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Late Season Low Inventory Assortment Effects
in the Newsvendor Problem1

Moutaz Khouja2

The Belk College of Business, The University of North Carolina at Charlotte, NC 28224, USA

Abstract: The assumption of the newsvendor being able to satisfy demand as long as on-hand inventory

is positive does not hold for a non-homogenous product. Consumers who do not find a unit of the product

which satisfies their secondary features preferences may not purchase the product even though the newsven-

dor has positive on-hand inventory. This is likely to occur late in the season as inventory level declines.

We solve a newsvendor problem in which the probability of purchase by consumers is increasing in on-hand

inventory for any inventory level below that which is needed to have a complete assortment. We identify the

sufficient optimality condition for the order quantity. We show that, unlike the case of inventory-dependent

demand models in the literature, the optimal order quantity may decrease due to the assortment effect. We

investigate two types of pre-end of season discounts, immediate all-units and delayed, as ways to mitigate

the late season assortment effect and show that in some cases, they can increase the newsvendor’s profit and

free up the shelf space for other products.

Keywords: Inventory control; Marketing

1 Introduction

The classical newsvendor problem is to find a perishable product’s order quantity that max-

imizes the expected profit under probabilistic demand (Khouja 1999). If the newsvendor’s

inventory falls to zero then incoming demand goes unsatisfied. The assumption that the

newsvendor can satisfy demand as long as on-hand inventory is positive does not hold for

cases of heterogenous products such as fashion and food. For example, winter jackets that

are ordered by a retailer in a complete assortment which includes six sizes, each in four

colors, results in the complete assortment having 24 different size-color combinations. The

retailer’s order may include the same number of each size-color combination. For example,

the retailer may order 240 jackets, i.e. 10 jackets in each color-size combination. Alterna-

tively, the retailer may order a larger number of more popular sizes and smaller number of

less popular sizes in the total 240 jackets order. In the early part of the selling season, there

will be some units on-hand of every color-size combination. As sales continue and inventory

1The author is grateful to the reviewers and the associate editor for their constructive suggestions.
2email: mjkhouja@uncc.edu, Phone: 704-687-7653
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level declines, it will be less likely to have a complete assortment, i.e. every color-size com-

bination, in stock. When the inventory level reaches 23, it is impossible to have a complete

assortment. Obviously, as some size-color combinations are no longer on-hand, an arriving

consumer has a lower probability of finding a unit satisfying her/his secondary features pref-

erences, such as color or exact size, and is less likely to purchase the product. We refer to

this inability to fulfill consumers’ secondary features preferences as the assortment effect.

The assortment here refers to a product variations, e.g. a specific design winter jacket or

real Christmas trees, and not within a product category, which is analyzed in multi-product

newsvendor models with product substitution (Hübner and Kuhn 2012).

Examples of the assortment effect in the newsvendor are common. A real Christmas tree

newsvendor is very unlikely to sell the last few trees as consumers do not even come in when

the newsvendor has only a few trees left and and when they do come in, it is unlikely they

will find a tree they like. This assortment effect is also observed for fresh produce, fresh

meats, and clothing.

In this paper, we examine how the low inventory assortment effect influences the optimal

order quantity and the expected profit of the newsvendor. We also examine the use of an

immediate all-units pre-end of season discount, i.e. the discount is implemented as soon as

inventory falls below the complete assortment level, due to high shelf space cost (Cachon

2001). We also examine the case in which the retailer follows optimal discounting, i.e. may

delay the discount and sell some units at the regular price while inventory is below the

complete assortment level before using a pre-end of season discount.

The remainder of this paper is organized as follows. In Section 2, we summarize the

related literature. In Section 3, we quantify the impact of the assortment effect on sales and

derive the optimal order quantity when the effect is present. In Section 4, we examine the use

of an all-units pre-end of season discount offered as soon as the inventory level falls short of a

complete assortment to free up the shelf space. In Section 5, we allow the discounting to be

delayed, which may be optimal when shelf-space is not very costly, and identify the optimal
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inventory level at which to offer the pre-end of season discount. In Section 6, we present a

numerical analysis and some insights. We present the conclusion and suggest directions for

future research in Section 7.

2 Literature Review

Our model is related to models in four areas, inventory-dependent demand, assortment man-

agement, clearance pricing, and the newsvendor model. The role of inventory in influencing

demand has been examined in both deterministic and stochastic inventory-dependent de-

mand models. In these models, demand is assumed to be an increasing function of the

inventory level. The increase in demand is attributed to the “advertising effect” in which

a large shelf space and display quantity signal product popularity to consumers (Koschat

2008). The “advertising effect” depends on the quantity of displayed product, which may or

may not be homogenous. For a comprehensive review of this literature the reader is referred

to Urban (2006).

Inventory may also influence demand through the “selective effect” in which more units of

a product which are not identical, e.g. fresh produce, real Christmas trees, fashion, provide

consumers with more choices and induce them to purchase (Wang and Gerchak 2005). The

“assortment effect” analyzed in this paper plays a similar role as the selective effect but in the

direction of decreasing sales, i.e. if a high inventory level of a heterogenous product increases

demand, then a low inventory level below complete assortment may decrease sales. When a

product’s inventory level is low, some consumers whose reservation prices would have been

met if they found the right product, i.e. one matching their secondary features preferences,

will not purchase the product because the remaining selection lacks these features, e.g. color,

size, freshness (Maddah and Bish 2007). In this case, sales will be lower than the actual

demand in spite of the fact that the newsvendor does not stock out of the product.

Assortment can be measured in two ways, breadth and depth (Kok et al. 2009). Breadth

is measured by the number of different product categories a retailer carries. Depth is mea-
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sured by how many stock keeping units (SKUs) a retailer carries in each category. In this

sense, depth includes both variants (SKUs) of the product, e.g. color sand size, a retailer

carries and the inventory level for each SKU. Finding the optimal breadth of the assortment

and its pricing over time has received considerable attention in the literature (Katsifou et

al. 2014; Li 2007; Maddah et al. 2014).

The optimal depth and pricing of the assortment has received less attention than breadth.

Caro and Gallien (2010) analyzed a problem in the fast-fashion industry where stores of a

retail chain remove products from display whenever one of its key sizes stocks out and

optimized the quantities to ship to stores to maximize profits. Caro and Gallien (2012)

analyzed clearance pricing of a global retail chain in which some clearance inventory is moved

between stores. Each product group, such as “woman blazers,” are broken into clusters and

different pricing policies are applied to the clusters. Smith and Achabal (1998) examined

clearance pricing and inventory policies for retail chains. They argued that while the sales

rate is not affected by high inventory levels, the sales rate is decreased by low inventory levels,

in particular for clothing when there is an incomplete selection of sizes and colors. They refer

to an assortment of remaining inventory without complete selection of sizes and colors as

“broken assortment.” Their model focused on the optimal price trajectory for the product.

Abbott and Palekar (2008) defined the minimum presentation quantity as the minimum

shelf space allocated for a product to generate sales corresponding to inherent demand and

identified the optimal replenishment policy for a nonperishable product. Kalyanam et al.

(2007) analyzed how the presence of every color and size, which they refer to as product

attributes, affect sales. They found that substitution in case of shortages of some items is

not common and was limited to a few colors. Furthermore, there was little substitution

across sizes. This finding supports the conclusion that consumers who can’t find a unit

with their preferred secondary features get less utility from purchasing one with different

secondary features, e.g. color or size. Vakhutinsky et al. (2012) developed a markdown

optimization (MDO) model in which demand is a function of price, seasonality, and inventory.
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The inventory effect is captured using power of the ratio of on-hand inventory to a critical

inventory level. They then obtained closed-form solution for price in continuous time and

developed a solution algorithm to a dynamic programming formulation for the discrete time

case.

There are some models in the literature which analyze pre-end of season (i.e. in-season)

price adjustments for the newsvendor. Feng and Xiao (2000) identified the optimal times

to switch between predetermined prices based on the time remaining in the season and

inventory. They assumed demand follows a price-dependent poisson arrival process. Chung

et.al. (2009) allowed an in-season price change which is implemented after the demand

forecast is updated based on the realized demand up to the price change time. Forghani et

al. (2012) assumed the demand rate is a random normal variable whose probability density

function (pdf) is known and whose parameters depend on the selling price according to one

of three functional forms. The authors allowed one in-season price adjustment. While our

model also allows an in-season price adjustment, the purpose of the adjustment is to mitigate

the assortment effect and the adjustment does not affect sales until the remaining inventory

falls below the level needed for complete assortment, if it does. In this respect, our model

can be used with any of the above models to make a second in-season price adjustment when

or after the inventory level needed for complete assortment is reached.

The above late season assortment effect is also related to shelf space management. When

the inventory level of a product falls below the complete assortment level, the newsvendor

can keep the shelf space allocation to the product unchanged and try to sell the remaining

units. However, when the shelf space cost is large (Cachon 2001), the newsvendor may

decide to reallocate the shelf space of the product as soon as the complete assortment level

is reached or at some level below it. The remaining units of the product are then grouped

with other products whose remaining on-hand inventories are also less than their complete

assortment levels in a discount area. For example, fashion retailers have racks displaying the

“sale” or “clearance” sign where these products are compactly grouped. Some retailers have

5



a minimum on-hand inventory for each product called “fixture fill” which is the quantity

required for adequate presentation (Smith and Achabal 1998), which may be considered as

the complete assortment level or a fraction of it.

Our model assumes that the regular price is exogenous and therefore, unlike price-

dependent demand newsvendor models (Jammernegg and Kischka 2013; Petruzzi and Dada

1999), sales depend only on the availability of a complete assortment. Our model contributes

to the literature by examining the effect of a broken assortment on the optimal order quan-

tity. While most models examine pricing when a broken assortment occurs, we identify the

optimal order quantity in the presence of this assortment effect. We show that the newsven-

dor may respond to the assortment effect by increasing the order quantity. However, there

are cases in which the newsvendor responds by decreasing the order quantity. We also ana-

lyze two policies the newsvendor can use in response to the assortment effect. In the first,

the newsvendor discounts the product as soon as a broken assortment occurs, i.e. all-units

discount. We find that if this discount is used, then the newsvendor is more likely to increase

the order quantity. If all consumers are aware of the discount, then the discount may signifi-

cantly increase the newsvendor’s profit. We also identify the optimal discounting policy, i.e.

the newsvendor does not discount the product as soon as a broken assortment occurs. We

find that this policy of delaying the discount can result in a substantial increase in profit.

3 Optimal policy under the Assortment Effect

We assume that there are D consumers, where D is a random variable with pdf h(d) and

cumulative density function (cdf)H(d). A list of notation used in the paper is shown in Table

1. We assume that consumer i′s reservation price Ri for a product satisfying her secondary

features preferences is uniformly distributed on [0, u]. This results in the linear demand

function commonly used in the literature (Huang et al. 2013). The reservation prices for

a product lacking the preferred secondary features drop by γ and are therefore uniformly

distributed on [0− γ, u− γ]. Since reservation prices can’t be negative, this drop in utility
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can be treated as reservation prices that are uniformly distributed on [0, u−γ] with demand

of D1 = D u−γ
u
. Thus, the demand which can be lost due to lack of preferred secondary

features is D2 = D γ
u
. In addition, we assume that the regular sale price is exogenously

determined and is given by p. Using the notation in Table 1, we define ρ = u−p
u
, X = ρD,

ve = p− γ, g = ve − v, s1 = s− 1, a = s1
s
, λ = u− p− γ, and β = γ

u−p
.

Table 1: List of notation

D  A random variable denoting the number of consumers  

( )h d  The probability density function (pdf) of D  

( )H d  The cumulative density function (cdf) of D  

iR  The reservation price of consumer i , a uniformly distributed random variable with a lower limit of 0 

u  The upper limit of iR  

  Consumers’ loss of utility due to the lack of product’s preferred secondary features 

s  The number of units below which the on-hand inventory does not have a complete assortment. 
p  Price per unit 

c  Cost per unit 

v  Salvage value per unit in the post-season 

Q  Order quantity, a decision variable 

( )f x  The probability density function (pdf) of x  

( )F x  The cumulative density function (cdf)  of x  

 

To illustrate the number of units below which the remaining on-hand inventory does not

have a complete assortment s, consider the example of winter jackets. There are 24 color-

size combinations and thus the minimum s is 24. However, it is unlikely that a 24 jackets of

remaining inventory will each be of different color and size and thus s is larger than 24 units.

As long as on-hand inventory is greater than or equal to s, an incoming consumer will find

a product with her preferred secondary features and will buy the product if her reservation

price is p or greater. When on-hand inventory reaches s1 = s − 1 an incoming consumer

has approximately an a = s−1
s

= s1
s

probability of finding the right product and making

a purchase. If the right product is out-of-stock, the consumer’s reservation price for the

on-hand products, which lack her preferred secondary features, falls by γ. If γ > Ri−p then

the reservation price falls below p and the consumer will not purchase one of the remaining

units of the product. If γ ≤ Ri − p then the reservation price is met and the consumer
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purchases one of the remaining units.

Finding the inventory level needed for a complete assortment, s, is an important input

parameter which can be approximated from past data using product SKUs. Individual

SKUs include information at the style-color-size level and sales patterns can be observed

using them (Achabal et al. 2000). While the quantity ordered by the newsvendor may

include disproportionately larger number of popular colors and sizes, the actual popularity

of colors and sizes realized will likely be different. A product with m variations in color

and size will need to have m different SKUs in stock to have a complete assortment (each

individual SKU needs to have at least one unit in stock but can have more). Let T be the

time index of the most recent period for which the data is available and n be the number of

periods in a simple moving average. Let It, t = T − n, T − (n − 1), ...T , be the minimum

inventory level at which m different SKUs were available in It. The inventory level needed

for complete assortment is approximated from the data as s =

T∑
t=T−n

It

n
.

Under the above assumptions about consumers and their reservation prices, the demand

for the product is

X =
u− p

u
D = ρD (1)

Since D is a random variable and ρ is a constant, X is a random variable with pdf f(x)

and cdf F (x). There are two cases for the realized sales depending on consumers’ loss of

utility due to the lack of their preferred secondary features as shown in Figure 1. In the first

case, as Figure 1a shows, γ > u − p which implies that p > u − γ and all consumers with

Ri > p who do not find the right product will not purchase a unit lacking their preferred

secondary features for p. In the second case, as Figure 1b shows, γ ≤ u − p, which implies

that p+ γ ≤ u and consumers with reservation prices Ri ∈ [p+ γ, u] will buy a unit lacking

their preferred secondary features whereas consumers with Ri ∈ [p, p+ γ) will only purchase

a unit satisfying their preferred secondary features.
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Figure 1: Loss of utility and consumers’ purchase decision features

           Will buy only if a unit satisfying their                        Will buy a unit lacking their 
            preferred secondary features is available                preferred secondary features  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ri 
 u p  c  v  u- 

f(ri) 

Ri 
 u p  c  v  p+ 

f(ri) 

(a).   > u-p 

(b).  ≤ u-p 

For γ > u−p sales before the end of the season at price p depend on Q and X as follows.

1. If Q − s1 ≥ X, then all incoming consumers will find a unit satisfying their preferred

secondary features. In this case, X units will be sold at p and Q−X will be salvaged

at v in the post-selling season.

2. If Q−s1 < X, then the first Q−s1 consumers will find a unit satisfying their preferred

secondary features and purchase it, some of the remaining X− (Q−s1) consumers will

find a unit satisfying their preferred secondary features and purchase it. The remaining

inventory will be salvaged at v. This outcome applies to both Q − s1 < X < Q and

X > Q.

Let �X� denote the closest integer to X, Proposition 1 identifies the quantity which will be

sold at price p when X > Q− s1.

Proposition 1. If γ > u− p and X > Q− s1 then the quantity which will be sold at a price

of p is Q− s1 +
∑�X�−Q+s1

i=1 ai ≈ Q− s1a
s1−Q+X .

Proposition 1 is illustrated in Figure 2. As can be seen, for X > Q− s1, as the inventory

level needed for a complete assortment increases, sales at the regular price p decrease and

the amount of lost demand increases due to consumers not finding a unit of the product

satisfying their secondary features preferences.
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Figure 2: Sales and lost demand as a function of inventory needed for a complete assortment
Q = 100, x = 100
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We assume that the optimal order quantity satisfies Q− s1 > 0, which implies that the

newsvendor orders at least a complete assortment. The revenue of the newsvendor is

R =

⎧⎨
⎩ Xp+ v(Q −X) If 0 < X ≤ Q − s1

(Q − s1a
s1−Q+X)p+ vs1a

s1−Q+X If X > Q− s1

and the expected profit is

Z1 =

∫ Q−s1

0

[Xp+ v(Q−X)] f(x) dx+

∫ ∞

Q−s1

p
(
Q− s1a

s1−Q+X
)
f(x) dx

+

∫ ∞

Q−s1

vs1a
s1−Q+x f(x) dx− cQ.

(2)

Let ln(·) denote the natural logarithm. In Proposition 2, we show that the profit function in

Equation (2) is concave and identify the sufficient optimality condition for the order quantity.

Proposition 2. If γ > u− p, then the expected profit given by Equation (2) is concave with

the optimal order quantity given by the unique solution to

p− (p− v)F (Q− s1) + (p− v)s1 ln(a)

∫ ∞

Q−s1

as1−Q+xf(x) dx− c = 0 (3)

As we show in the numerical analysis section, the optimal order quantity given by the so-

lution to Equation (3) may be larger or smaller than the classic ( i.e. without the assortment

effect) newsvendor’s optimal order quantity.
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For γ ≤ u− p, if Q− s1 < X , then every unit of incoming demand after the first Q− s1

units can be thought of as having two parts. The first part is given by
(
1− γ

u−p

)
, which

comes from a consumer whose drop in utility is small enough so that she/he will buy a

unit of the remaining inventory with or without their preferred secondary features. The

second part is given by β = γ
u−p

, which comes from a consumer whose drop in utility is large

enough such that she/he will only buy a unit satisfying her/his preferred secondary features.

Thus, if there are X − (Q − s1) units of demand remaining after the first Q − s1 units of

demand are satisfied, then the potential sales from the portion of the X−(Q−s1) units from

consumers whose reservation prices are on [p + γ, u] is (1− β) (X + s1 − Q). The potential

sales from the portion of X − (Q− s1) units from consumers whose reservation prices are on

[p, p+ γ), is

(
1−s−(s1+x−Q)β s

(s1+x−Q)β
1

)
((u−p)s1−λ)

u−p
, which is derived in the Appendix. Thus, the

total potential sales from the additional X − (Q− s1) units of demand is

q = (1− β) (X + s1 −Q) +
(λ− s1(u− p))

(
s
β(s1−Q+x)
1 s−β(s1−Q+X) − 1

)
u− p

(4)

Solving q = s1 yields the demand level at which all Q units will be sold for p per unit as

x̌ = A1 +
λ

(u− p)(β − 1)
−

W

(
a

βλ
(u−p)(β−1) β(s1(p−u)+λ) ln(a)

(u−p)(β−1)

)
β ln(a)

+Q = k +Q, (5)

where the W (y) function gives the solution for y in z = yey. Thus, there are two possibilities

when X ≥ Q− s1:

1. Q− s1 ≤ X ≤ x̌ and some of the remaining s1 units will be sold at p and the rest will

be salvaged at v, and

2. X > x̌ and all the remaining s1 units will be sold at p.

The expected profit is

Z1 =

∫ Q−s1

0

[xp+ v(Q − x)] f(x) dx+

∫ x̌

Q−s1

p [qp+ v(Q − q)] f(x) dx

+

∫ ∞

x̌

Qp f(x) dx− cQ

(6)

11



From Equation (5), x̌ is a linear function of Q and similar to Proposition 2, if γ ≤ u− p,

then the expected profit given by Equation (6) is concave and the optimal order quantity is

given by the unique solution to

− F (k +Q) +

∫ k+Q

Q−s1

(
β − β(ln(a) − ln(s1))(s1p− s1u+ λ)s

β(s1−Q+x)
1 sβ(Q−x−s1)

p− u

)
f(x) dx

+
f(k +Q)s−β(s1+k)

(
sβ(s1+k)((1 − β)(s1 + k)(p − u) + λ)− s

β(s1+k)
1 (s1p− s1u+ λ)

)
p− u

+
p− c

p− v
= 0

(7)

4 An All-units Pre-end of Season Discount

In this section, we analyze the use of an all-units pre-end of season discount to ve = p − γ

per unit, where the subscript e denotes an early all-units discount, implemented as soon as

on-hand inventory level falls below the level needed for a complete assortment and there is

some demand outstanding. Thus, the newsvendor does not wait until the end of the season

to discount the product to a unit price of v < ve. Since the product has higher value to

consumers before the selling season’s end, the assumption that ve > v is quite reasonable.

The discount induces consumers whose reservation prices are met at p but are unable to

find a unit of the product satisfying their preferred secondary features to purchase a unit

which does not satisfy their secondary features preferences. The discount is offered as soon

as the inventory level reaches s1 because the shelf space is expensive (Cachon 2001) and the

newsvendor wants to use it for other products for which a complete assortment is on-hand.

We analyze the case of optimal discount timing in which the discount may be offered at

inventory level below s1 or not at all in the next section.

The pre-end of season discount can also possibly lead to increased sales because consumers

whose reservation prices are between ve and p will have their reservation prices met if they find

a unit which satisfies their secondary features preferences. We first begin with a worst-case

scenario where only consumers whose reservation prices are above p visit the newsvendor.
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In this case, three outcomes are possible:

1. If X ≤ Q− s1, then X units will be sold at p and Q−X units will be salvaged at v.

2. If Q− s1 < X ≤ Q, then Q− s1 units will be sold at p, X − (Q− s1) units will be sold

at ve, and Q−X will be salvaged at v.

3. If X > Q, then Q− s1 units will be sold at p and s1 units will be sold at ve.

The resulting revenue of the newsvendor is

Re =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xp+ v(Q−X) If X ≤ Q− s1

(Q − s1)p+ (X −Q+ s1)ve + (Q −X)v If Q− s1 < X ≤ Q

(Q − s1)p+ s1ve If X > Q

Define g = ve − v, the expected profit can be written as

Ze =

∫ Q−s1

0

[xp+ v(Q − x)]f(x) dx +

∫ Q

Q−s1

p[Q− s1 − g(Q− x) + ves1]f(x) dx

+

∫ ∞

Q

(pQ− γs1)f(x) dx− cQ.

(8)

Proposition 3 identifies the sufficient optimality condition for the order quantity.

Proposition 3. If F (x) is strictly increasing, then the expected profit in Equation (8) is

concave with the optimal order quantity given by the unique solution to

p− c− γ F (Q− s1)− g F (Q) = 0 (9)

In the numerical analysis section we show that it is suboptimal to use an all-units quan-

tity discount for a product when no consumers with reservation prices on [ve, p] visit the

newsvendor. However, because of shelf space scarcity and the possibility of having other

products with higher contribution to profits on hand, freeing up the shelf space with an

all-units discount may be optimal.

In the above analysis, we assumed that consumers with reservation prices between ve and

p are not aware of the discount and do not visit the newsvendor. In a complete information
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scenario, consumers whose reservation prices are between ve and p are aware of the discount

and will visit the newsvendor. If these consumers find a unit which satisfies their secondary

feature preferences, they will purchase it. The additional consumers with Ri ∈ [ve, p] cause

a change when Q − s1 < X ≤ Q. In this case, Q − s1 units will be sold at p. Assuming

that consumers with reservation prices above p arrive first since they are more interested

in the product (higher reservation prices), X − (Q − s1) units will be sold at ve. For the

remaining Q− (Q−s1)− [X− (Q−s1)] = Q−X units, some will be sold at ve to consumers

whose reservation prices are between ve and p who find a unit which satisfies their secondary

features preferences and the rest will be salvaged at v. This is a conservative assumption

since it decreases the probability of consumers with reservation prices on [ve, p] finding a unit

satisfying their preferred secondary features compared to mixed arrivals of the two consumers

groups. We derive the quantity sold to consumers whose reservation prices are between ve

and p in Proposition 4.

Proposition 4. If Q − s1 < X ≤ Q then the quantity sold for a price of ve = p − γ is

(Q−X)
∑�βX�

i=1
si−1
1

si
≈ (Q−X)

(
1− s−βXsβX1

)
.

Using Ze from Equation (8), the expected profit can be written as

Ze1 = Ze +

∫ Q

Q−s1

g(s−βxsβx1 − 1)(Q − x)f(x) dx. (10)

The last term in Equation (10) is the additional revenue from consumers whose reservation

prices are on [ve, p] and pay ve for the product. The expected profit Ze1 in Equation (10) is

not concave over the entire range of Q ≥ 0. In Proposition 5, we show that Ze1 is unimodal

and identify the sufficient optimality condition for the order quantity.

Proposition 5. The expected profit given by Equation (10) is unimodal with the optimal

order quantity given by the unique solution to

∫ Q

Q−s1

gs−βxsβx1 f(x) dx − s1gf(Q− s1)(s
β(Q−s1)
1 s−β(Q−s1) − 1)

− 2γ F (Q− s1)− c+ F (Q)(γ − g) + p = 0

(11)
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In the numerical analysis section, we show that for some range of γ, if consumers whose

reservation prices are Ri ∈ [ve, p] visit the newsvendor, then using an early discount will

substantially increase the optimal expected profit above the no-early discount case.

5 Optimal pre-end of Season Discount

In this section, we analyze the case in which the newsvendor follows an optimal pre-end of

season discounting when on-hand inventory level falls below the complete assortment level

and there is some demand outstanding. The newsvendor may discount the product when the

on-hand inventory is less than or equal to s1 or not at all. In other words, the newsvendor may

not discount the product to ve as soon as inventory level reaches s1 since the probability

of a consumer whose reservation price is between p and u finding a unit which satisfies

her preferred secondary features is high. As the inventory level decreases, this probability

decreases and at some remaining inventory level, while there is some demand outstanding,

it may become optimal to offer a pre-end of season discount and sell the product for ve per

unit. If γ > u− p, then there are three possible cases under this policy:

1. If X ≤ Q− s1, then X units will be sold at p and Q−X units will be sold at v.

2. If Q − s1 < X ≤ Q, then Q − s1 units will be sold at p. For the remaining s1 units,

the newsvendor has two choices. In the first choice, no discount to ve is used and the

quantity sold for p is
∑X−(Q−s1)

i=1 ai = s1− as−Q+X . The revenue from the remaining s1

units can be written as

R1 = (v − p)ss−Q+x
1 sQ−x−s1 + s1(p− v) +Qv. (12)

In the second choice the newsvendor discounts the price to ve beginning with the x th
o

consumer, xo < x, resulting in a revenue of

R2 = (v − p)ss−Q+xo

1 sQ−xo−s1 + s1(p− v) +Qv + (v + ve)(x − xo). (13)

3. If Q < X, then in addition to the two above choices for X ≤ Q− s1, the newsvendor
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can sell some of the remaining s1 units at p and the remaing at ve by manipulating xo.

For no units to be sold at v requires that the realized sales after inventory level reaches

s1 is equal to or greater than s1 which can be written as s1 < (s1−as−Q+xos)+(X−xo).

This condition can be restated as X < xc, where xc = as1+xo−Qs1+xo. If X < xc, then

the revenue is given by

R = p
(
s1 − as−Q+xos

)
+ (X − xo)ve. (14)

We can prove Lemma 1 which identifies the optimal discounting policy for the case in which

the additional revenue is given by Equation (13).

Lemma 1. For γ > u − p, the amount of realized demand at which the retailer should

discount the product to ve per unit is

xo = Q+ δ1 − s (15)

where δ1 =
ln( g

s(p−v) ln(a))
ln(a)

.

Solving for when xo in Equation (15) is equal to Q, i.e. xo = Q, yields

vo = v − sas ln(a)(p− v). (16)

If ve > vo, then xo < Q < xc and the revenue is

Re2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Xp+ v(Q−X) If X ≤ Q− s1

pQ− s1(p− v)as1−Q+X If Q− s1 < X ≤ xo

pQ− s1(p− v)as1−Q+xo + g(X − xo) If xo < X ≤ xc

pQ− as1−Q+xos1γ If X > xc

and the expected profit is

Ze2 =

∫ Q−s1

0
[xp+ v(Q − x)]f(x) dx+

∫ xo

Q−s1

[pQ− s1(p − v)as1−Q+x]f(x) dx+

∫ Q

xo

[pQ− as1−Q+xos1(p − v)

+ g(x− xo)]f(x) dx+

∫ xc

Q
[pQ− as1−Q+xos1(p − v) + g(x− xo)]f(x) dx+

∫ ∞

xc

(pQ− as1−Q+xos1γ)f(x) dx

(17)
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Similarly, if ve < vo, then Q < xo < xc and the expected profit is

Ze2 =

∫ Q−s1

0
[xp+ v(Q − x)]f(x) dx+

∫ Q

Q−s1

[pQ− s1(p − v)as1−Q+x]f(x) dx+

∫ xo

Q
[pQ− s1(p − v)as1−Q+x]f(x) dx

+

∫ xc

xo

[pQ− as1−Q+xos1(p− v) + g(x− xo)]f(x) dx+

∫ ∞

xc

[pQ− as1−Q+xos1γ]f(x) dx

(18)

Proposition 6 identifies the sufficient optimality condition.

Proposition 6. The expected profit given by Equations (17) and (18) are concave and the

optimal order quantities are given by the unique solutions to

p− c− (p− v)F (Q − s1) + g

(
F (Q+ δ1 − s)− F

(
s
(
aδ1s1 + a(Q + δ1 − s)

)
s1

))

+ (p− v)

∫ Q+δ1−s

Q−s1

as1−Q+xs1 ln(a)f(x) dx = 0,

(19)

if ve > vo, or

p− c− (p− v)F (Q − s1) + g
[
F (Q+ δ1 − s)− F

(
aδ1−1s1 − s+Q+ δ1

)]
+ (p− v)

∫ Q+δ1−s

Q−s1

as1−Q+xs1 ln(a)f(x) dx = 0,
(20)

if ve ≤ vo, respectively.

If γ ≤ u − p, then the following changes occur. For Q − s1 < X ≤ Q, discounting the

product to ve results in (1 − β)(xo − Q + s1) units of sales at p to consumers who will buy

a unit lacking their preferred secondary features. In addition, the demand from consumers

who will only buy a unit satisfying their preferred secondary features is s1+β−1− (s1+β−
1)sQ−x−s1ss1−Q+x

1 . As a result, the condition of case 3 (for γ > u−p) changes to Q ≤ X ≤ x̌,

where x̌ is given by Equation (5). Also, if X > x̌ then all Q units will be sold for p per unit.

Define the function

h(xe) = −(s1 + β − 1)sQ−xe−s1ss1−Q+xe

1 − s1β + 2s1 + β + βQ−Q− βxe + xe − 1. (21)

which is the total sales at price of p after the first q1 = Q − s1 of demand are satisfied if

the discount to ve is implemented at the x th
e unit. There are two threshold values of x (see

proof of Lemma 1 for similar analysis) given by:

ẋ =
ln
(

β(u−p)(2p−u−v)
ln(a)(p−v)(s1(p−u)+λ)

)
ln(a)

+ s+Q, (22)
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and

ẍ =
a−Q

(
(s1 − 1)(p− u)as1+ẋ − γas+ẋ + aQ(−(λ(−s1 +Q+ 1) + γẋ))

)
p− u

, (23)

which are needed to identify the newsvendor’s optimal discounting policy for maximizing

the revenue for the remaining s1 units as follows. We examine one case is which the loss of

utility is large. Let γc be the value of γ which solves ẋ = ẍ, then if γ > γc, ẋ < ẍ < x̌ and

the newsvendor will follow one of four policies depending on the realized demand.

1. If Q− s1 < x ≤ ẋ, then do not to discount to ve, but discount to v.

2. If ẍ < x ≤ x̌, then discount to ve and then to v.

3. If ẋ < x ≤ ẍ, then discount only to ve.

4. If x > x̌ then do not discount to ve or v.

Thus, with the case of X < Q− s1, the expected revenue is made up of five parts

Za =

∫ Q−s1

0

[px+ v(Q− x)]f(x) dx, (24)

Zb =

∫ ẋ

Q−s1

[− β(p− v)(s1 −Q + x) + h(x)(p− v) + px+Qv − vx]f(x) dx, (25)

Zc =

∫ ẍ

ẋ

[− β(p− v)(s1 −Q+ ẋ) + h(ẋ)(p− v) + pẋ+Qv − vx+ vex− veẋ]f(x) dx, (26)

Zd =

∫ x̌

ẍ

[− β(p− ve)(s1 −Q+ ẍ) + h(ẍ)(p− ve) + pẍ+Qve − veẍ]f(x) dx, (27)

Ze =

∫ ∞

x̌

p Qf(x) dx. (28)

Resulting in a total profit of

Z = Za + Zb + Zc + Zd + Ze − cQ (29)

While a necessary optimality condition is obtainable, it is quite complicated. We therefore

use a nonlinear optimization algorithm utilizing Newton’s method to find a solution. We
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show in the numerical analysis section that using optimal discounting has the potential of

substantially increasing profits when the loss of utility from the lack of preferred secondary

features is large.

6 Numerical Analysis

Consider the following base example. Demand is normally distributed with mean and stan-

dard deviation of 700 units and σ = 52.5 units, respectively. Consumers reservation prices

are uniformly distributed on [0, $140], i.e. u = $140. The selling price, the salvage value,

and cost per unit of the product are p = $100, v = $25 and c = $70, respectively. Thus,

demand at p = $100 is normally distributed with a mean of μ = (140−100
140

)700 = 200 units

and standard deviation of σ = 15 units. Consumers who are unable to find a unit satisfying

their secondary features preferences suffer a γ = $34 loss in utility, thus the pre-end of season

discount price if it is used is ve = p − γ = 100 − 34 = $66. The quantity on-hand below

which the product has less than complete assortment is s = 70 units.

Ignoring the assortment effect results in an optimal classic newsvendor order quantity of

Q∗ = F−1(100−70
100−25

) = 196.2 units and if there was no assortment effect the optimal expected

profit would be $5565.36. If the assortment effect is present with s = 70 units but the

newsvendor still orders 196.2 units, the actual profit will be $4537.72, which is 18.5% below

the $5565.36 expected by the newsvendor. If the newsvendor takes the assortment effect into

consideration, then the optimal order quantity decreases to Q∗ = 176.3 units and the optimal

expected profit is Z∗ = $4617.74, a 1.73% increase over ignoring the assortment effect. If

the newsvendor uses a pre-end of season discount to ve = $66 when on-hand inventory

reaches 69 units and consumers whose reservation prices are between $66 and $100 do not

visit the newsvendor (because they are not aware of the discount), then the optimal order

quantity increases to Q∗ = 209.268 units and the optimal expected profit is Z∗ = $3451.35

and the newsvendor is considerably worse-off with the discount unless the shelf space is very

expensive. If all consumers are aware of the discount, which brings in consumers whose
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Ri ∈ [66, 100], then the optimal order quantity is Q∗ = 246.5 units and the optimal expected

profit is Z∗ = $4674.98, which is 0.97% increase from the adjusted newsvendor optimal profit

and which gives the newsvendor the use of the shelf space sooner.

Figure 3a shows that, contrary to inventory-dependent demand models in the litera-

ture, the assortment effect may lead to a decrease in the optimal order quantity when the

post-season salvage value, v, is small. When v is small, the newsvendor wants to avoid over-

stocking. The assortment effect reduces the effective demand, i.e. for a realized demand of

X units, less than X units are sold at p even though inventory is available, which increases

excess inventory. Therefore, the newsvendor responds by decreasing the order quantity. As

v increases, both the optimal order quantities of the classic newsvendor and the adjusted

newsvendor increase. With the assortment effect, the payoff from increasing the order quan-

tity is higher than in the classic newsvendor because there is a probability that the product

will be sold for p instead of salvaging it at v. As a result the optimal order quantity with the

assortment effect increases at a larger rate and at v = $42.1 it exceeds the classic newsven-

dor’s optimal order quantity. Figure 3b shows that the newsvendor is better off taking the

assortment effect into account for any v and particularly when v is large or small. This is

because for v in the middle range, as Figure 3a shows, the optimal order quantities of the

classic and the adjusted newvendors are close.

Figure 3: Optimal order quantity and expected profit vs. post-season salvage value
μ = 200, σ = 15, γ = 34, s = 70, p = 100, c = 70 

                                                                          Adjusted newsvendor                                        Classic newsvendor 

(a)                                                                                                           (b) 
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Figure 4a shows that the optimal order quantity with the assortment effect (adjusted

newsvendor) is increasing in the standard deviation at low standard deviation whereas the

classic newsvendor order quantity is decreasing. The decrease in the classic newsvendor

order quantity is because p−c
p−v

< 0.5 which pushes the order quantity further to the left of

the mean as the standard deviation increases. Figure 4b shows that taking the assortment

effect into account instead of ordering the classic newsvendor’s order quantity leads to a

larger increase in the expected profit at small demand standard deviation. As the standard

deviation increases, the variability in demand leads to smaller area under the pdf for which

X > Q− s1 and diminished assortment effect.

Figure 4: Optimal order quantity and expected profit vs. standard deviation of demand
μ = 200, γ = 34, s = 70, p = 100, c = 70, v = 25

                                                                          Adjusted newsvendor                                       Classic newsvendor 

(a)                                                                                                          (b) 
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Figure 5a shows that the optimal order quantity is decreasing in the inventory level

needed for a complete assortment, s, while the classic newsvendor’s optimal order quantity

is independent of s. As s increases, the newsvendor orders a smaller quantity in order to

increase the probability of having X > Q− s1 and to increase the probability of selling the

remaining s1 units to the large number of consumers after the first Q − s1 consumers are

satisfied. The impact of s on profit is shown in Figure 5b where the optimal expected profit

under the assortment effect is decreasing in s. Again as s increases, the assortment effect

has a larger negative impact on selling inventory beyond demand of Q − s1 and the profit
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decreases. At large values of s, ignoring the assortment effect can have a significant negative

impact on profit.

Figure 5: Optimal order quantity and expected profit vs. inventory level needed for a
complete assortment

μ = 200, σ = 15, γ = 34, p = 100, c = 70, v = 25 

                                                                          Adjusted newsvendor                                       Classic newsvendor 

(a)                                                                                                          (b) 
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Figure 6a shows the optimal order quantities when there is a pre-end of season discount

price ve > v at which consumers whose reservation prices are met will purchase a unit

without their preferred secondary features. The figure shows two cases. In the first case,

consumers whose reservation prices are between ve and p do not visit the newsvendor and

in the second case they do. When they do, additional demand is generated from those

consumers who find a unit satisfying their secondary features preferences. In both cases,

Figure 6a shows that the optimal order quantity is decreasing in ve (i.e. increasing in γ).

This is because discounting the product to ve when on-hand inventory reaches s1 at low

ve makes the discounting unprofitable comparing to selling it for p and the newsvendor

increases Q as ve decreases to increase the probability of selling more units at p. At high

ve, if X > Q − s1 then selling some of the s1 units for ve is profitable and the newsvendor

decreases Q as ve increases in order to avoid salvaging inventory for v. Figure 6b shows that

implementing a pre-end of season discount is suboptimal when ve is large, a ve > $67.12

for the case in which additional consumers with Ri ∈ [67.12, 100] visit the newsvendor. For

ve < $67.12, implementing a pre-end of season discount can be very profitable when the
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discount attracts consumers whose reservation prices are Ri ∈ [67.12, 100]. For example,

if a 35% discount (γ = 35) compensates consumers for the loss of utility resulting from

purchasing a product which lacks their preferred secondary features, then implementing a

pre-end of season discount results in a 2.6% increase in profit from the adjusted newsvendor.

Figure 6: Optimal order quantity and expected profit vs. pre-end of season discount price
μ = 200, σ = 15, s = 70, p = 100, c = 70, v = 25

                              Adjusted newsvendor                       All-units discount                     All-units discount & consumers with [ , ]iR p p   

(a)                                                                                                          (b) 
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Figure 7 shows the optimal order quantity and optimal profit from using optimal pre-

end of season discounting and the adjusted newsvendor. As Figure 7a shows, while the

adjusted newsvendor’s order quantity is decreasing then increasing in ve, the order quantity

with optimal discounting is monotonically increasing in ve. Figure 7b shows that optimal

discounting can result in substantial increase in profit from the adjusted newsvendor in which

no discounting to ve is used. This advantage of optimal discounting decreases as ve increases

(γ decreases).

Thus far, our analysis has focused on demand as a continuous random variable, which

is reasonable when the demand and the complete assortment size are relatively large. For

small demand and assortment size, the approximation provided by the continuous case may

lack the needed accuracy because the probabilities of consumers finding units satisfying

their preferred secondary features are based on whole numbers while our analysis uses a
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Figure 7: Optimal discounting vs. all-units discount
μ = 200, σ = 15, s = 70, p = 100, c = 70, v = 25
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continuous approximation. Thus, for small discrete demand and small complete assortment

size, a marginal analysis approach may provide better solutions.

7 Conclusion

We developed a model in which the newsvendor sells a non-homogenous product due to vari-

ation in secondary features such as color, size, condition, etc. A consumer whose reservation

price for a product satisfying her/his preferred secondary features is met buys the product if

it is available. If the product is lacking the preferred secondary features, consumers’ utility

from the product decreases. Thus, when on-hand inventory falls below the level needed for

a complete assortment, i.e. all variations in secondary features are no longer available, there

is a deceasing probability of a consumer finding the right product, which we refer to as the

assortment effect.

We find that for low post-season salvage value, the assortment effect may lead to a

decrease in the optimal order quantity from the classic newsvendor. For large post-season

salvage value, the optimal order quantity is larger than the optimal order quantity of the

classic newsvendor. We also find that the assortment effect has a larger influence on the

optimal order quantity when the demand has a small standard deviation and the inventory
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level needed for a complete assortment is large. Furthermore, the assortment effect has a

large influence on the optimal expected profit when demand has a small standard deviation,

the inventory level needed for a complete assortment is large, and the post-season salvage

value is small.

We examined the use of a pre-end of season discount as soon as inventory level drops

below the level needed for a complete assortment to compensate consumers whose reservation

prices are met but are unable to find a unit which satisfies their preferred secondary features.

We found that this discount leads to an increase in the optimal order quantity and, if the loss

of utility from lack of secondary features is small, then the discount can lead to a substantial

increase in profit when all consumers are aware of the discount. We also examined the use

of an optimal discount in which the newsvendor may discount the product at an inventory

level below the level needed for complete assortment or not at all. We found that this can

be substantially more profitable than the all-units discount.

Our model has some limitations which provide some avenues for future research. We

used some simplifying assumption about the order of consumer arrivals, other arrival orders

can be examined. We limited our focus to the retailer and did not address the problem in

a supply chain context which would include a manufacturer’s response. We also did not

consider the possibility for selling inventory when its level reaches the complete assortment

level to off-price retailers who buy brand and designer products from regular retailers.
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Appendix
Proof. Proposition 1.

For on-hand inventory level greater than s1, the inventory contains complete assortment. At

q = s1, an incoming consumer has a Pr1 = s1
s
probability of finding the right product and

purchasing it resulting in an expected sale of 1×Pr1 = Pr1 units and a remaining inventory

of q2 = s1 − Pr1 =
s21
s

units. For the next incoming consumer, the probability of finding
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the right product is Pr2 = q2
s

= ( s1
s
)2 and the remaining inventory is q3 = q2 − ( s1

s
)2 =

s31
s2

units. For the next incoming consumer, the probability of finding the right product

is Pr3 = q3
s

= ( s1
s
)3. This results in a total demand after inventory level reaches s1 of∑X−Q+s1

i=1 ( s1
s
)i = s1

(
1− ( s1

s

)X−Q+s1
)
. Adding the prior sales of Q− s1 gives a total sales of

Q− s1 + s1

(
1− (s1

s

)X−Q+s1
)
= Q− s( s1

s
)s1−Q+X for price p per unit.

Proof. Proposition 2.
The second derivative of Z with respect to Q is

d2Z

dQ2
= −(p− v)s1(ln(a))

2

∫ ∞

Q−s1

as1−Q+xf(x) dx− (p− v)f(Q− s1)(1 − s1 ln(a)) (30)

Since s > 1, s1 > 0 and the first term in Equation (30) is negative. Also, since a = s1
s
< 1,

ln(a) < 0. Thus −s1 ln(a) > 0 and (1−s1 ln(a)) > 0. Thus −(p−v)f(Q−s1)(1−s1 ln(a)) < 0.

Therefore, d2Z
dQ2 < 0, Z is concave, and the solution to dZ

dQ
= 0 given by Equation (3) is a

sufficient optimality condition.

Derivation of additional sales for γ ≤ u− p.

Sales to the remaining X − (Q − s1) consumers after the first (Q − s1) units of inventory

are sold depend on the order of arrivals of consumers. We follow an optimistic scenario

for the newsvendor in order to demonstrate the assortment effect on the newsvendor even

under favorable conditions. In this scenario, consumers whose drop in utility is sufficiently

large and will not buy a unit lacking their preferred secondary features have a priority in

the choice of the remaining units. The total demand from consumers whose reservation

prices are on [p, p + γ) is γ
u−p

[X − (Q − s1)]. The first of these consumers can select from

the remaining inventory of k1 = s1 − (1 − γ
u−p

), where the term (1 − γ
u−p

) = (1 − β) is

used to account for partial reduction in inventory from consumers with a small drop in

utility. Thus, the probability of the first consumer finding a unit satisfying his/her preferred

secondary features is Pr1 =
k1−(1−β)

s
. The remaining inventory becomes k2 = s1 − Pr1 and

the probability of the second consumer finding a unit satisfying her/his preferred secondary

features is Pr2 = k2−(1−β)
s

= s1(λ−(u−p)s1)
s2(u−p)

. The remaining inventory is k3 = s1 − Pr1 −
Pr2. Continuing this process for all γ

u−p
[X − (Q − s1)] consumers results in a total sales

of
∑�β(X+s1−Q)�

i=1
si−1
1 (λ+s1(u−p))

si(u−p)
≈

(
1−s−(s1+x−Q)βs

(s1+x−Q)β
1

)
((u−p)s1−λ)

u−p
. Similar analysis can be

used to derive the additional sales after inventory reaches s1 for other orders of arrivals of

consumers.

Proof. Proposition 3.
The second derivative of Ze with respect to Q is

d2Ze

dQ2
= −γ f(Q− s1)− g f(Q) < 0. (31)
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Thus, Ze is concave. Solving
dZe

dQ
= 0 yields Equation (9).

Proof. Proposition 4.

When on-hand inventory level reaches s1, the newsvendor implements a discount to ve and

X − (Q − s1) consumers purchase the product resulting is a Q − X > 0 remaining on-

hand inventory. By the assumption on the reservation prices being uniformly distributed on

[0, u], the additional number of consumers whose reservation prices for a unit satisfying their

secondary features preferences are met is γ
u
D. Substituting for D using Equation (1) gives

γ
u

Xu
u−p

= Xγ
u−p

as the additional demand due to the price discount. Since the first consumer has

Q−X < s1 units to chose from, her probability of finding the right product and purchasing

it is Pr1 =
Q−X
s1

and a remaining inventory becomes Q−X − Pr1 =
s1(Q−X)

s
. For the next

incoming consumer, the probability of finding the right product is Pr2 =
s1(Q−X)

s

s
= s1(Q−X)

s2
.

Continuing with the same process, the probability of the third consumer finding the right

product is Pr3 = (s1)2(Q−X)
s3

and so on. This results in a total demand after inventory level

reaches Q−X of (Q−X)s−
γX
u−p

(
s

γX
u−p − s

γX
u−p

1

)
= (Q−X)(1− s

γX
u−p

1 s
γX
p−u ).

Proof. Proposition 5.

From Proposition 2, Ze1 is concave in Q. For a given value of X, Proposition 4 shows that

the additional demand from consumers whose reservation prices are between ve and p is

(Q−X)(1− s
γX
u−p

1 s
γX
p−u ). These units will be sold for ve per unit instead of v resulting in an

additional revenue of RA = g(Q−X)(1− s
γX
u−p

1 s
γX
p−u ). Taking the first derivative of RA with

respect to Q gives

dRA

dQ
=

⎛
⎝1− s

γX
u−p

1

s
γX
u−p

⎞
⎠ g.

Since s > s1 and g > 0 dRA

dQ
is a positive constant. Thus, RA increases linearly with Q. Since

Ze is concave, it decreases at an increasing rate after the Q∗ identified in Proposition 3. At

Q∗, dZe

dQ
= 0 and dRA

dQ
is a positive constant and thus dZe

dQ
< dRA

dQ
. Therefore, Ze1 increases for a

range of Q above Q∗ until dZe

dQ
= dRA

dQ
where a new optimal, denoted Q∗

1 > Q∗ is reached and

beyond which Ze1 decreases and thus Ze1 is unimodal. Therefore, the solution to dZe1

dQ
= 0

given by Equation (11) is a sufficient optimality condition.

Proof. Lemma 1.
If X > Q − s1 then the newsvendor must determine when to discount the product to ve.
Define y as the realized part of demand at which the newsvendor should discount the product
to ve. y = Q− s1 implies discounting as soon as inventory level falls below the level needed
for complete assortment level. The other extreme is to not discount at all and to lower the
price from p to v at the end of the season. When inventory level i.e. demand, reaches Q−s1,
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the newsvendor, knowing the remaining unrealized demand, maximizes additional revenue
from the remaining on-hand inventory which is given by

RA = (X − y)ve + p

y−Q+s1∑
i=1

ai + v

(
Q− (X − y)−

y−Q+s1∑
i=1

ai

)

= Qv − (p− v)
(
a1+s1y−Q − a

)
1− a

+ g(y −X).

Taking the second derivative of RA with respect to y yields d2RA

dy2
= −(p−v)as−Q+ys ln2(a) <

0. Thus, RA is concave in y. Setting dRA

dy
= −g−as−Q+ys(p−v) ln(a) = 0 yields the optimal

value of y, denoted by xo, and given by Equation (15).

Proof. Proposition 6.
We provide proof for the case of ve > vo, the case ve < vo can be similarly proved. Taking
the second derivative of Ze2 with respect to Q and simplifying gives

d2Ze2

dQ2
= −agf

(
a−1+δ1s1 − s+Q+ δ1

)− a(p− v)

∫ Q+δ1−s

Q−s1

as1−Q+Xs1pf(x)(ln(a))
2 dx

− a(p− v)f(Q − s1)(1 + s1 ln(a))

(32)

Since −a(p− v)
∫ Q+δ1−s

s1+Q
as1−Q+xs1f(x)(ln(a))

2 dx < 0, if

− agf
(
aδ1−1s1 +Q+ δ1 − s

)− a(p− v)f(Q− s1)(1 + s1 ln(a)) < 0 (33)

then d2Ze2

dQ2 < 0. For ve > vo, δ1 > 0 and since Q > s, −agf
(
aδ1−1s1 +Q + δ1 − s

)
< 0.

The sign of the remaining term Ω = −a(p − v)f(Q − s1)(1 + s1p ln(a)) is determined by

(1+ s1p ln(a)) whose derivative with respect to s is 1
s
+ ln(a) < 0 and is therefore decreasing

in s. Since lims→∞ (1+ s1 ln(a)) = 1 and lims→0 (1+ s1 ln(a))) = 0. Thus,(1 + s1p ln(a)) > 0

for s > 1 and Ω < 0. This establishes that d2Ze2

dQ2 < 0 and Ze2 is concave. Thus, the unique

solution to dZe2

dQ
= 0 given by (20) is optimal.
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