of a division (say, 

Division k) should be greater than or equal to the sum of all intermediate inputs of other 

Divisions h where Lhk ∈),( . In other words, it is reasonable that general NDEA models 

have the following conditions as additional constraints: 

Fundamental network conditions 

 ( , ) ( , )

1 1
( , ) ( , )

intermediate output intermediate input 

0, 1,..., and 1,...,
J J

k k h h k h

j qj j qj

j h h j
k h L k h L

q q

z z k K q Qλ λ
= =

∈ ∈

− ≥ = =� � � �
������� �������

 (4) 

where ( , )k h

qj
z  is a scalar.  The first term on the left hand side of (4), ( , )

1
( , )

J k k h
hj qjj

k h L

zλ
=

∈
� � , 

represents the 
th

q  intermediate output of Division k at the virtual DMU, 

and ( , )

1

J h k h

j qjj
zλ

=� is the qth  intermediate input of Division h (produced by Division k) of 

the virtual DMU. The amount of the qth intermediate product produced by Division k 

and consumed by some of the other Divisions h where ( , )h k L∈  is the second term of , 

i.e., ( , )

( , )

h k h
h j qj

k h L

zλ
∈

� . The fundamental network conditions ensure that the amount 

produced of each intermediate product is no less than the consumed amount, under the 

assumption that there exist no supplies and demands of intermediate products from 

outside of the evaluated system. These constraints are obtained from the possibility 
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principle (free disposal hull) of the production technologies on the intermediate 

products. Lozano (2011) implement the conditions in radial NDEA.   

 

Now let us explain  more in detail. We have the intermediate output q ( ( , )k h

qz ) of 

Division k of a DMU is less than the intermediate output of Division k of the projected 

point where ( , )k h L∈ , i.e., ( , ) ( , )

1

J k k h k h

j qj qj
z zλ

=
≥� . On the other hand, we have the 

intermediate input q ( ( , )k h

qz ) of Division h of a DMU is greater than the intermediate 

input quantify of Division h of the projected point, i.e., ( , ) ( , )

1

J h k h k h

j qj qj
z zλ

=
≤� , 

where ( , )k h L∈ . These relationships imply that 

 ( , ) ( , ) ( , )

1 1
( , ) ( , ) ( , )

J Jk k h k h h k h
h h hj qj q j qjj j

k h L k h L k h L

z z zλ λ
= =

∈ ∈ ∈

≥ ≥� � � � �  

The above relation concludes constraints .   

In NDEA models having series structures, the intermediate output q of a stage 

(say stage k) must be greater than or equal to the intermediate inputs of the next stage 

(stage k+1). This set of constraints can be expressed as  

 
( , 1) 1 ( , 1)

1 1
0, 1,...,

J Jk k k k k k

j qj j qjj j
z z q Qλ λ+ + +

= =
− ≥ =� �  

Indeed, in the case of two-stage network problem, Chen, Cook and Zhu (2010) used the 

following constraints:  

 
1 (1,2) 2 (1,2)

1 1

0, 1,...,
J J

j qj j qj

j j

z z q Qλ λ
= =

− ≥ =� �  

See Fukuyama and Weber (2010) for the use of this expression in the network 

directional slacks-based inefficiency measure.  

Fundamental network constraints  hold for any network structures in which the 

intermediate outputs are consumed and some of them can be retained (or wasted) within 

the DMU. As a result, Division k of the virtual DMU can be thought of as the entity that 
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consumes ( , )

1 1
( , )

,
J Jk k k h k

hj j j jj j
h k L

x zλ λ
= =

∈

� �
� �
� �
� � �  to produce ( , )

1 1
( , )

,
J Jk k k k h

hj j j jj j
k h L

y zλ λ
= =

∈

� �
� �
� �
� � � .  

In a nonparametric LP framework the positive slacks of inputs and outputs are 

likely to be present after the radial efficiency movement. In this case the efficiency 

scores obtained from these models overstate efficiency because they do not consider the 

non radial inefficiencies represented by the positive slacks. It is of great importance to 

account for non radial inefficiencies for the efficiency evaluation of DMUs. In standard 

DEA both the slacks-based model and the enhanced Russell graph model have coexisted 

while they are theoretically equivalent. The latter is a graph extension of Färe and 

Lovell’s (1978) input-oriented Russell measure which is equivalent to the input-oriented 

slacks-based measure. In NDEA, the slacks-based model has predominantly been used 

and theoretically studied (see Tone and Tsutsui (2009, 2014); Fukuyama and 

Mirdehghan (2012)). In view of the historical developments of non radial efficiency 

measures/models, we would like to document NR efficiency results even if both 

formulations are equivalent --- if our results hold in NR, then they should hold for NSB, 

and vice versa. 

Assuming that 0   for all andmjy m j> , we introduce the following network 

Russell(NR) measure5: 

                                                
5
The measure NR

o
E  adapts Pastor, Ruiz and Sirvent’s (1999) enhanced Russell graph measure, 

which is equivalent to Tone’s (2001) NSB measure. Note that the contribution of the present paper is 

to develop a two-phase NR approach, not the development of NR

o
E  itself. 



13 
 

1 1
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1 1
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� �

� �
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, (5 )j d

  

where 0gw > and 
1

1
K

gg
w

=
=� . Here, ˆ ˆˆ, , andg g g

n m j
θ ϕ λ are the variables. We refer to the 

optimal objective value of (5), denoted by NR

o
E , as the sub-vector NR measure because 

intermediate products do not appear in the objective function (5a). The positive and 

non-zero predetermined weights ( 1,..., )gw g K=  are the relative weights of division g 

which are determined with the consideration of its importance to managers of the DMU. 

It is clear that all constraints (5b) must be binding at the optimum.   

We can transform the fractional model (5) to a linear programming model by 

using the Charnes-Cooper transformation.  

 

Theorem 1: The optimal objective value of Model (5) is equal to that of the following 

linear programming model: 
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where , ,g g g

j n mλ θ ϕ and t are the variables.   

The total amount of intermediate output q to be produced by all relevant divisions 

of a virtual DMU, ( , )

1
( , )

J g g h
h j qjj

g h L

zλ
=

∈
� � , cannot be less than the total amount of 

intermediate output q produced actually by the divisions of the evaluated DMU, 

( , )

( , )

g h
h qo

g h L

z
∈

� .  Moreover, the total amount of intermediate input q to be supplied 

internally by all relevant divisions of a virtual DMU, ( , )

1
( , )

J h g h
h j qjj

g h L

zλ
=

∈
� � , cannot 

exceed the observed total amount of the intermediate input q supplied by the divisions 

of the evaluated DMU, ( , )

( , )

g h
h qo

g h L

z
∈

� . That is,   

 

( )

( )

( , ) ( , )

1
( , ) ( , )

( , ) ( , )

1
( , ) ( , )

  ,    0  intermediat output (7.1)

 ,    0  intermediat input (7.2)

J
g g h g g h g
j qj q qo q

j h h
g h L g h L

J
h g h g g h g
j qj q qo q

j h h
g h L g h L

z s z s q

z s z s q

λ
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=
∈ ∈

− −

=
∈ ∈
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+ = ≥ ∀
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� �
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 (7) 

The right hand side of Eq. (7.1) signifies the total amount of intermediate product q at 

DMU
o and is fixed as ( , )

( , )

g h
h qo

g h L

z
∈

� . For this fixed total amount, the slack of the 

constraint associated with intermediate product q for Division g is determined as 

( , ) ( , )

1
( , ) ( , )

Jg g g h g h
h hq j qj qoj

g h L g h L

s z zλ+

=
∈ ∈

= −� � �� . Thus, Eq. (7.1) indicates the excesses in 

intermediate output q for Division g. This indicates that the linking activities are kept 

fixed. Eq. (7.2) can be interpreted similarly. Hence, we refer to Eq. (7) as fixed link 

conditions by following Tone and Tsutsui (2009, 2014).   
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          However, in Tone and Tsutsui (2009), slacks are not included, i.e., Tone and 

Tsutsui’s fixed link for intermediate products can be expressed as  

( , ) ( , )

1
( , ) ( , )

J g g h g h
h hj qj qoj

g h L g h L

z zλ
=

∈ ∈
=� � �

 
in our terminology. 

Note that Fukuyama and Mirdehghan (2012) include the fixed link conditions, but do 

not include the fundamental network conditions  or equivalently (6c).  Using (6) and , 

we define network-based Pareto-Koopmans efficiency as follows.  

 

Definition 4: DMUo  is sub-vector NR-efficient if and only if 1NR

o
E = . It is 

Pareto-Koopmans efficient if and only if it is sub-vector NR-efficient as well as the 

following relationships hold: 

 

* ( , ) ( , )

1
( , ) ( , )

* ( , ) ( , )

1
( , ) ( , )

, ,

,  ,

J
g g h g h
j qj qo

j h h
g h L g h L

J
h g h g h
j qj qo

j h h
g h L g h L

z z g q

z z g q

λ

λ

=
∈ ∈

=
∈ ∈

= ∀

= ∀

� � �

� � �
 (8) 

where * indicates optimality in (6). We refer to the conditions  as intermediate product 

binding conditions. It is sub-vector NR-inefficient if and only if 1NR

o
E < . 

 

In Definition 4, we make a distinction between sub-vector NR efficiency and 

Pareto-Koopmans efficiency. The former notion of efficiency simply means the 

objective function value of (6a) is unity. In other words, NR

oE =1is not sufficient for 

Pareto-Koopmans efficiency. On the other hand, the latter requires not only sub-vector 

efficiency with the unity score of (6a),but also the intermediate product binding 

conditions (8), i.e., g

qs −� and g

qs +� defined in  are zero in all possible optimal solutions 

of .It should be noted that this paper assumes that intermediate products are produced 
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and supplied only within the assessed system or DMU, while some amounts of 

intermediate products can be retained within it. Therefore, Defintion 4 states as follows.  

The summation of intermediate inputs of the virtual DMU must equal to the summation 

of intermediate products of the assessed DMU and the summation of intermediate 

outputs of the virtual DMU must equal to the summation of the intermediate products of 

the assessed DMU in order to achieve Pareto-Koopmans efficiency. 

 

Theorem 2:  Suppose that the DMU to be assessed is Pareto-Koopmans efficient. Then, 

there does not exist any observation which dominates this Pareto-Koopmans efficient 

DMU.  Furthermore, there does not exist any observed DMU that sub-vector dominates 

a sub-vector NR-efficient DMU.   

 

The first and second parts of Theorem 2 correspond to Definition 1 (full-vector 

dominance) and Definition 2 (sub-vector dominance), respectively. The first part 

indicates that if DMU
o
 is Pareto-Koopmans efficient, then we cannot find any virtual 

DMU that performs better than DMU
o . Now let us consider the following linear 

programming problem: 
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 (9) 
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In , we incorporate the fundamental network constraints  and the initial endowment 

constraints  simultaneously. Using these constraints, we can establish the following 

theorem. 

 

Theorem3: Let 1NR

o
E = . The optimal value of (9) is equal to zero if and only if, for all 

optimal solutions of (6), we have  * ( , ) ( , )

1
( , ) ( , )

J
g g h g h
j j o

j h h
g h L g h L

z zλ
=

∈ ∈

=� � � and 

* ( , ) ( , )

1
( , ) ( , )

J
h g h g h
j j o

j h h
g h L g h L

z zλ
=

∈ ∈

=� � � for each g=1,…,K,  where "*" indicates optimality in 

(6). 

 

Theorem 3 indicates that DMU
o
 is Pareto-Koopmans efficient if and only if NR

oE =1 

and the optimal value of equals zero. The significance of this theorem is that we can 

determine whether a DMU is Pareto-Koopmans efficient or not, by checking the value 

of NR

oE  and the optimal objective value of (9) even if (6) has multiple optimal 

solutions. The notion of Pareto-Koopmans efficiency is consistent with Lewis and 

Sexton’s (2004) assertion as noted earlier.  

The significance of Theorems2 and 3is that we can determine whether a DMU is 

Pareto-Koopmans efficient or not, by examining the objective value of and the optimal 

objective value of (9). Hence, we do not need to worry about the existence of multiple 

optimal solutions in our methodology, whereas the Pareto-Koopmans efficiency status 

cannot be identified using only an optimal solution in the NSB and NCCR Models. 

     In the NDEA literature, the efficiency scores of divisions are often obtained by 
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decomposing the efficiency of the assessed DMU into divisional efficiencies (Kao 

(2009); Kao and Hwang (2008); Tone and Tsutsui (2009)). For example, the system 

efficiency in Kao and Hwang’s (2008) two-stage NCCR model is decomposed into the 

two divisional efficiencies. That is, the divisional efficiency scores of stages 1 and 2 are 

obtained with respect to optimal multipliers by exploiting the relationship 

,1 ,2NCCR NCCR NCCR

o o oE E E= × , where ,1,NCCR NCCR

o oE E and ,2NCCR

oE are the efficiencies of DMUo, 

Division 1 and Division 2, respectively.   

Alternatively, one might obtain the efficiency of Division k as   

 

*

1

*

1

1 ˆ

1,...,
1 ˆ

k

k

N
k

nk
n

M
k

mk
m

N
k K

M

θ

φ

=

=

=
�

�
 (10) 

where “*” indicates the optimality of  or . Unfortunately, however, such a measure 

does not represent the divisional efficiency score that is consistent with the notion of 

dominance. Indeed, (10) does not even show whether the division is efficient or 

inefficient if (6) has multiple optimal solutions.   

In addition to the problem of multiple optimal solutions, we provide another reason for 

not using Eq. . Suppose an efficient DMU consists of several divisions: all divisions 

except for one are efficient and the inefficient division’s inefficiency comes from the 

inappropriate use of an intermediate input. If we use Eq. , which is the mean of only the 

scaling factors of exogenous inputs and final outputs of a division, then the score can be 

unity for all divisions because the optimal values for all scaling factors obtained from  

or  in assessing the efficient DMU equal one. But one division is inefficient with 

respect to an intermediate input. Therefore, it implies a contradictory result. To obtain 

the efficiency of DMUo s′  Division k, we replace (5a) with 
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after appending the following constraints in : 
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In order to find divisional efficiency scores uniquely we maximize  over the 

constraints of  along with the above additional constraints. 

Using the Charnes-Cooper transformation, we suggest solving the following 

linear programming problem: 

 ( ),
o 1 1

1
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where , , , ,g k k k k

j n q m qλ θ θ ϕ ϕ and t are the variables. The optimal value of (12), represented 
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by ,

o

NR k
E , is the efficiency of division k of DMUo . It is easy to see that if redundant 

constraints are deleted, then the number of constraints in (12.5) equals the number of 

indices 1,..., , 1,...,g K q Q= = such that ( , )g k L∈ or ( , )k g L∈ . 

 

Remark:  If division k does not have intermediate inputs, then Q and 
1

Q k
qq

θ
=�  in the 

objective (12.1) along with constraints (12.3) and t
k

q ≤θ  of (12.8) should be omitted.  

Moreover, if division k does not have any intermediate outputs, then Q and 
1

Q k

qq
φ

=�  in 

(12.6) along with constraints (12.4) and t
k

q ≥ϕ  of (12.9) should be deleted.   

Now we are ready to formally define divisional efficiency with respect to ,
o
NR k

E  in .  

 

Definition 5(Divisional Efficiency). Division { }Kk ,...,1∈  of oDMU  is divisionally 

efficient if and only if 
, 1NR k

o
E =

. It is divisionally inefficient if and only if
, 1NR k

o
E <

. 

 

Considering Definition 5, we obtain the following theorem associated with 

divisional efficiency.   

 

Theorem 4: If division k of oDMU is divisionally efficient according to ,NR k

o
E , then 

there does not exist any observed DMU whose division k dominates division k of 

DMUo . 

 

The measure ,NR k

oE  represents divisional efficiency.  We refer to our proposed two-phase 
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framework consisting of  and  as the two-phase NR approach. We name this method 

“two-phase” because in the first phase we obtain sub-vector NR efficiency by  or , and 

in the second phase we maximize slacks of intermediate products using model  if the 

sub-vector NR efficiency is one. 

 

3.  Comparison with NDEA methods: Two artificial numerical examples 

In this section, we compare the two-phase NR approach with Liang, Cook and Zhu’s 

(2008) centralized authority method as well as two standard network methods: one is the 

network slacks-based (NSB) model (Tone and Tsutsui (2009, 2014) and the other is the 

network CCR (NCCR) model (Kao (2009); Kao and Hwang (2008, 2010)). To start with, we 

define Tone and Tsutsui’s (2014) fixed link model as follows:�

 

1 1 1

1 1 1

1 1

( , )

1

1
1

Min
1

1

. . , , ,

k

k

gN g QK
qg n

g g g

g n qno qo

o gM g QK
qg m

g g g
g m qmo qo

J J
g g g g g g g g

j nj no n j mj mo m

j j

J
g g h

j qj q

j

ss
w

N Q x z
NSB

ss
w

M Q y z

s t x x s y y s g n m

z z

λ λ

λ

−−

= = =

++

= = =

− +

= =

=

� �� �
− +� �� �� �� �+ � �� �=

� �� �
+ +� �� �� �� �+ � �� �

= − = + ∀

=

� � �

� � �

� �

�

�

�

( , ) ( , ) ( , )

1

, , ,

0, 0, 0, 0, 0 , , , ,

J
g h g h g h g h g

o q j qj qo q

j

g g g g g

n m q q j

s z z s g h q

s s s s g n m q j

λ

λ

+ −

=

− + − +

+ = − ∀

≥ ≥ ≥ ≥ ≥ ∀

�� �

� �

(13) 

 

Note that the NR model  is different from Tone and Tsutsui’s (2014) fixed link and 

free link NSB formulations with respect to intermediate products. Whereas Tone and 

Tsutsui (2014) utilize ( )( , ) ( , ) ( , ) ( , )

1 1
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fixed link case and ( , ) ( , )
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shown in (6c) of NR model (6).Tone and Tsutsui (2014) developed a dynamic-network 

DEA model. We can obtain  if we confine ourselves to the static situation.   

The NSB of Division g (NSB divisional efficiency) is calculated as 
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where the star “*” shows an optimal solution of . That is, the NSB measure for division 

g is calculated based on the average efficiencies associated with not only the exogenous 

inputs and final outputs but also intermediate products. Hence, the NSB measure for the 

evaluated DMU is constructed in the full product space and hence is a full-space vector 

measure.   

Now return to Example 1, whose data are given in Figure 1. Table 1 shows the 

results of the NCCR, Liang et al. (2008), NSB fixed link and free link, and two-phase 

NR models where an efficiency score of unity indicates efficiency. We see that 1DMU , 

2DMU and the two divisions are efficient according to the NCCR, Liang et al.’s models 

as well as the NSB free link formulation. The result of NSB fixed link method based on  

and  shows that 1DMU is inefficient because the efficiency of its Division 1 is 0.8, but 

2DMU  is rated as efficient with the two divisions being efficient. By contrast, the 

two-phase NR approach shows that the first divisional efficiency score of 1DMU  is 0.8 

and the second divisional efficiency score of 2DMU  is 0.83333. Moreover, the second 

division of 1DMU  and the first division of 2DMU  are efficient6. Note that the 

efficiencies of the two DMUs equal one and so the two DMUs are sub-vector efficient, 

                                                
6Note that the constraints, corresponding to intermediate products, used in Tone and Tsutsui (2009, 
2014) are different from that constraints used in the network Russell model(6). Therefore the results 
based on Tone and Tsutsui (2009) may be different from the results of the proposed approach. 
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while the maximization of slacks (Model ) is nonzero and hence these DMUs are 

Pareto-Koopmans inefficient. We see that the results obtained from the two-phase NR 

approach correctly identify Pareto-Koopmans efficiency as is expected.   

<<Table 1>>about here 

We can easily see that our two-phase NR procedure produces a unique score for 

the efficiency of the assessed DMU and its divisions and so it can solve the problem of 

Example 2. On the contrary, NCCR cannot find the efficiency scores of the divisions 

uniquely. The results of NCCR, NSB and NR of Example 2, whose data are given in 

Figure 2, are listed in Table 2. Although the divisional efficiencies are uniquely 

determined from NSB for this example, it is not the case in general, i.e., the NSB is not 

capable of finding divisional efficiencies uniquely similar to NCCR. 

<<Table 2>>about here 

In the next section, we examine how the two-phase NR approach can be used to 

achieve Pareto-Koopmans efficiency using Taiwanese banking data. Here we also 

provide estimates based on Tone and Tsutsui’s (2014) NSB model.  

 

4.  Real-life Application: Taiwanese banks 

In this section, we apply the two network methods (NSB and two-phase NR) 

discussed in section 3 to the data set used in Kao and Hwang (2010). Their data set 

consists of 27 banks in Taiwan. Following Wang, Gopal and Ziont’s (1997) study, Kao 

and Hwang (2010) specified the problem of evaluating the impact of information 

technology (IT) on bank performance into two stages in series. The framework 

identifies Division 1 as an IT-related activity and deposits as the intermediate output 

from IT. Division 2 is a profit generating process, in which a bank utilizes the deposits 
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as funds to provide loans to customers and invest in securities. That is, Division 1uses 

three inputs to produce one intermediate product and this intermediate product is 

consumed by Division 2 to produce two final outputs. The three inputs are IT budget, 

fixed assets and the number of employees; and the intermediate product is represented 

by the dollar value of deposits; and the two final outputs are the earned profit and the 

percentage of loans recovered. The data are given in Appendix A1. 

Since there is a substantial difference in the bank size in the sample, we analyze 

the sample under the assumption of variable returns to scale. Our proposed approach 

can be used to provide a Pareto-Koopmans efficient target for banks in the sample.  

To do so let us denote the differences 1(DEP)oH  and 2 (DEP)oH between the 

deposits produced and consumed by Division 1 and Division 2, respectively, as  
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where (1,2)DEPj jz= is Bank j’s observed value of deposits. Note that & and && indicate 

optimality of  associated to Divisions 1 and 2, respectively. The indexes 1( )oH DEP  

and 2 (DEP)
o

H represent the retained amounts of deposits corresponding to Divisions 1 

and 2, respectively.  Similarly, using the optimal solution of (6), ( )oH DEP is defined 

as 
27 271* 2*

1 1
(DEP) DEP DEPo j j j jj j

H λ λ
= =

= −� � where ‘*’ indicates the optimality of (6). 

Table 2 reports the efficiency scores based on the two methods where w1=w2=0.5.  

All efficiency measures calculated by the NSB and NR models are different for all 

inefficient banks and divisions, although the efficiency status of DMUs and their 

divisions are the same in the two methods. According to the NSB model, banks 7, 9, 18, 

20, and 27 are efficient because ,1 ,2NR NR NR

j j jE E E= = =1 ( )7,  9,  18,  20,  27j = and 
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1 2 0j jH H= = ( )7,  9,  18,  20,  27j = .   

<<Table 3>>about here 

Now consider banks 4, 13, 17, 21, 22 and 26 whose second division is inefficient.   

The last three columns in Table 3 provide the amounts of slacks associated with the 

constraints of the intermediate product for these inefficient banks based on models and . 

The 2

o
H values for banks 4, 17 and 22 are positive and those for banks 13, 21and 26 are 

zero. If Bank 4 decreases deposits by 4 billion dollars, the bank and its two divisions 

become efficient. Note that this bank’s Division 1 was efficient and it still remains 

efficient, though we have decreased Division 1’s output (deposit). Hence Bank 4 will 

become overall system efficient by decreasing 4 billion dollars of Bank 4’s intermediate 

product. Similar results can be obtained for Bank 17 and Bank 22 if they decrease 

deposits by 2 and 7 billion dollars, respectively.   

For Banks 13, 21 and 26 whose wastes of deposits represented by 2

oH are zero, 

we cannot make these banks efficient only with changes of the amounts of deposits. In 

order to obtain their Pareto-Koopmans efficient targets, they need to change exogenous 

inputs and/or final outputs from a managerial perspective. 

The same result is obtained for Banks 3 and 16, for which their second divisions 

are efficient and their first divisions are inefficient. That is, we cannot improve these 

banks and their divisions to make them efficient by increasing their intermediate inputs 

(deposits), because the values of 1

oH are zero for Banks 3 and 16.  

 

5.  Conclusions 

Mathematical dominance is the fundamental property asserted by Charnes and Cooper 

(1984, 1985) and Charnes, Cooper, Golany and Seiford (1985) in standard DEA models. 



26 
 

However, the dominance notions (criteria or rules) are not fully utilized to evaluate the 

efficiency of DMUs and divisions in NDEA. By incorporating the three vector-based 

notions of dominance, we suggested a novel two-phase network Russell (NR) approach 

for evaluating the overall efficiency performances of DMUs with network internal 

structures. We also presented and proved several theorems to show the validity of the 

two-phase NR approach. Clearly, the two-phase NR approach is also applicable to 

DMUs having series or parallel structures as well as other NDEA models. For the 

purpose of illustration, we employed Kao and Hwang’s (2010) data on Taiwanese banks 

as well as two artificial numerical examples. We demonstrated that, in the free link case, 

the two-phase NR approach can always identify the Pareto-Koopmans efficiency status 

which is not identified by standard NDEA models, though Fukuyama and Mirdehghan 

(2012) had dealt with the efficiency status identification for the fixed link. 

Before concluding, several remarks are in order. First, the two-phase NR 

approach is particularly relevant when a DMU manager would like to improve the 

overall operations of the system (or organization) further, even when exogenous inputs 

and final outputs are optimally allocated. In fact, Lewis and Sexton (2004, on page 

1394) asserted that providing this kind of information is of great importance for further 

improving operations when a DMU is sub-vector efficient. 

Second, Pareto-Koopmans efficiency implies that all of its divisions are fully 

efficient, but the condition that a DMU is sub-vector efficient is only necessary for 

Pareto-Koopmans efficiency. As was shown in our examples in section2, it is possible 

that all observed DMUs are overall system inefficient (see also Lewis and Sexton 

(2004); Castelli, Pesenti and Ukovich (2010, p.222)). Third, by opening a black box 

inherent to a DMU, we can identify the sources of inefficiency at the DMU by using the 



27 
 

two-phase NR approach.  

Fourth, the two-phase NR approach is capable of providing divisional efficiency 

scores even under multiple optima. Chen, Cook, Kao and Zhu (2013) stated that while 

the NSB envelopment form is incapable of providing the divisional efficiency scores, 

the NCCR multiplier form can provide both overall and divisional efficiency scores.  

However, as shown in the present paper, the NCCR model is inconsistent with 

Pareto-Koopmans efficiency. While the two-phase NR approach does not give the 

overall efficiency score7 of the assessed DMU, it not only provides divisional 

efficiency scores but also determines its Pareto-Koopmans efficiency status.   

Fifth, it is straightforward to endogenize the weights associated with the 

importance of divisions. However, such a NR setting will be nonlinear. To avoid 

nonlinearity, the present paper only discussed the two-phase NR approach under the 

assumption that the weights be known a priori. 

The sixth remark is about our treatment of intermediate products in the modeling.  

This paper focused on the case where all intermediate products are not leakage variables, 

i.e., they are produced, consumed and possibly retained in the system. Interesting future 

extensions include: relaxing this assumption, developing a NDEA approach from a 

dominance perspective and sensitivity analysis on the intermediate products to 

transform an inefficient DMU to an overall efficient DMU. 

Seventh, it should be noted that finding the reference set and the benchmarks of 

DMUs is one of the most important issues in the standard DEA which some researchers 

(such as Jahanshahloo, Shirzadi and Mirdehghan (2008); Krivonozhko, Førsund and 

Lychev (2012); Mehdiloozad, Mirdehghan, Sahoo and Roshdi (2015)) have focused on. 

                                                
7
As stated in this paper, other models such as NCCR do not provide the overall efficiency score 

which is consistent with Pareto-Koopmans efficiency.   
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Finding the benchmarks of DMUs is another important subject in network DEA which 

we need more studying. 

Finally, we conclude this section with the following remark. We focused on the 

situation where the notions of dominance (particularly complete dominance involving 

intermediate products) are applicable. However, it should be noted that there can be 

other situations where dominance related to intermediate products is not the rule or 

norm. The models dealing with such situations are those of Tone and Tsutsui (2009, 

2014) and Kao and Hwang (2010). Liang, Cook and Zhu’s (2008) approach based on 

cooperative and non-cooperative games also deals with such a situation.   
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Figure 2:Example 2 
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Figure 3: Two-Stage Intermediation Process for Bank j 

 

 

 

1

1

1

2

1

3

labor

capital

equity

j

j

j

x

x

x

=

=

=

 

(1,2)

1

(1,2)

2

deposits

other funds

j

j

z

z

=

=

Stage 1 

(division 1) 

Stage 2 

(division 2) 

2

1

2

2

loans

securities

j

j

y

y

=

=
 



 

3
6
 

 T
a

b
le

 1
:E

ff
ic

ie
n

ci
es

 o
f 

D
M

U
 a

n
d

 D
iv

is
io

n
s 

fo
r 

E
x
a
m

p
le

 1
: 

C
o
n

st
a
n

t 
R

et
u

rn
s 

to
 S

ca
le

 

 
N

C
C

R
 m

o
d
el

 
C

en
tr

al
 a

u
th

o
ri

ty
 K

H
 m

o
d

el
 

N
S

B
fi

x
ed

 l
in

k
 m

o
d
el

 
N

S
B

fr
ee

 l
in

k
 m

o
d
el

 
N

R
 m

o
d
el

 

K
ao

 a
n

d
 H

w
an

g
 (

2
0
1
0
) 

L
ia

n
g
 e

t 
al

. 
(2

0
0

8
) 

T
o
n
e 

an
d

 T
su

ts
u
i 

(2
0

0
9
) 

T
o
n
e 

an
d
 T

su
ts

u
i 

(2
0
0
9
) 

P
re

se
n
t 

st
u
d
y
 

D
M

U
 

N
C

C
R

o
E

 

N
C

C
R

,1

o
E

 

N
C

C
R

,2

o
E

 

N
R

o
E

 

C
en

tr
al

,1

o
E

 

C
en

tr
al

,2

o
E

 

N
S

B

,
o

fi
x
e
d

E
 

N
S

B
,1

,
o

fi
x
e
d

E
 

N
S

B
,2

,
o

fi
x
e
d

E
 

N
S

B

,
o

fr
e
e

E
 

N
S

B
,1

,
o

fr
e
e

E
 

N
S

B
,2

,
o

fr
e
e

E
 

N
R

o
E

 
N

R
,1

o
E

 
N

R
,2

o
E

 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

0
.8

3
3
3
 

0
.8

 
1
 

1
 

1
 

1
 

1
 

0
.8

 
1
 

2
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

0
.8

3
3
3
 

N
o
te

:T
o

n
e 

an
d
 T

su
ts

u
i’

s 
(2

0
0
9
) 

N
S

B
 f

re
e 

li
n
k
 m

o
d
el

 a
n

d
 t

h
e 

N
R

 m
o
d

el
 o

n
ly

 d
if

fe
rs

 i
n
 c

o
n
st

ra
in

ts
 a

ss
o

ci
at

ed
 w

it
h
 i

n
te

rm
ed

ia
te

 p
ro

d
u
ct

s.
 

 
 

   T
a

b
le

 2
: 

E
ff

ic
ie

n
ci

es
 o

f 
D

M
U

s 
a

n
d

 D
iv

is
io

n
s 

fo
r 

E
x

a
m

p
le

 2
: 

C
o
n

st
a
n

t 
R

et
u

rn
s 

to
 S

ca
le

 

 
N

C
C

R
 m

o
d
el

 
N

S
B

fr
ee

 l
in

k
 m

o
d
el

 
N

R
 m

o
d

el
 

K
ao

 a
n
d

 H
w

an
g
 (

2
0

1
0
) 

T
o

n
e 

an
d
 T

su
ts

u
i 

(2
0
0
9
) 

P
re

se
n
t 

st
u
d

y
 

D
M

U
 

N
C

C
R

o
E

 

,1
N

C
C

R

o
E

 

,2
N

C
C

R

o
E

 

,N
S

B

o
fr

e
e

E
 

,1

,N
S

B

o
fr

e
e

E
 

,2

,N
S
B

o
fr

e
e

E
 

N
R

o
E

 
,1

N
R

o
E

 
,2

N
R

o
E

 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

5
/6

 

2
 

3
/4

 
7

/8
, 

3
/4

*
 

1
, 
6
/7

*
 

4
/7

 
2
/5

 
1
 

3
/4

 
2

/5
 

1
 

*
T

h
e 

d
iv

is
io

n
al

 e
ff

ic
ie

n
ci

es
 o

f 
D

M
U

2
ar

e 
n
o
t 

o
b
ta

in
ed

 u
n
iq

u
el

y
 f

o
r 

th
e 

N
C

C
R

 m
o
d

el
 d

u
e 

to
 t

h
e 

ex
is

te
n
ce

 o
fm

u
lt

ip
le

 o
p
ti

m
al

 s
o
lu

ti
o
n
s.

T
h
e 

N
C

C
R

 

sc
o
re

s 
ar

e 
ca

lc
u
la

te
d
 u

si
n
g
 t

h
e 

tw
o
 o

p
ti

m
al

 s
o

lu
ti

o
n

s 
w

h
ic

h
 a

re
 g

iv
en

 i
n
 s

u
b
se

ct
io

n
 2

.2
. 

 



 

37 
 

 

Table 3: VRS Results of 27 Banks in Taiwan. 

Bank Free link case of NSB model 

(Tone and Tsutsui (2009)) 

Two-phase NR approach 

(present study) 

Two-phase NR approach 

(difference between optimal deposits in 

Division 1 and Division 2) 

NSB

,o freeE  
,1

,

NSB

o freeE  
NSB,2

,o freeE  

NR

o
E  

,1NR

o
E  

,2NR

o
E  (DEP)

o
H  

1(DEP)
o

H  
2 (DEP)
o

H  

1 0.6809 0.7753 0.9319 0.5733� 0.5506� 0.8458� 0 0 0 

2 0.7257 0.7707 0.9984 ������� ������� ����	�� 0 0 0 

3 0.6036 0.6794 1 ���

�� ��
���� �� 0 0 0 

4 0.8567 1 0.8568 ������� �� ����
	� 0 0 4.5408 

5 0.6778 0.8117 0.8983 0.6684� 0.6235� 0.7546� 0 4.9571 3.0033 

6 0.5519 0.7130 0.8389 ��
���� ������� ��	���� 0 0 0 

7 1 1 1 �� �� �� 0 0 0 

8 0.6280 0.7508 0.9348 ����	�� �����	� ���
��� 0 0 4.9775 

9 1 1 1 1� 1� 1� 0 0 0 

10 0.5251 0.6864 0.9106 �����	� ��
���� ���	��� 0 0 0 

11 0.5218 0.6906 0.9156 ����

� ��
	��� ���	��� 0 0 0 

12 0.6634 0.8585 0.8227 ��	
��� ����	�� ������� 0 3.0865 5.9421 

13 0.9248 1 0.9251 0.6283 1� 0.8503� 0 0 0 

14 0.5160 0.6733 0.8803 ������� ��
�		� ������� 0 0 0 

15 0.6176 0.6979 0.9415 ��
���� ��
���� ������� 0 0 1.6567 

16 0.7629 0.7994 1 �����	� ���	��� �� 0 0 0 

17 0.6665 1 0.7499 0.4998� 1� 0.4822� 0 0 2.3673 

18 1 1 1 �� �� �� 0 0 0 

19 0.6892 0.8620 0.8272 �����	� ������� ��	���� 0 0 2.0531 

20 1 1 1 �� �� �� 0 0 0 

21 0.9395 1 0.9428 0.8893� 1� 0.8856� 0 0 0 

22 0.8200 1 0.8201 ������� �� ��	���� 0 2.4280 3.6369 

23 0.8305 0.9621 0.8691 ���
��� ������� ���
��� 0 3.3654 1.8266 

24 0.9308 0.9350 0.9958 ������� ������� ������� 0 0 0 

25 0.6202 0.8409 0.8061 0.5460� 0.6640� 0.5728� 0 0 0 

26 0.7558 1 0.7565 ���		�� �� ����
�� 0 0 0 

27 1 1 1 �� �� �� 0 0 0 

Notes: (i) Banks 4, 13, 17, 21, 22 and 26 are Pareto-Koopmans inefficient but their first 

divisions are efficient; (ii) Banks 3 and 16 are Pareto-Koopmans inefficient but their second 

divisions are efficient; (iii) DMUs 7, 9, 18, 20 and 27 are Pareto-Koopmans efficient. 
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Appendix A1: Proofs of Theorems 

 

Proof of Theorem 1:  Letting 1

1 1

1 ˆ
gK M

g

g mg
g m

t w
M

φ−

= =

=� � in (5), we convert the variables 

into new variables as  

 ˆ ˆ ˆ, , , , ,g g g g g g

m m n n j jt m g t n g t j gφ φ θ θ λ λ= ∀ = ∀ = ∀  

This conversion yields a desired result.     

 

 

Proof of Theorem 2: Let oDMU be overall system efficient, then 1=oE , i.e., 

* *1 and 1g g

n m
θ φ= =  for g=1,…,K, 1,..., gn N= and 1,..., gm M= . By contradiction, 

suppose that pDMU  completely dominates oDMU  where o and p are in { }1,..., J . It 

implies 
op xx ≤ and 

op yy ≥ . Consequently,  the vector ( )1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ,..., , ,..., , ,..., ,K K K tλ λ θ θ φ φ   

is an optimal solution to Model (6) (in evaluating DMUo) where 1ˆ =g

pλ and 0ˆ =g

jλ  for 

pj ≠  as well as ˆ 1t = , ˆ 1g
nθ =  and ˆ 1g

mφ =  for g=1,…,K, 1,..., gn N= , 

and 1,..., g
m M= .  Since all constraints (6b) are binding in optimality, we have 

g

o

g

p

g

o

g

p yyxx == , .  Also, 
oDMU  is overall system efficient. It follows from Definition 

4 that we have ��
∈∈

=

Lhg
h

hg

o

Lhg
h

hg

p zz

),(

),(

),(

),( ,  g=1,…,K, for the above optimal solution of (6). 

Moreover, we have 

{ }( , ) ( , )

1 1
( , ) ( , )

for all 1,..., . ( )
K K

g h g h
qp qo

g h g h
g h L g h L

z z q Q A
= =

∈ ∈

= ∈� � � �  

Since DMUp  completely dominates DMU
o
, we have ( , ) ( , )

( , ) ( , )

h g h g
qp qo

h h
h g L h g L

z z

∈ ∈

≤� � for all 

indices { }1,...,q Q∈ and { }1,...,g K∈ . Since ,g g g g
p o p ox x y y= =  and 
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( , ) ( , )

( , ) ( , )

g h g h
p o

h h
g h L g h L

z z

∈ ∈

=� �  for at least a pair of indices q and g, we have a constraint with 

strict inequality, i.e., there exist indices { }1,...,q Q∈  and { }Kg ,...,1∈ such that 

��
∈∈

<

Lgh
h

gh

qo

Lgh
h

gh

qp zz

),(

),(

),(

),( . It implies that 

( , ) ( , )

1 1
( , ) ( , )

K K
h g h g

qp qo

g h g h
h g L h g L

z z
= =

∈ ∈

<� � � �  .                                  (B) 

On the other hand, we have  

( , ) ( , ) ( , ) ( , )

1 1 1 1
( , ) ( , ) ( , ) ( , )

and ( )
K K K K

h g g h h g g h

qp qp qo qo

g h g h g h g h
h g L g h L h g L g h L

z z z z C
= = = =

∈ ∈ ∈ ∈

= =� � � � � � � �  

which are the sums of all qth intermediate products linked among all divisions of 

DMU p  and DMU
o
, respectively. 

From (A), (B) and (C), we have a desired contradiction. Therefore, there do not 

exist any DMUs that completely dominate DMUo which is overall system efficient.  

The proof of the second part is similar and hence we omit it.   

 

 

Proof of Theorem 3: We can prove Theorem 3 by considering Models (7) and (9). 

 

 

Proof of Theorem 4: Let Division k of DMUo  be divisionally efficient. By 

contradiction, suppose that Division k of { }( )DMU 1,..., ,p p J p o∈ ≠ dominates 

Division k of DMUo , i.e., 

 ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

, , , , , , .k k h k k h k k h k k h

p p p p o o o o

h h h h
h k L k h L h k L k h L

x y z z x y z z

∈ ∈ ∈ ∈

� � � �
� � � �− − − −
� � � �� � � �
� � � �

� � � �≥
≠
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Let 
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tλ λ θ θ φ φ θ θ φ φ  is a feasible solution of (12).  

Here we consider two cases for scalar t̂ :  

 

Case 1. 1ˆ <t ; In this case, we have 1ˆ <k

nθ  and 1ˆ <k

qθ . Hence, the objective value of 

(12) is less than 1, i.e., 1<k

oE . This is a contradiction to the supposition that Division k 

of DMUo is divisionally efficient. 

 

Case 2. 1ˆ =t ; In this case we have 
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z z

∈ ∈

=� � for 

m=1,…,M
k and q=1,…,Q. Division k of DMUp dominates division k of DMUo. 

According to definition 3, it follows that there exist at least one index {1,..., }k
n N∈  or 

{1,..., }q Q∈ such that 1<
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. It implies that at least one of 
k

nθ̂  or 
k

qθ̂  

is less than one, i.e., the objective value of (12) for this feasible solution is less than one 

and it is a contradiction to the supposition that Division k of DMUo is efficient.   
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Appendix A2: Data of 27 Banks in Taiwan 

 

 

Bank 

Fixed assets 

($billions) 

x1 

IT budget 

($billions) 

x2 

#of employees 

(thousand) 

x3x3 

Deposits 

($billions) 

zz 

Profit 

($billions) 

y1 

Fraction of loans 

recovered 

y2 

1 0.150 0.713 13.3 14.478 0.232 0.986 

2 0.170 1.071 16.9 19.502 0.340 0.986 

3 0.235 1.224 24.0 20.952 0.363 0.986 

4 0.211 0.363 15.6 13.902 0.211 0.982 

5 0.133 0.409 18.485 15.206 0.237 0.984 

6 0.497 5.846 56.42 81.186 1.103 0.955 

7 0.060 0.918 56.42 81.186 1.103 0.986 

8 0.071 1.235 12.0 11.441 0.199 0.985 

9 1.500 18.120 89.51 124.072 1.858 0.972 

10 0.120 1.821 19.8 17.425 0.274 0.983 

11 0.120 1.915 19.8 17.425 0.274 0.983 

12 0.050 0.874 13.1 14.342 0.177 0.985 

13 0.370 6.918 12.5 32.491 0.648 0.945 

14 0.440 4.432 41.9 47.653 0.639 0.976 

15 0.431 4.504 41.1 52.630 0.741 0.981 

16 0.110 1.241 14.4 17.493 0.243 0.988 

17 0.053 0.450 7.6 9.512 0.067 0.980 

18 0.345 5.892 15.5 42.469 1.002 0.948 

19 0.128 0.973 12.6 18.987 0.243 0.985 

20 0.055 0.444 5.9 7.546 0.153 0.987 

21 0.057 0.508 5.7 7.595 0.123 0.987 

22 0.098 0.370 14.1 16.906 0.233 0.981 

23 0.104 0.395 14.6 17.264 0.263 0.983 

24 0.206 2.680 19.6 36.430 0.601 0.982 

25 0.067 0.781 10.5 11.581 0.120 0.987 

26 0.100 0.872 12.1 22.207 0.248 0.972 

27 0.0106 1.757 12.7 20.670 0.253 0.988 
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Pareto-Koopmans Efficiency and Network DEA 

Highlights 

 

1. Network DEA models generalize standard DEA models. 

2. We propose a two-phase network DEA approach from a Pareto-Koopmans 

perspective. 

3. The approach can provide information on overall efficiency status and divisional 

efficiency. 

 




