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Abstract:  This paper develops two cost decompositions based on the multiplicative 

Russell and additive slack-based (in)efficiency measurement frameworks.  While the 

multiplicative cost decomposition is a straightforward extension of the standard cost 

decomposition, the decomposition we develop in this paper incorporates slacks directly 

so that efficiency is measured relative to the efficient subset.  To show the applicability 

of our novel approach, we provide an illustration using a data set used in the literature.   
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1. Introduction 

 

The measurement of input technical efficiency relative to the efficient subset of an input 

set goes back to Färe (1975) who proposed minimizing inputs one at a time, i.e., 

nonradially.  Later, Färe and Lovell (1978) proposed what they called the Russell 

measure (also referred to by others as the Färe-Lovell measure) which was also nonradial 

but summed over the individual input inefficiency components.  These measures 

eliminated all technical inefficiencies including those due to ‘slacks’ as opposed to the 

radial Farrell (1957) measure of input technical efficiency which uses the isoquant rather 

than the efficient subset as the reference for technical efficiency.  Thus, when the 

efficient subset differs from the isoquant, radial measures of technical efficiency such as 

the Farrell measure and nonradial measures may differ.  Furthermore this may affect not 

only technical efficiency but allocative efficiency as well, resulting in different 

decompositions of the overall (e.g., cost or revenue) efficiency.  This discrepancy is the 

motivation for considering nonradial measures as part of a decomposition of the overall 

Farrell measure of cost or revenue efficiency.  The first such result was obtained by 

Färe, Grosskopf and Zelenyuk (2007).  Their decomposition comes from introducing a 

multiplicative version of the Russell measure; and here we expand on their result.  In 

this paper we will focus on the cost efficiency or input orientation, but similar 

decompositions can be developed for revenue efficiency as well.   

     The introduction of the directional distance functions
1
, by Chambers, Chung and 

Färe (1998), is another alternative nonradial (additive) way of estimating technical 

(in)efficiency.  In fact, the directional input distance function may be turned into a 

slack-based additive efficiency measure
2
.   We can identify two classes of nonradial 

slack-based technical efficiency measures, a multiplicative and an additive measure, both 

with an indication property such that the multiplicative (additive) measure equals one 

                                                      
1
 The directional distance functions are production counterparts of Luenberger’s shortage function which 

is based on the utility function and the consumption possibility set.  See Luenberger (1995).  The 

directional input distance function is a production counterpart of Luenberger’s (1992) benefit function 

developed in a consumer context. 

2
 See Färe and Grosskopf (2010). 
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(zero) if and only if the input vector belongs to the efficient subset.  The efficient subset 

is particularly important in efficiency measurement because input vectors in the efficient 

subset cannot be reduced without decreasing at least one input and/or increasing at least 

one output.  On the other hand, if the input vector is in the isoquant but not in the 

efficient subset, then it is possible to reduce at least one input given a fixed level of 

outputs.  Whereas the Farrell measure and the directional input distance function are 

constructed relative to an isoquant, the slack-based measures are constructed relative to 

the efficient subset.  Consequently, it is of great interest to develop efficiency analysis 

based on a slack-based efficiency measurement framework.   

     In this paper we introduce both an additive and a multiplicative slack-based 

approach for the decomposition of the Farrell cost efficiency measure.  The rest of the 

paper unfolds as follows.  While Section 2 describes the basics, Section 3 introduces a 

multiplicative cost decomposition and its corresponding allocative efficiency measure 

based on the multiplicative Russell measure developed by Färe, Grosskopf and Zelenyuk 

(2007).  Section 4 introduces a new cost decomposition based on the additive Russell 

measure.  Section 5 extends the additive approach into data envelopment analysis 

(DEA) and provides an empirical illustration using a real-life data set documented in 

Banker and Maindiratta (1988).  The last section gives a brief summary.   

 

2. Background and Methodology 

In this section, we outline the theoretical background for our paper.  Then we 

develop the methodology for it by building on the inequality of Mahler (1939).  Let 

Nx   be an input vector and My   be an output vector.  The input requirement 

sets are defined as 

  ( ) : can produce , ML y x x y y    (1) 

and are our representation of the technology, which is assumed to be a nonempty, closed, 

strongly disposable set satisfying the boundedness of  : ( )y x L y  as well as no free 

lunch and convexity of ( )L y .  For the details of these regularity conditions, see for 

example Färe and Primont (1995).  Technology can equivalently be expressed as the 



 

3 

 

production possibility set  ( , ) : ( )T x y x L y  , i.e., ( ) ( , )x L y x y T   .  The 

following two subsets of (1) are important for the paper.  The isoquant for My   is 

defined as  

  ( ) : ( ) and if 1 then ( )IsoqL y x x L y x L y       

and the efficient subset is  

  ( ) : ( ) and if then ( )EffL y x x L y x x x L y    
3
.  

Clearly, ( ) ( )EffL y IsoqL y .  Shephard’s (1953) input distance function is defined as  

    , sup : / ( )iD y x x L y     

which characterizes the production technology (1).  Now assume that input prices 

Nw   are given, then the cost function is  

    , min : ( )
x

C y w w x x L y     

where w x  is the inner product, i.e., 
1

N

n nn
w x w x


  .   

From the Mahler (1939) inequality, we have 

 
( , ) 1

( , )i

C y w

w x D y x



  

where ( , ) /C y w w x  is referred to as the cost efficiency measure and 1/ ( , )iD y x  is 

called the technical (Farrell) input oriented efficiency measure.  An allocative 

efficiency measure, call it ( , , )AE y x w , is then defined as the multiplicative residual 

required to close the inequality, so that  

 
( , ) 1

( , , )
( , )i

C y w
AE y x w

w x D y x
 


  (2) 

which is sometimes referred to as the Farrell decomposition of cost efficiency. 

     Throughout the paper, we use the above approach: 

                                                      

3
 “ ” means “  but  ”.    
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i) Start with the cost inequality. 

ii) Derive a technical efficiency measure (input oriented).  

iii) Complete the decomposition by introducing an allocative efficiency measure 

(input oriented).  

 

3.  The Multiplicative Approach
4
 

 

The Russell measure (RM) has the indication property that it yields unity (or 100%) if 

and only if the input vector belongs to the efficient subset ( )EffL y .  Here we follow 

Färe, Grosskopf and Zelenyuk (2007) and define the multiplicative Russell measure as 

  
1

1/
1 1

,...,
1

( ,..., ) ( ),
, min : .

0 1, 1,...,N

N
N

N Nmult

n

n n

x x L y
RM y x

n N 

 


 

  
         

   (3) 

This definition differs from the additive (original) Russell measure (Färe and Lovell 

(1978)), which we denote as  ,addRM y x , whose objective function was additive, i.e.,  

 1

N

nn

N




.  

For the rest of the paper, we assume that x is strictly positive, i.e., 0, 1,...,nx n N  .  

     We note that  

  , 1 if and only if ( )multRM y x x EffL y     

and that  

 * *

1 1( ,..., ) ( )N Nx x L y     

where *, 1,...,n n N  , are the optimizers of (3).  Together with the cost inequality we 

get  

                                                      
4
 This section follows and expands on Färe, Grosskopf and Zelenyuk (2007). 
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* *

1 1 1

* *

1 1 1

1/ 1/

* *

1 1

( , ) ...

( , ) ...

N N N

mult N N N

N N
N N

n n

n n

C y w w x w x

w x w x
RM y x

 

 

 
 

  

 
 
   
    
     
    
 

  

and multiplying both sides with 1/ w x  yields 

  * *

1 1

( , )
( , ) ...mult

N N

C y w
RM y x s s

w x
 


  


  (4) 

where  

 
*

*

1/

*

1

, 1,...,i
i N

N

n

n

i N







 
 
 
 


  (5) 

and n n
n

w x
s

w x



, (n = 1,…, N) are the factor shares and 

1
1

N

nn
s


 .  The expression 

 * *

1 1( , ) ...mult

N NRM y x s s    shows a technical efficiency component in comparison 

with the standard cost efficiency measure, ( , ) /C y w wx , because the new Equation (4) 

is equivalent to * *

1 1 1( , ) ... N N NC y w w x w x    .  Incidentally, note that:  

 * *

1( , ) 1 if and only if ... 1mult

NRM y x      .  (6) 

     Furthermore, note that by closing the inequality with allocative efficiency, we 

have a cost decomposition relative to the efficient subset ( )EffL y .  Three comments 

are of particular consideration here: 

i) 

 

*
*

1/
*

1

n
n N

N

nn










 is the n-th input efficiency relative to the multiplicative 

Russell measure for 1,...,n N .  

ii) If * * 1,...,n n N    , then the Farrell decomposition is obtained.  

iii) The share ns  is the weight reflecting relative importance of n-th input in 

total cost.   
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Using (4), we propose the following decomposition:   

  * *

1 1

( , )
( , ) ... ( , , )mult RM

N N

C y w
RM y x s s AE y x w

w x
     


  

where ( , , )RMAE y x w  is the (residual) allocative efficiency based on the multiplicative 

Russell measure.   

     Before closing this section, several remarks are in order
5
.  First, ( , )multRM y x  

is a nonlinear program and hence it is relatively more difficult to solve.  But 

( , )multRM y x  can be also viewed as a geometric programming problem.  The 

objective function of the multiplicative Russell model is a monomial of positive 

variables 
1,..., N   and the constraints are shown in linear inequality form.  Therefore, 

( , )multRM y x  is a relatively simple geometric programming problem once the efficient 

subset (input efficient frontier) is constructed.  Interior-point algorithms for geometric 

programming have been developed and the algorithms can solve large-scale geometric 

programs
6
.   

     Second, the basic properties of input-oriented efficiency measures proposed by 

Färe and Lovell (1978) are: (i) input-indication, (ii) strong input-monotonicity, and (iii) 

input-homogeneity.  Since we have ( , )multRM y x =1 if and only if * *

1 ... 1N     as 

(6) states, the input-indication property holds.  Since  
1/

*

1

N
N

nn


  is increasing in 

1( ,..., ) 0J   ,  ( , )multRM y x  satisfies strong input-monotonicity. Note that the strong 

input-monotonicity property of the additive Russell measure was proved by Färe and 

Lovell (1978).   Regarding input-homogeneity, ( , )multRM y x  does not satisfy this 

property but it does satisfy its weaker version called sub-input-homogeneity.  This 

                                                      
5
 We add these remarks to incorporate the referees’ constructive comments and suggestions.   

6
 Boyd and Vandenberghe (2004) reported that a standard algorithm based on the interior-point 

method can solve a complicated geometric program with 10000 constraints and 1000 variables 

within a minute on a desktop computer.  However, such a computational issue is beyond the scope 

of this paper. 
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proof
7
 is similar to that of the sub-input-homogeneity property of Färe and Lovell’s 

(1978) additive Russell measure.   

     Third, ( , )multRM y x  is units invariant.  This property can also be proved by 

adapting the proof for the slack-based directional technology distance function (see Färe, 

Fukuyama, Grosskopf and Zelenyuk 2015).  For the sake of completeness, we include 

such a proof in the Appendix A1.      

     Fourth, regarding the issue of multiple optimal solutions, the multiplicative 

Russell measure may have alternative optimal solutions.  However, all known 

DEA-based linear programming efficiency measures also face the problem of possible 

non-unique optimal solutions.  See for example Fukuyama et al. (2014) for the 

discussion of multiple optimal solutions in the standard constant and variable returns to 

scale DEA models. 

     Finally, there is an alternative multiplicative DEA model in the literature.  The 

model, called the multiplicative DEA model, was proposed by Charnes, Cooper, Seiford 

and Stutz (1982).  The multiplicative DEA model can be linearized by taking the 

natural logarithms.  However, the linear form of the multiplicative DEA model needs 

to be constructed based on the nonstandard log-linear production possibility set.  In 

contrast, the multiplicative Russell measure (3) is constructed relative to the standard 

production possibility set T  and hence it cannot be linearized.  

 

4. The Additive Approach 

 

Our additive approach builds upon the concept of the slack-based directional input 

distance function by Färe and Grosskopf (2010).  The slack-based directional input 

distance function can be thought of as a generalization of the directional input distance 

function for a directional input vector of ones, 1 (1,...,1) N

N   .  To see this, let us 

first introduce a directional vector   1,...,
N

Ng g g   .  

Relative to g , the directional input distance function is defined as  

                                                      
7
 See Russell (1985) and Dmitruk and Koshevoy (1991).  Therefore, these basic properties of 

( , )multRM y x  can easily be proved.   
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    1 1, ; sup : ( ,..., ) ( ), 0i N ND y x g x g x g L y


   


       .  

Now we take 1Ng  , so that the directional input distance function is written as  

    1, ;1 sup : ( 1,..., 1) ( ), 0i N ND y x x x L y


   


         (7) 

Allowing for asymmetric scaling in (7), the slack-based directional input distance 

function
8
 is defined as  

  
1

1 1 1
,...,

( , ;1 ) max ... :( 1,..., 1) ( ), 0
N

i N N N N nSD y x x x L y n
 

    


            (8) 

where * *

1 ,..., N   are the optimizers in the linear programming problem (8).  

Assuming 1Ng   indicates that each component is endowed with a unit of 

measurement.  For example, if 
1x  is labor hours, the first component is one unit of 

labor hours.  This makes our indicator independent of the unit of measurement
9
.   

     Here we have assumed that 0, 1,...,nx n N   for illustrative purposes of this 

section; however, we need not assume the positivity of the inputs to define 

( , ;1 )i NSD y x  because zeros do not cause feasibility problems.  Färe and Grosskopf 

(2010) proved that   

 ( , ;1 ) 0 if and only if ( )i NSD y x x EffL y  .  

Since * *

1 1( 1,..., 1) ( )N Nx x L y      , the cost inequality  

 ( , ) for all  ( )w x C y w x L y


     

yields    

                                                      
8
 Note that when the multiplication based on 1 (1,...,1)Ng    is used as in (8), we leave “1” to 

emphasize that the directional vector is (1,…,1) and that each “1” refers to the particular unit of 

measurement of that particular input.   

9
 See Färe, Fukuyama, Grosskopf and Zelenyuk (2015) for the units invariance property of the 

slack-based directional technology distance function.   
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 * *

1 1 1( 1) ... ( 1) ( , )N N Nw x w x C y w 


         

implying that  

 * *

1 1( , ) 1 ... 1N Nw x C y w w w 


       .  

Now consider the situation where ( )x EffL y . Multiplying and dividing by 

*

1

( , ;1 )
N

i N n

n

SD y x 


  yields 

 
* *

1 1

* *

1 1

( , ) ( , ;1 ) ... N N
i N N N

n nn n

w w
w x C y w SD y x

 

 
 



 
     
 
  

.  (9) 

Also, dividing both sides of (9) by the value of the directional vector 

  
1

1 1
N

n Nn
w g w g


    ,   

we have 

 
* *

1 1

* *

1 1 1

( , )
( , ;1 ) ...

1

N N
i NN N N

n n nn n n

w x C y w
SD y x

w

   

 
  



  
   
     

  (10) 

where  
1

1,...,
1

n
n N

nn

w
n N

w




 


 are the price shares and hence 
1

1
N

nn



 .  

For a technically inefficient firm, our new Mahler-type inequalities (9) and (10) can be 

closed by including a residual allocative inefficiency similar to (2), but additive.  

Specifically, a decomposition based on the slack-based directional input distance 

function, which provides a technical inefficiency score, is obtained by   

  
* *

1 1

* *

1 1 1

( , )
( , ;1 ) ... , , ;1

1

N N
i N NN N N

n n nn n n

w x C y w
SD y x AIneff y x w

w

   

 
  

  
     
     

  (11) 

where ( , , ;1 )NAIneff y x w  is the allocative inefficiency
10

. 

     The slack-based directional input distance function 
*

1
( , ;1 )

N

i N nn
SD y x 


   

                                                      
10

  , , ;1AIneff y x w  is defined as the residual of normalized cost inefficiency and the slack-based 

directional distance function and hence it is not a directional distance function.  
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represents the total (input) technical inefficiency and 
( , ;1 )i NSD y x

N

  
 is the average 

(input) technical inefficiency.   

We also introduce the normalized versions of the slack-based efficiency 

measures. Specifically, the normalized slack-based directional total technical 

inefficiency term is given by 
* *

1 1

* *

1 1

( , ;1 ) ... N N
i N N N

n nn n

SD y x
   

 
 

 
   
 
  

  , which can be 

directly compared to cost inefficiency ( , )w x C y w   normalized by 
1

1
N

nn
w


 .   In 

Equation (10), 

1
1

n
n N

nn

w

w







 is the weight of the n-th input price.  The inequality 

(10) means that we can directly compare ( , ;1 )i NSD y x   and ( , )wx C y w  after 

normalizing them with the use of 
1

1
N

nn
w


  and 

* *

1 1

* *

1 1

... N N

N N

n nn n

   

 
 

 
  
 
  

.  These 

adjusted terms in Equation (7) are used to properly define allocative inefficiency 

( , , ;1 )NAIneff y x w .   

     For a technically efficient firm,  
1

( , ) / 1 0
N

nn
w x C y w w


     is used and the 

corresponding allocative inefficiency is defined to close this inequality gap.  Note that   

i)  
*

*

1

n

N

nn






 is the n-th input efficiency.   

ii)  if *

n n   for all n, then  ( , ;1 ) , ;1i N i NSD y x N D y x   and hence  

 

1

( , )
( , ;1 )

1
i NN

nn

w x C y w
D y x

w




 



  

where  , ;1i ND y x  is the directional input distance function given in (7). 

Finally, we show how the slack-based directional input distance function ( , ; )iSD y x g  
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is related to the additive Russell measure ( , )addRM y x  developed by Färe and Lovell 

(1978), where  

   
1

1 1 1
,...,

( , ) min ... : ,..., ( ), 0 1
N

add

N N N nRM y x x x L y n
 

    


       .    

Suppose g x , then we have  

 

   

  

  

1

1

1

1 1 1
,...,

1 1 1
,...,

1 1 1
,...,

, ; max ... : ( ,..., ) ( ), 1 0

min ( ) ... ( ) : (1 ) ,..., (1 ) ( ), 1 0

min ... : ,..., ( ), 0 1 , 1

1

N

N

N

i N N N N n

N N N n

N N N n n n

SD y x x x x x x L y n

x x L y n

N x x L y n

N RM

 

 

 

    

    

      







        

           

         

  ( , ) .add y x

 (12) 

 

Note that 0n 
  in  (8)  is replaced by 1 0n 

   on the right-hand side of the first 

equation of (12).   This result shows that, since ( , )addRM y x  and 1 ( , )addRM y x  

are respectively efficiency and inefficiency measures,  , ; /iSD y x x N  is an 

inefficiency measure.   

In the production economics literature, there is a measure called the 

(input-oriented) Zieschang measure (Zieschang 1984).  The Zieschang measure first 

projects an inefficient firm radially onto the isoquant and then tries to minimize the 

resultant input vector to reach the efficient subset for a given output level.  In contrast, 

the slack-based directional input distance function directly searches for a point on the 

efficient subset
11

.  Therefore, the projection points are likely to differ between the 

Zieschang measure and the slack-based directional input distance function and hence 

the decomposition based on the Zieschang measure differs from ours. 

     The slack-based directional input distance function has the properties
12

 of 
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 A similar comparison can be made for the multiplicative Russell measure.    

12
  ( , ;1 )i NSD y x  is units invariant.  This property can be proved easily by adapting the proof for 

the slack-based directional technology distance function from Färe, Fukuyama, Grosskopf and 

Zelenyuk (2015), who cited the present paper as a CEPA working paper.   
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input-indication, strong input-monotonicity and sub input-homogeneity.  However, the 

Zieschang measure fails to satisfy strong input-monotonicity (even weak 

input-monotonicity fails).  See Russell (1988) on this point.  In contrast, the 

slack-based directional input distance function satisfies strong input-monotonicity.  

 

5. DEA Implementation 

 

To further develop our analysis provided in Section 4, we utilize non-parametric frontier 

models which have been popularized as data envelopment analysis (DEA) by Charnes, 

Cooper and Rhodes (1978), Färe, Grosskopf and Lovell (1985) and many others.
 13

  

Let  1 1( ,..., , ,..., ) : 1,2, ,j Nj j Mjx x y y j J  be observations consisting of J decision 

making units or firms.  We assume that inputs and outputs are nonnegative but each 

input and output consists of at least one positive quantity.  The reference technology of 

the conceptual input requirement set, which allows for constant returns to scale (CRS) is 

constructed as   

 
1 1

( ) : , , 0 ,
J J

CRS N M

nj j n mj j m

j j

L y x x z x n y z y m z y 

 
 

 
        
 

    (13) 

where z is a J-dimensional vector of intensity variables.  The reference technology 

under the variable returns to scale (VRS) environment is constructed as 

 
1 1 1

( ) : , , 1, 0 ,
J J J

VRS N M

nj j n mj j m j

j j j

L y x x z x n y z y m z z y 

  
 

 
         
 

   . (14) 

The convexity restriction 
1

1
J

jj
z


  in (14) allows for variable returns to scale.  

Using the two basic DEA-based representations (13) and (14), we develop two 

slack-based directional input distance functions: 

 
1

1 1
,...,

1

( , ;1 ) max :( 1,..., 1) ( ), 0
N

N
CRS CRS

i N n N N n

n

SD y x x x L y n
 

   





       


 ,  (15) 
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 See Asmild and Pastor (2010), Atici and Podinovski (2015), Cook, Tone and Zhu (2014) and 

Liu, Lu, Lu, and Lin (2013) to mention just a few recent works in this journal. 
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 
1

1 1
,...,

1

( , ;1 ) max :( 1,..., 1) ( ), 0 .
N

N
VRS VRS

i N n N N n

n

SD y x x x L y n
 

   





       


   (16) 

Since ( ) ( )VRS CRSL y L y , the following must hold:  

 ( , ;1 ) ( , ;1 )VRS CRS

i N i NSD y x SD y x

 .  (17) 

The discrepancy between ( , ;1 )CRS

i NSD y x  and ( , ;1 )VRS

i NSD y x  can be written as 

 ( , ;1 ) ( , ;1 ) ( , ;1 )CRS VRS

N i N i NSSIneff y x SD y x SD y x    (18) 

which we refer to as a slack-based scale inefficiency measure.  ( , )SSIneff y x  can be 

thought of as the (in)efficiency associated with firm size being not at the CRS level.  

When ( , ;1 )NSSIneff y x = 0 the firm operates at the constant returns to scale level, 

which is consistent with the socially optimal scale of utilizing resources.  When 

( , ;1)SSIneff y x >0, a gain in production can obtained if the firm adjusts to produce at 

the optimal scale.    

     Using (18) and the cost efficiency decomposition (11), we obtain a DEA-based 

cost decomposition
14

 as 

 

 
1

* *

1 1

( , )
( , ;1 ) ( , ;1 )

1

... ( , , ;1 ),
( , ;1 ) ( , ;1 )

CRS
VRS

N i NN

nn

CRS CRS
CRSN N

NCRS CRS

i N i N

w x C y w
SSIneff y x SD y x

w

AIneff y x w
SD y x SD y x

   



 
 



 
    
 


  (19) 

where  ( , ) min : ( )CRS CRS

x
C y w w x x L y    is the cost function and 

( , , ;1 )CRS

NAIneff y x w  the allocative inefficiency, both developed assuming CRS 

technology, via (13).  Note also that *, 1,..., ,CRS

n n N   are the solutions to (15).  
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 Note that it is possible to define allocative inefficiency as a multiplicative term by dividing the 

left-hand side of (19) with  
*

1
( , ;1 ) ( , ;1 )

( , ;1 )

CRS
NVRS n n

N i N CRSn
i N

SSIneff y x SD y x
SD y x

 


 
  

 
  from the 

right-hand side.    
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6. An Illustration 

 

In this section, we apply our newly developed additive approach to the data set given in 

Banker and Maindiratta (1988), which consists of 20 observations.  The data were 

obtained from a division of a large decentralized U.S. manufacturing firm observed over 

20 quarters.  The data set consists of one output (
1y ) and labor (

1x ), material (
2x ) 

and capital (
3x ).  The data and descriptive statistics are given in Table 1.  See Banker 

and Maindiratta (1988) for the details of the data.  Our slack-based estimates of cost 

efficiency and its components are reported in Table 2.  The average estimates of 

( , ;1 )NSSIneff y x  and ( , ;1 )VRS

i NSD y x  are 4239.39 and 4791.84, respectively.  This 

shows that slack-based scale inefficiency is less severe than slack-based directional 

inefficiency on the average.  The major source of slack-based technical 

CRS-inefficiency ( ( , ;1 )CRS

i NSD y x ) varies substantially: slack-based scale inefficiency 

( ( , ;1 )NSSIneff y x ) is larger than the slack-based VRS-directional inefficiency 

( , ;1 )VRS

i NSD y x  for nine DMUs and the reverse is true for eight DMUs. DMUs 8, 12 

and 17 are CRS-efficient. The normalized slack-based directional technical inefficiency 

with CRS technology,  which we denote as ( , ;1 )CRS

i NNSD y x ,  

 

 

*

1

*

1

( , ;1 ) ( , ;1 )
( , ;1 )

( , ;1 ) ( , ;1 )
( , ;1 )

CRS
NCRS CRS n n

i N i N CRSn

i N

CRS
NVRS n n

N i N CRSn

i N

NSD y x SD y x
SD y x

SSIneff y x SD y x
SD y x

 

 





 
  

 

 
   

 





  (20) 

is, on average, greater than ( , , ;1 )CRS

NAIneff y x w ; only three observations were 

allocatively inefficient relative to CRS technology.  

<<Table 2>>about here 

In contrast, in the Farrell case under CRS, all but one observation were 

allocatively inefficient (Table 3).  Furthermore, allocative efficiency components are 



 

15 

 

relatively more important for both CRS and VRS technologies (see also the legend of 

Table 3). This is what we would expect:  the additive, nonradial approach will 

eliminate slacks in input usage in addition to the proportional ‘overuse’ identified in the 

radial Farrell approach to measuring technical efficiency.  In the Farrell 

decompositions this slack would then be attributed to allocative inefficiency rather than 

technical inefficiency. On the other hand both approaches agree that only one 

observation is cost efficient under CRS—observation 13. 

<<Table 3>>about here 

Finally, we examine scale efficiencies.  Table 4 compares three scale efficiency 

measures.  The first scale efficiency measure is obtained by transforming our scale 

inefficiency measure into a normalized slack-based scale efficiency measure,  

 
*

*
1

1

( , ;1 )
( , ;1 ) 1

CRSN
N n n

N N CRS
n nn

SSIneff y x w
NSSE y x

w x






 
  
 
 



  (21) 

to compare it with the two popular scale efficiency measures: the Farrell and the 

cost-based scale efficiency measures.  See Appendix A2 for the derivation of (21).  

Note that cost-based scale efficiency ( , )CSE y w  is defined as   

 
( , )

( , )
( , )

CRS

VRS

C y w
CSE y w

C y w
 ,  

which can be shown also as the ratio of the cost efficiency measure w.r.t. CRS 

technology to the cost efficiency measure w.r.t. VRS technology, due to the relationship 

between the cost function and cost efficiency (see Färe and Grosskopf (1985) and 

Zelenyuk (2014) for more details and the relationship between the two measures).   

According to Table 4, the three methods (Farrell, slack-based scale efficiency and 

cost-based scale efficiency) give similar values for our data example.    

<<Table 4>>about here 

Note that a useful practical advantage of the nonradial approach illustrated here is 

the additional information provided by the individual input scores, providing guidance 

to the firm as to how to reduce cost, but also providing the basis for individual factor 

productivities.  
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7. Summary and Conclusions 

 

We have proposed new cost inefficiency decompositions (multiplicative and additive 

forms) for the multiplicative Russell and the slack-based (in)efficiency measures which 

gauge (in)efficiencies relative to the efficient subset, rather than the isoquant.  Then, 

focusing on the additive form, we illustrate the additive cost inefficiency decomposition 

in a DEA framework.  As expected, the slack-based decomposition typically results in 

a greater share of cost inefficiency due to technical rather than allocative inefficiency, 

which is illustrated in our empirical example.   

The decomposition results based on the slack-based directional input distance 

function can be extended to a slack-based directional technology distance function, 

which is a dual to the profit function
15

.   However, it is important to note that cost 

inefficiency and profit inefficiency have different economic interpretations and hence 

separate treatments are needed.  In fact, the use of an unconstrained profit function is 

very restrictive in some real-life situations because profit maximization requires cost 

minimization and revenue maximization simultaneously.  A firm, operating in a 

stagnant economic situation, may try to minimize costs rather than to maximize profits.  

In this case, the projection points suggested by the profit maximization framework are 

less practical because attaining the profit maximizing objective requires much effort if 

the outputs are required to be increased in the stagnant economic situation.       

Furthermore, cost (in)efficiency can be decomposed into allocative (in)efficiency and a 

scale (in)efficiency component (as is illustrated in our empirical example).  In contrast, 

scale inefficiency is not a component of long-run profit inefficiency  because 

profit-maximizing projection points will not be on the increasing returns to scale portion 

of the frontier.   

Moreover, it is interesting to note that our decomposition method can be extended 

to Briec’s (2000) slack-based directional distance function and Fukuyama and Weber’s 

(2010) and Akther et al.’s (2013) two-stage network directional distance models.    

  

                                                      
15

 This can be done by expanding on Färe, Fukuyama, Grosskopf and Zelenyuk (2015). 
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Table 1: Banker and Maindiratta Data  

No. 
1y  

1x  
2x  

3x  
1w  

2w  
3w  

1 94593 30722 38054 8184.00 1 1 1 

2 95921 28365 35795 8119.00 1 1 1 

3 76852 25445 31814 8079.00 1 1 1 

4 94141 30648 41743.4 8667.62 1.04686 1.017 1.047 

5 102132 33279 41364.8 8881.57 1.04688 1.017 1.047 

6 100341 30828.1 40124.9 8744.03 1.04684 1.017 1.047 

7 81755 27360.1 32910.5 8109.84 1.04689 1.017 1.047 

8 95154 31544.9 39720.8 9659.96 0.09571 1.046 1.094 

9 91393 33485.8 40893.9 8889.40 1.09593 1.046 1.094 

10 90752 30725.8 39137.7 8808.96 1.09553 1.046 1.094 

11 75033 27881.6 32143.4 8442.41 1.09628 1.046 1.094 

12 85681 30042.7 28737.6 81113.79 1.15742 1.109 1.16 

13 87399 24799.7 32198.4 6962.07 1.15682 1.109 1.16 

14 80469 27676.7 38023.4 6887.93 1.15556 1.109 1.16 

15 65009 25173.9 30527.5 7051.72 1.15397 1.109 1.16 

16 86443 28634.7 43111.2 8520.29 1.22135 1.124 1.232 

17 94454 28289.2 46075.6 7384.74 1.22015 1.124 1.232 

18 84361 26157.7 39393.2 7344.97 1.21861 1.124 1.232 

19 76176 23490 33694 7351.46 1.21992 1.124 1.232 

20 75775 23078.5 31686.8 7311.08 1.27937 1.194 1.318 

mean 86692 28381.4 36857.5 11725.69 1.06771 1.069 1.123 

std dev 9736 3039.2 4848.6 16350.50 0.24402 0.057 0.093 

max 102132 33485.8 46075.6 81113.79 1.27937 1.194 1.318 

min 65009 23078.5 28737.6 6887.93 0.09571 1 1 
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Table 2: Estimation Results 

firm
*

1

CRS  *

2

CRS  *

3

CRS  ( , , )NCIneff y w x

 

( , ;1 )NSSIneff y x

 

( , ;1 )VRS

i NSD y x  *

1 ( , ;1 )

CRSN
n n

CRS
n i NSD y x

 



  
( , , ;1 )CRS

NAIneff y x w

 

1 3880.98  3205.28  648.87  2578.38  1757.79 5977.34 0.3333333  0  

2 1147.16  457.04  478.08  694.09  2082.28 0 0.3333333  0  

3 3638.04  3501.19  1957.09  3032.11  6009.24 3087.08 0.3333333  0  

4 3936.14  7061.20  1168.49  4026.30  1647.35 10518.48 0.3309510  0  

5 4298.77  3738.66  745.89  2919.90  8783.32 0 0.3324370  0 

6 2356.07  3158.58  751.02  2078.22  6265.67 0 0.3316842  0  

7 4161.90  2791.39  1597.36  2850.74  3215.71 5334.94 0.3333942  0  

8 4544.70  4665.40  2080.14  3891.82  1894.87 9395.37 0.3007188  2373.21  

9 7552.79  7224.08  1609.17  5437.13  975.90 15410.15 0.3318143  0  

10 4974.68  5704.03  1579.80  4062.59  819.27 11439.23 0.3314096  0 

11 6590.79  4500.72  2465.40  4520.70  7165.87 6391.03 0.3334609  0  

12 0  0  0  1456.68  0 0 0  1456.68  

13 0  0  0  0 0 0 0  0  

14 4843.41  8378.06  477.89  4509.33  13699.36 0 0.3291635  0  

15 6727.42  6577.73  1873.20  5033.89  15178.36 0 0.3316493  0  

16 4106.27  11265.00  1634.37  5504.24  544.69 16460.95 0.3236715  0  

17 0  0  0  4004.32  0 0 0  4004.32  

18 2220.04  8314.02  624.90  3586.46  1730.92 9428.04 0.3213973  0  

19 1874.86  5630.23  1283.40  2851.49  6394.39 2394.09 0.3244575  0  

20 1577.14  3770.76  1274.96  2162.92  6622.86 0 0.3265839  0  

mean 3421.56  4497.17  1112.50  3260.07  4239.39  4791.84  0.2791396  391.71  

s.d. 2232.67  3095.01  737.20  1493.75  4449.78  5563.77  0.1205369  1044.28  

max 7552.79  11265.00  2465.40  5504.24  15178.36  16460.95  0.3334609  4004.32  

min 0  0  0  0  0  0  0  0 
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Table 3: Farrell Decompositions 

firm ( , , )CRSFCE y x w   ( , )CRSF y x   ( , , )CRSFAE y x w   ( , , )VRSFCE y x w  ( , )VRSF y x  ( , , )VRSFAE y x w  

1 0.89949  0.92045  0.97723  0.92233  0.96183  0.95894  

2 0.97119  0.97945  0.99157  1 1 1 

3 0.86078  0.88063  0.97746  0.95275  0.97288  0.97932  

4 0.85020  0.87157  0.97548  0.87070  0.90288  0.96436  

5 0.89463  0.91567  0.97702  1 1 1 

6 0.92138  0.92357  0.99763  1 1 1 

7 0.87439  0.89560  0.97632  0.92130  0.93867  0.98150  

8 0.84219  0.87505  0.96244  0.87961  0.89195  0.98616  

9 0.80275  0.82194  0.97666  0.81462  0.84131  0.96827  

10 0.84396  0.84974  0.99319  0.85450  0.85724  0.99680  

11 0.80074  0.83110  0.96348  0.90492  0.94098  0.96169  

12 0.93437  1 0.93437  0.94892  1 0.94892  

13 1 1 1 1 1 1  

14 0.81200  0.92098  0.88167  0.86631  1 0.86631  

15 0.75760  0.76956  0.98446  0.98830  1 0.98830  

16 0.79036  0.85660  0.92268  0.79714  0.86113  0.92569  

17 0.84990  1 0.84990  0.87162  1 0.87162  

18 0.84953  0.91513  0.92832  0.87325  0.94796  0.92119  

19 0.86510  0.92018  0.94013  0.96388  0.98978  0.97383  

20 0.89350  0.93166  0.95903  1 1 1 

mean 0.86570  0.90394  0.95845  0.92151  0.95533  0.96464  

s.d. 0.06071  0.06215  0.03911  0.06596  0.05539  0.04034  

max 1 1 1 1 1 1 

min 0.75760  0.76956  0.84990  0.79714  0.84131  0.86631  

Legend:  

 CRS-efficiency VRS-efficiency 

Farrell cost: ( , , ) ( , ) /CRS CRSFCE y x w C y w w x   ( , , ) ( , ) /VRS VRSFCE y x w C y w w x   

Farrell technical: 
 ( , ) min 0: ( )CRS CRSF y x x L y      ( , ) min 0: ( )VRS VRSF y x x L y     

Farrell allocative: ( , , ) ( , , ) / ( , )CRS CRS CRSFAE y x w FCE y x w F y x  ( , , ) ( , , ) / ( , )VRS VRS VRSFAE y x w FCE y x w F y x  

Decomposition: ( , , ) ( , ) ( , , )CRS CRS CRSFCE y x w F y x FAE y x w   ( , , ) ( , ) ( , , )VRS VRS VRSFCE y x w F y x FAE y x w   
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Table 4: Scale Efficiency 

firm ( , ;1 )NNSSE y x  ( , )SE y x  ( , )CSE y w  

1 0.97716  0.95698  0.97524  

2 0.97119  0.97945  0.97119  

3 0.90803  0.90518  0.90347  

4 0.97972  0.96533  0.97646  

5 0.89463  0.91567  0.89463  

6 0.92138  0.92357  0.92138  

7 0.95276  0.95412  0.94909  

8 0.97689  0.98106  0.95746  

9 0.98825  0.97697  0.98543  

10 0.98957  0.99125  0.98766  

11 0.89468  0.88323  0.88487  

12 1  1  0.98467  

13 1  1  1.00000  

14 0.81200  0.92098  0.93730  

15 0.75760  0.76956  0.76657  

16 0.99329  0.99474  0.99150  

17 1  1  0.97509  

18 0.97666  0.96537  0.97284  

19 0.90185  0.92969  0.89752  

20 0.89350  0.93166  0.89350  

mean 0.93946  0.94724  0.94129  

s.d. 0.06648  0.05460  0.05602  

max 1 1 1 

min 0.75760  0.76956  0.76657  
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Appendix A1:  Units invariance of ( , )multRM y x   

Proof:  To show that ( , )multRM y x  is independent of the units of measurement, let 

x  and 
y  be arbitrary strictly positive diagonal matrices that transform the units of 

measurement of, respectively, inputs and outputs (x and y), into 

 1 1,....,x N Nx x x u x u      and  1 1,....,y N Ny y y v y v    , and let T  be the same 

technology as T but expressed in the new units of measurement, i.e., 

   , : can producex yT x y x x y y     (22) 

then it should also be the case that  

    , ,x y T x y T     

and therefore (for x > 0) we have 

 

 
1

1

1/
1 1 1

,...,
1

1/
1 1 1 1 1

,...,
1

( ,..., , ,..., ) ,
, min :

0 1, 1,...,
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min :

0 1, 1,...,

min

N

N

N
N

N N Mmult

n

n n

N
N

N N N M M

n

n n

x x y y T
RM y x

n N

x u x u y v y v T

n N

 

 



 




 












  
         

  
         







 

1

1/
1 1 1

,...,
1

( ,..., , ,..., ) ,
:

0 1, 1,...,

due to (22)

,

N

N
N

N N M

n

n n

mult

x x y y T

n N

RM y x



 


 

  
        



   

Thus, for any scalar-type transformation of units of measurement given by 
xx x    

and yy y  , we have    , ,mult multRM y x RM y x . 
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Appendix A2: 

*

*
1

1

( , ;1 )
1 0

CRSN
N n n

N CRS
n nn

SSIneff y x w

w x






 

 
  
 
 



. 

We show this result as follows.  Since the equality relationship in (19) implies that  

  
*

*
1

1 1

( , )
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1

CRS CRSN
VRS n
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nn nn n
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*

*
1

1 1 1 1

1 ( , ) / ( , ;1 ) / ( , ;1 ) /

1 1 1

CRS VRS CRSN
N i N n n

N N N N CRS
nn n n nn n n n

C y w w x SSIneff y x w x SD y x w x w

w w w




   



      
     
        


   

.  

Therefore, we have  

*

*
1

1

*

*
1

1

( , ) ( , ;1 ) ( , ;1 )
1

( , ) ( , ;1 ) ( , ;1 )
1

CRS VRS CRSN
N i N n n

N CRS
n nn

CRS VRS CRSN
N i N n n

N CRS
n nn

C y w SSIneff y x SD y x w

w x w x w x

C y w SSIneff y x SD y x w

w x w x w x



















  
      
      

  
     
      







  

Since 
*( , ;1 ) 0, ( , ;1 ) 0, 0, 0VRS CRS

N i N n nSSIneff y x SD y x w
  
    , we have  
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