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Starting from the knowledge-based view of efficiency improvement, we propose a network-based
approach to find the optimal stepwise benchmarking paths toward the efficiency frontier. The approach
treats the Data Envelopment Analysis system as a network of teaching and learning firms and calculates
the overall shortest paths taking into account both input endowment similarity and the efficiency gap
covered in each step. In addition, based on network centrality concepts, the method discriminates
between efficient and intermediate units, and highlights possible outliers or specialized units. As a real-
world example, the method is applied to a network of Canadian bank branches and practical implications
are discussed.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Efficiency improvement involves technological and organiza-
tional changes, and such substantial changes require a carefully
oriented inter-organizational knowledge absorbing process [1].
Taking into account that slow learning is a major reason for inef-
ficiency [2], adopting a stepwise benchmarking path not only
facilitates the knowledge absorption process but also reduces the
risk of failure implied by setting an out-of-reach efficiency target
[3,4].

Assuming the Data Envelopment Analysis (DEA) method as a
network of units that aim to learn by benchmarking, we propose
an application of Social Network Analysis (SNA) in the DEA context
to transform the benchmarking information of DEA efficiency
measurement into a network of possible efficiency improvements,
and calculate the optimal stepwise benchmarking paths.

This paper is grounded on the knowledge-based view of effi-
ciency, which understands efficiency improvement as a learning
process [5]. According to the theory of absorptive capacity [6], one
firm's ability to learn from another depends on the similarity of
the two firms' knowledge base, organizational structures and
consumption policies [7]. In a DEA problem, this knowledge
overlap and structural relevance can be measured through the
similarities in the inputs as well as in the outputs [1,5,8].
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Another question also discussed in the paper is the fact that
because DEA does not provide stepwise benchmarking paths, it
might be risky or not feasible to cover all efficiency gaps in one
step [9]. To overcome this problem, several strategies have been
proposed to post-process the DEA benchmarking information
based on contextual policies in order to provide a reasonable,
desirable and feasible stepwise benchmarking path. These proce-
dures can be categorized under the general label of stepwise
benchmarking.

A recent and relevant trend in the literature [3,4,9,10] uses self-
organized map (SOM) input clustering and machine learning
techniques to find the optimal path toward efficiency. While some
of these techniques provide more appropriate paths than tradi-
tional stratification or context-dependent DEA (CD-DEA) methods,
some aspects still need improving. First, the existent proposals
optimize each step (not the whole path). Using the SNA shortest
path makes it possible to optimize the whole path and, when
possible, to minimize zigzagging the path toward the efficient
frontier. Second, they cannot control the number of steps; the
present proposal, by contrast, provides a control parameter and
can provide paths with various numbers of steps. Third, clustering
based on input similarities reduces the n dimensions input vector
data (where n is the number of inputs) into a two dimensional
map. Detecting input similarity based on this information—by
determining the Euclidean distance of the cluster centers—is not
an accurate proxy. In the present paper, this constraint is relaxed
and a weighted vector comparison is used to select the most
similar Decision Making Units (DMUs) in the path, which seems to
be a more realistic and accurate proxy. This comparison indicates
ladder toward efficiency: Proposing network-based stepwise
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that a comprehensive model with flexible and comparable policies
is still lacking, and SNA has the potential to overcome these
shortcomings.

Liu et al. [11] were the first to introduce the novel idea of
analyzing DEA problems as a network of efficiency endorsements,
and to propose an application of SNA in DEA to obtain a better
discrimination in the efficiency ranking of the DMUs. The network
structure proposed by Liu et al. [11] is based on lambda values,
resulting from a recursive efficiency analysis of the DMUs under
study, and discrimination is based on eigenvector centrality of
efficient units.

Apart from eigenvector centrality, other powerful SNA concepts
can be helpful in efficiency problems, such as proximity, shortest
path and alpha centrality. Our proposal combines concepts and
methods from SNA and DEA and, for the first time, these concepts
are applied in a SNA method with applications such as calculating
the optimal benchmarking path, detecting possible outliers, clus-
tering units and highlighting specialized DMUs.

The proposed method has three steps. The first step measures
the efficiency scores and results in initial benchmarking peers of
DMUs. The DEA type (i.e., radial DEA, hyperbolic DEA, directional
distance function—DDF—or slack-based models—SBM) and the
possible orientations (input, output or directionally oriented) are
exogenous to the method. The second step post-processes the DEA
scores and transforms the benchmarking information into a
directed and weighted network of all possible efficiency
improvement paths. The third step analyzes the resulting network,
calculates the optimal benchmarking path, and highlights the
potential presence of specialized units as well as the possible
outliers.

In the present paper, a path toward the efficiency frontier is
considered optimal when the unit under evaluation is a relatively
good performer, or there are some better intermediate performers
with relatively similar input endowments in the middle, promot-
ing the learning process and lowering the risk of failure. Based on
this definition, the path shown in Fig. 1 part (III) is a non-optimal
path, and the one shown in Fig. 1 part (IV) is an optimal path.
Setting two intermediate efficiency improvement targets not only
facilitates the learning process but also indicates that the bench-
mark is feasible in practical terms.

Despite their shared origin, the method proposed by Liu et al.
[11] and our proposal are different. First, as shown in Fig. 1 part I,
the nodes in the method proposed by Liu et al. [11] are DMUs and
the links between the nodes are the efficiency endorsements
directed toward the efficient peers. In the current paper, the nodes
are DMUs but the links are not only toward efficient units but also
toward any better performer unit (Fig. 1 part II). In this way, the
model will include all possible efficiency improvements that are
paramount for calculating optimal paths.
Fig. 1. Illustrative benchmarking paths. (I) DEA benchmarking information. (II) All
possible efficiency improvement. (III) Normal benchmarking. (IV) Network-based
stepwise benchmarking (optimal path).
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The second difference concerns the network construction
method. The links in the method proposed by Liu et al. [11] are
weighted by summing the lambda values obtained from a recur-
sive DEA efficiency analysis of all possible input/output combina-
tions. This method implies defining several DEA programs with
just a partial description of the existing technology, which is dif-
ficult to accept, as only a carefully selected dataset with com-
pletely substitutable inputs and outputs would be acceptable.
Hence, in order to preserve the definition of the technology, in our
proposal we avoid using partial technologies.

Finally, considering that it is relatively easier to introduce
sophisticated functions of costs and risks as link weights in an SNA
network than in a DEA program, our proposal calculates a function
of input similarities and benchmarking risks to weight the links. In
contrast, the method proposed by Liu et al. [11] does not take into
account the input similarities or the efficiency gaps. As a proxy for
input similarities, our model calculates the Euclidean distance of
normalized inputs, taking advantage of the unit invariant property
of inputs in constant return to scale (CRS) and variable return to
scale (VRS) [13]. In a similar way, the efficiency gap between the
DMUs at the start and end of a link is used as a proxy to bench-
mark risk of failure. To bonus more appropriate intermediate
better performing DMUs, an exponential value of the above-
mentioned proxies is taken. It is also possible to introduce a fixed
cost to each benchmarking step and a matrix of substitution rates
for the inputs.

The rest of paper is organized as follows. Section 2 provides an
overview of the previous studies in stepwise efficiency improve-
ment and network-based DEA. Section 3 presents our proposal and
revises the application issues. Section 4 provides details of an
empirical application evaluating the relative efficiencies of 79
Canadian bank branches and the results are discussed. Finally,
Section 5 summarizes the work, states the practical implications
and suggests directions for future research.
2. Literature review

2.1. DEA and stepwise efficiency improvement (SEI)

The need for efficiency improvement (EI) is emphasized in the
efficiency literature [3,4,9,14]. Scholars mention different but
relatively convergent logics and reasons for efficiency improve-
ment, including the learning process, handling data heterogeneity
due to size, facilitating efficiency gap removal and dealing with
different evaluation contexts.

There are five trends in stepwise efficiency improvement (SEI)
methods. Among those, CD-DEA and efficiency improvement path
are the most relevant to the present paper. The CD-DEA trend
started with Seiford and Zhu [15] and became popular after the
improvements made by Seiford and Zhu [16]. Other scholars have
extended the CD-DEA method and combined it with other DEA
concepts, for example SBM, assurance regions (AR), super and
cross efficiency. Although this branch of the literature deals with
overall stepwise efficiency improvement, it does not provide a
specific path or road-map for inefficient units to remove
inefficiency.

The most relevant precedent to the present paper is the effi-
ciency improvement path, which began with the paper by Hong
et al. [14] and includes methods that aim to introduce an optimal
path toward efficiency. Lozano and Villa [17] and Lozano and Villa
[18] provide a sequence of gradual intermediate targets toward
efficiency where the targets are not observed units. In contrast, all
other papers in this stream calculate an optimal path utilizing the
information from observed DMUs. Also, Lozano and Villa [17] and
Lozano and Villa [18] only use DEA methods while the other
ladder toward efficiency: Proposing network-based stepwise
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proposals enhance the DEA results with self-organized map (SOM)
and machine learning techniques.

The method proposed by Hong et al. [14] clusters the DMUs
utilizing SOM techniques; inside each cluster it finds the shortest
paths for each DMU toward the layered frontiers using SOM
methods. Hong et al. [14] were the first to introduce the stepwise
improvement path and shortest path concepts in the literature.

Lozano and Villa [17] state that most DEA models project an
inefficient unit onto a more distant target, which makes it more
difficult to attain. They advocate determining a sequence of targets
that end in the efficient frontier. Obviously, these targets are
generally closer to the original unit than the one-step projection.
The sequence of targets provided by Lozano and Villa [17] are
hypothetical units under CRS. Lozano and Villa [18] went on to
improve their method, first for technical inefficient units by cal-
culating a sequence of targets toward the VRS frontier, and then
for scale inefficient units. In both cases, the successive targets are
obtained by iteratively solving specific DEA models that take into
account given bounds on the rates of change in inputs and outputs
that the unit can implement in each step (see Lozano and Villa
[18]).

In a similar way to Hong et al.'s [14] proposal, Sharma and Yu
[10] utilize a SOM method to cluster the DMUs based on input
characteristics. For a second time, the method clusters the DMUs
based on efficiency. Hong et al. provide a fixed number of effi-
ciency layers. To present a stepwise path, their method finds
higher efficiency ranked DMUs inside each input similarity clus-
ters. The method proposed by Sharma and Yu [10] also uses SOM
clustering and efficiency-based clustering for stepwise improve-
ment. In both methods the DMUs are presented with benchmarks
inside the clusters.

Estrada et al. [3] focused on the practical difficulties of
removing all the inefficiency in one step and propose a proximity-
based stepwise target selection process. The method first clusters
the DMUs based on the input similarities using the SOM clustering
technique. The authors then find the shortest paths by moving
from one cluster to a better performing unit in the closest neigh-
boring clusters utilizing a reinforcement learning (RL) algorithm.
This method improves on [14] in two ways. First, a path in Hong
et al. [14] is caged in its input similarity cluster, but the Estrada
et al. [3] method lets the path move toward the closest neigh-
boring clusters. Second, the Hong et al. [14] method utilizes the
layering technique while the Estrada et al. [3] method relaxes this
condition and lets the efficiency improvement take place in a more
appropriate way.

Lim et al. [4] attempted to improve the CD-DEA model [16]
with an SEI method that first clusters DMUs into several layers
according to their efficiency scores, and then establishes a
benchmarking path across the sequence of layers. Among the
DMUs in the next layer, the most preferable one is selected as the
next benchmark target, based on three criteria: attractiveness,
progress, and infeasibility [4].

Park et al. [9] state that most of the previously proposed
methods for stepwise efficiency improvement only consider the
efficiency score in selecting benchmark targets and they propose a
stepwise method to take into account preference, direction and
similarity at the same time. To select the intermediate benchmark,
their proposal takes into account the minimum deviation from the
direct path toward the ultimate target, and input similarity. To
measure the input similarity, the method categorizes the DMUs
into a fixed number of clusters using an SOM method. Then the
Euclidean distance between the groups is used as a proxy for input
similarity of DMUs. A weighted sum of deviation and input simi-
larity is used to optimize each step (and not the whole path)
toward the ultimate path. Although the methods by Sharma and
Yu [10], Estrada et al. [3] and Park et al. [9] are relatively similar in
Please cite this article as: Ghahraman A, Prior D. A learning
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their strategies, the proposal by Park et al. [9] has better
achievements and fewer shortcomings.

2.2. DEA and Social Network Analysis (SNA)

Liu et al. [11] were the first to explore SNA techniques in the
DEA research field and proposed a network-based approach to
further increase discrimination among the efficient DMUs. In
constructing the network, the observed node is set to point to its
referent DMUs as suggested by DEA, and corresponding lambda
values for these referent DMUs are taken as the strength of the
network link [11]. The important point is that the network is
woven not only by the full input/output model, but also by models
of all possible input/output combinations. In other words, Liu et al.
[11] use all possible partial technologies in the dataset to create
more links between the DMUs. Some links will probably appear
starting from efficient units to inefficient units because in some
partial technologies the efficient units may become inefficient.
Incorporating these models into the system basically introduces
the merits of each DMU in various situations into the system and
thus provides the key information for further discrimination. Once
the network has been constructed, the centrality concept com-
monly used in Social Network Analysis—specifically, eigenvector
and alpha centrality—is employed to rank the efficient DMUs
[11,20]. The network-based approach by Liu et al. [11] tends to
rank high the DMUs that are not specialized and have balanced
strengths. In the resulting network, the more central DMUs are the
highly ranked efficient units. The link width (thickness) represents
the λ values and the direction is toward the efficient units. The
links back from efficient units to peripheral units are because of
the iterative partial efficiency definition.

In their second paper, Liu and Lu [19] enhance their network-
based approach by removing the bias caused by a scale difference
among organizations and highlighting its ability to identify the
strengths and weaknesses of each organization [19]. This ability is
a result of partial technology definition by iteratively solving all
possible input/output combinations. The authors then apply the
method in a two-stage R&D evaluation model which separates the
R&D process into two stages: technology development and tech-
nology diffusion.

In their third paper, Liu and Lu [20] extend their network-based
approach into the two-stage DEA context, applying their proposal
to a dataset of banks to illustrate a real-world problem. In addition
to basic ranking, they suggest a benchmark unit for each input/
intermediate/output factor, and identify the strengths of each
efficient unit.
3. The proposed model

In this section we explain our proposed model. First we explain
the theoretical framework and the overall research approach. Then
we detail and formally present the proposed steps. Finally, we
introduce the dataset and its characteristics.

3.1. Theoretical framework

The proposed method post-analyzes and transforms the DEA
benchmarking information into a directed and weighted network
of learning DMUs. Fig. 2 illustrates the theoretical framework of
the present paper. The method is divided into two stages: i) Data
Envelopment Analysis and ii) DEA post-analysis. In the first stage,
the decision maker introduces the input and output data that
affect the inter-organizational process.

In the second stage, the method constructs the network based
on the DEA benchmarking information and efficiency scores. The
ladder toward efficiency: Proposing network-based stepwise
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network contains all possible efficiency improvement paths
between DMUs. The starting node is an inefficient unit and the
ending node is a better performer (not necessarily an
efficient unit).

The links are established by using a weight function that takes
into account two factors for each link: i) the input changes, ii) the
efficiency gap covered. To bonus the shorter links the exponential
summation of the factors is taken into account. In addition the
decision maker can adjust the weight of each factor and assign a
constant to the function to control the number of steps.

Dijkstra's algorithm (see Xu et al. [21]) is used to calculate the
shortest path. The method presents the shortest stepwise paths to
all peers marked by DEA and highlights the most preferable path
based on the decision maker's preferences.

Based on the resulting information, other applications are intro-
duced: i) highlighting the possible outliers and specialized units, ii)
clustering the DMUs based on their network neighborhoods.

The following sub-section formally presents the model.

3.2. Model

3.2.1. Step 1: Efficiency measurement and finding the ultimate
targets

The first step measures the DMU efficiency scores using a Data
Envelopment Analysis (DEA) model. To eliminate the effects of
units of measurement on the magnitudes of distance comparison,
the method normalizes all inputs and outputs using the invariant
property of DEA, and replaces the normalized inputs with the
original values1. It has been demonstrated that normalizing only
the inputs does not change the efficiency calculations [22]. The
normalized values are calculated by

xi ¼ xi
maxi ¼ 1;…;nxi

\\; i¼ 1;…;n; xi’xi i¼ 1;…;n: ð1Þ

The DEA model, orientation, and type of return to scale are
exogenous to the present model and, based on the operating
conditions, are decided according to the decision maker's pre-
ferences. In the present paper, we use Banker et al.'s [23] proposal,
assuming the input orientation and variable returns to scale (VRS)
as technological assumption:

Min θk

s:t:
Xn

j ¼ 1

λjxijrθkxik; i¼ 1;…;m;

\� t
Xn

j ¼ 1

λjyrjZyrk; r¼ 1;…; s;

\� t
Xn

j ¼ 1

λj ¼ 1;

\� tθk; λjZ0; 8 j;

ð2Þ
1 Since we are looking for input similarities, the proposed normalization
should be maintained irrespective of the orientation taken.
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where n is the number of DMUs; m and s are the respective
number of inputs and outputs; and xij and yrj are the amount of the
ith input consumed and the amount of the rth output produced by
the jth DMU, respectively. The problem is to solve technical effi-
ciency (TE) θk and lambda value λj for an observed DMU. By
varying the index k over all DMUs, we obtain TE in each DMU. If TE
is equal to one, then the DMU is technically efficient. If TE is
smaller than one, then the DMU is technically inefficient [11]. The
DEA model provides a set of inefficient units, their respective
benchmarking peers and efficiency scores.

3.2.2. Step 2: Constructing the network
The method utilizes the benchmarking information of DEA

efficiency measurement to construct the benchmarking network.
Fig. 3 part I shows an illustrative DEA program with input orien-
tation. Unit A and B are the efficient units and form the best
practice VRS frontier. In this example θA¼θB4θC4θD4θE.

The benchmarking network is defined as G¼(N,L,w) as follows:

\� N¼ 1;2;…;nf g;
\5pcL¼ u; vð Þjθuoθv

� �
;

\5pcd u; vð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i ¼ 1 xiv�xiuð Þ2
q

;

\� e u; vð Þ ¼ θv�θu;

\5pcp fð Þ ¼ base f =max fð Þð Þ;
\3pc1¼w0þw1þw2;

w u; vð Þ ¼w0þw1 � p d u; vð Þð Þþw2 � p e u; vð Þð Þ:

ð3Þ

N is the set of all DMUs and the set of all pairs of nodes (u,v) is
present in L if DMUu is more efficient than DMUv. The function d
calculates the input similarities and as a proxy we propose dis-
tance between the input values of unit u and v in vector space. The
resulting distance is scalar. The function e calculates the bench-
marking risk of failure and as a proxy proposes the efficiency gap.
The function p assigns an exponential penalty for longer steps. The
latter will bonus the shorter steps better than longer ones. The
base is to be optimized by the decision maker's preferences for
shorter steps. Also wi are the preference weights decided by the
decision maker's preferences, where larger base values will pro-
vide smaller jumps in terms of input/efficiency changes and
smaller base values provide steps with relatively higher jumps. In
the present paper, we used base¼100. w0 as the fixed cost of each
step. The decision maker can control the number of steps by
modifying this parameter. w1 is the relative importance of input
similarity and w2 is the relative importance of benchmarking risk
of failure. Finally the w function calculates the weights for links.

3.2.3. Step 3: Calculating the shortest paths
Given the directed and weighted network of G¼(N,L,w), the

method utilizes Dijkstra's shortest path algorithm to calculate the
shortest paths from each inefficient unit to its peers on the fron-
tier. The parameter ∂v for every vAL such that ∂v¼dist(s,v), v is the
ending and s is the starting node. Summing up, the algorithm
follows the corresponding process:
ladder toward efficiency: Proposing network-based stepwise
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1. Set the P:¼0, Q:¼V and ∂s:¼1 for every vAVs.
2. While Q is not empty do the following.
(a) Find a vertex vAQ such that ∂v¼min{∂u:u in Q}.
(b) Set Q:¼Q�v, P : ¼ P [ v. ∂v:¼min{∂u,∂vþw(v,u)} for every

uAQ\Nþ(v).

For an inefficient unit, the shortest paths to all its efficient
peers are calculated and the shortest path is highlighted. It is
possible to use the DEA calculated target as an additional, virtual
ultimate target. This way the method provides the shortest paths
toward efficiency not only for the real observed peers but also for
the DEA calculated target. From one hand, this modification pro-
vides intermediate benchmarks that are more compatible with the
optimization orientation. From the other, since the final target is
probably not an observed unit, the final benchmark of such path
will not be a real benchmark. In the present work, we include only
the efficient peers of each unit and not its DEA calculated target.
The shortest path algorithm finds the paths with minimumweight
summations. This way the method finds paths with minimum
level of zigzagging based on the available sample in the dataset.
3.2.4. Clustering the DMUs
The aforementioned method takes into account the decision

maker's preferences in terms of maximum allowed changes for
inputs in each step to cluster the DMUs. The decision maker can
limit the maximum percentage change of inputs for DMUs in each
Please cite this article as: Ghahraman A, Prior D. A learning
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step by defining the matrix:

JI ¼

j%Δx1 j j%Δx2 j ⋯ j%Δxm j
δ11 δ12 ⋯ δ1m
δ21 δ22 ⋯ δ2m
⋮ ⋮ ⋱ ⋯
δn1 δn2 ⋯ δnm

0
BBBBBB@

1
CCCCCCA

DMU1

DMU2

⋮
DMUn

; ð4Þ

wherem is the number of inputs, n is the number of units and δij is
the maximum percentage that the input i can increase or decrease
for unit j in each step.

In a similar way, the decision maker can imply the preferences
for the maximum percentage output change by defining the
matrix:

JO ¼

j%Δy1 j j%Δy2 j ⋯ j%Δys j
δ11 δ12 ⋯ δ1s
δ21 δ22 ⋯ δ2s
⋮ ⋮ ⋱ ⋯
δn1 δn2 ⋯ δns

0
BBBBBB@

1
CCCCCCA

DMU1

DMU2

⋮
DMUn

: ð5Þ

Each pair of (JI, JO) can break down the network G¼(N,L,w) into
several components and each component can be treated as a
cluster of benchmarking units. Comparing the amount of changes
in inputs and outputs in each step by the given functions, it is
possible to filter the non-matching links and provide a subset of
the initial network. A component may or may not include an
efficient unit but at each cluster there is at least one unit that is the
ladder toward efficiency: Proposing network-based stepwise
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Table 1
Efficiency measurement results.

DMU Efficiency
scores

Benchmark
target

DMU Efficiency
scores

Benchmark
target

1 1 Efficient unit 41 0.445 42, 49, 65
2 0.378 4, 34, 36, 54, 65 42 1 Efficient unit
3 0.706 4, 36, 39, 59 43 0.744 29, 36, 39, 55,

69
4 1 Efficient unit 44 0.639 34, 54, 65
5 1 Efficient unit 45 0.577 34, 42, 54
6 0.274 34, 42, 54, 65 46 0.607 29, 34, 49, 65,

69
7 0.537 29, 36, 39, 65,

69
47 0.641 4, 29, 32, 36, 55

8 0.461 36, 49, 65, 69 48 0.478 36, 49, 55, 69
9 0.617 21, 34, 54 49 1 Efficient unit

10 0.329 36, 49, 55, 69 50 0.636 34, 49, 54, 65
11 1 Efficient unit 51 1 Efficient unit
12 0.531 34, 36, 65, 69 52 0.985 21, 29, 36, 54
13 0.769 42, 49, 65 53 0.914 23, 29, 39, 55,

74
14 1 Efficient unit 54 1 Efficient unit
15 0.909 29, 36, 49, 65,

69
55 1 Efficient unit

16 0.575 49, 65 56 0.384 42, 49, 54, 70
17 0.593 29, 36, 39, 54 57 0.798 34, 54
18 0.675 36, 42, 49 58 0.462 29, 36, 49, 62
19 1 Efficient unit 59 1 Efficient unit
20 0.633 42, 49, 54, 65 60 0.615 4, 29, 36, 39, 55,

69
21 1 Efficient unit 61 0.511 34, 42, 54
22 0.549 36, 49, 55, 69 62 1 Efficient unit
23 1 Efficient unit 63 1 Efficient unit
24 1 Efficient unit 64 0.689 42, 49, 65
25 0.759 29, 34, 36, 49,

65, 69
65 1 Efficient unit

26 0.792 29, 34, 36, 65,
69

66 0.650 34, 36, 42, 65

27 0.645 34, 36, 49, 65,
69

67 0.475 42, 49, 65

28 0.778 34, 54 68 0.802 29, 36, 49, 55,
69

29 1 Efficient unit 69 1 Efficient unit
30 0.879 23, 59, 63 70 1 Efficient unit
31 0.623 19, 34, 36, 55,

69
71 1 Efficient unit

32 1 Efficient unit 72 0.782 4, 14, 23, 36, 74
33 0.808 29, 36, 39, 55 73 0.991 23, 24, 36, 51
34 1 Efficient unit 74 1 Efficient unit
35 0.751 34, 42, 49, 54, 75 0.380 Efficient unit
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best performer connected to others. Each cluster shows the max-
imum benchmark that is possible for inefficient units to take,
given the maximum amount of changes in inputs and outputs. The
shortest path to the best performer of the group shows the time
needed to the frontier.

Analyzing a series of slightly increasing intervals of (JI, JO)
provides an overview of the efficiency evolution during the
benchmarking steps.

3.2.5. Highlighting possible outliers and specialized units
To determine the presence of possible outliers and specialized

units, the method provides a graphical network layout in which
the node sizes represent the alpha centrality of the nodes and the
outliers and specialized units stand out. Alpha centrality is a
descriptive measurement of nodes in a network. It is a generalized
eigenvector measure of centrality [12] adaptable for directed and
weighted networks. In eigenvector-like centrality measurements,
the centrality status of a node is not only based on its own location
and status, but also on the recursive location and status of its
neighbors. In our context, an efficient unit is assigned a higher
alpha centrality score when the units which have chosen it is as a
benchmark, are recursively chosen as benchmarks by more inter-
mediate, better performer units.

Alpha centrality scores are calculated as c¼ diagð 1nÞ–ð
α:adj Gð ÞTÞW where diag 1nð Þ is the identity matrix, adj Gð ÞT is the
transposed adjacency matrix of network G, and W is a weight
matrix where the elements are calculated using the w function.
We apply alpha-centrality at α equaling 0.05. These scores are
used to visually highlight more central units. Moreover, in a force-
directed layout with W weights, the efficient frontier takes place
on the outer boarder of the graph which is more consistent to the
efficient frontier concept.

The decision makers can then apply their preferences by
modifying the weight parameters to discriminate input endow-
ment similarities or efficiency gap differences between DMUs. By
changing the weight parameters, the weight scores of the links
change and the network layout forces the units with highest
scores to be far from the center of the network. Using this tech-
nique the decision maker can distinguish the specialized DMUs
that are relatively further away from other DMUs in terms of input
endowments, or possible outliers that are at a distance from others
in terms of efficiency scores.
65
36 1 Efficient unit 76 1 Efficient unit
37 0.450 34, 54, 65 77 1 Efficient unit
38 0.364 34, 42, 49, 54,

65
78 1 Efficient unit

39 1 Efficient unit 79 0.498 34, 36, 49, 65,
69

40 0.553 34, 36, 42, 49,
54, 65
4. Empirical application, results and discussion

4.1. Data

We evaluate the proposed method by applying it to a network
of a Canadian bank which has 79 branches (DMUs). The data was
originally published by Estrada et al. [3]. The fact that the data
comes from centrally planned units that compete in the same
context certifies the homogeneity of the DMUs, which is a crucial
condition for the validity of the DEA model. There are three inputs:
the number of employees (full-time equivalent) in services, sales
and other activities; and four outputs: loans, mortgages, registered
retirement saving plans and letters of credit. As indicated pre-
viously, the input variables are normalized so the vector of dis-
tances and the summation of the distances do not affect the
quality of the results.

The data is also suitable for finding the most appropriate
intermediate benchmarks to facilitate the inter-organizational
learning process. The units with a higher percentage of
employee support are more likely to learn from better performers
with the same portion of input endowments.
Please cite this article as: Ghahraman A, Prior D. A learning
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4.2. Empirical results and discussions

4.2.1. Efficiency measurement and network construction
We evaluated the efficiency of DMUs using a VRS DEA model

assuming the input orientation. Table 1 shows the original results
with 32 efficient DMUs and 47 inefficient DMUs, with their cor-
responding benchmark peers. The measurement results show a
high frequency of firms with high efficiency scores.

We then constructed the network based on expression 3 and
using the igraph [24] in the R-project [25] statistical package. The
final network has 79 nodes and 2646 links that show a huge
number of possible benchmarking path selection options. The
resulting network has one component and is a weighted directed
acyclic network. Fig. 4 shows the resulting network with the
ladder toward efficiency: Proposing network-based stepwise
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Fig. 4. Network of all possible efficiency connections.
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decision maker's preferences as w0¼0, w1¼0.5 and w2¼0.5. The
circles represent the efficient units and the squares, the
inefficient DMUs.

The edge thickness shows the appropriateness of the ending
point for selection as the benchmark for the starting node. The
node size is based on alpha centrality score of each unit. We apply
alpha centrality with alpha equaling 0.05 which is determined by
[12] The alpha centrality can be interpreted as popularity in terms
of number of units that prefer this node as a benchmark. In other
words, it is more important for a unit to be selected by a popular
node than by an unpopular node. The node size captures the
amount of changes in input endowments or efficiency level to
benchmark the specified unit which are calculated by w function.
If the node is relatively far from other units (in terms of inputs or
efficiency), it receives more weight from benchmarking firms and
grows bigger. The intermediate firms toward such a dissimilar firm
will also gain some node size. In the network presented here, unit
73 is the only inefficient unit that is similar to units 1 and 5, and
has gained a bigger node size and lies on the periphery. The nodes
at the center are the most inefficient firms that have several effi-
cient and inefficient units with similar endowments. The ineffi-
cient units are attracted by their most preferable benchmarks. This
attraction is done using a spring embedder and force directed
graph to draw what are known as Fruchterman–Reingold [26]
algorithms.

4.2.2. Finding the shortest stepwise benchmarking paths
We use the R package igraph [24], which applies Dijkstra's

algorithm to find the shortest paths. For each unit, we calculate the
shortest paths to the set of peers. Using the initial weights w0¼0,
Please cite this article as: Ghahraman A, Prior D. A learning
benchmark selection. Omega (2015), http://dx.doi.org/10.1016/j.omeg
w1¼0.5 and w2¼0.5 the method provides shortest paths for unit
2 toward the efficiency frontier as shown in Fig. 5a. The source
node is on the bottom of the network and the paths are toward the
nodes at the top of the graph. The efficiency increases by moving
toward top nodes. The numbers in parenthesis are the input
endowment distance and the percentages of efficiency improve-
ment in each step. As shown in Fig. 5b, the method has the ability
to provide relatively similar steps in terms of input and efficiency
changes. The decision maker can adjust the relative importance of
input or efficiency changes in each step by changing the decision
maker weight preferences. It is also possible to control the number
of steps based on the available data by adding a fixed cost to
each step.

Table 2 demonstrates the shortest path proposed for the first 10
inefficient DMUs. The shortest paths to all peers are provided and
the one with the best score is highlighted. The path length shows
the number of benchmarking steps that a DMU must take to reach
the efficiency frontier. As shown in that table, there are fewer
steps for DMUs with higher efficiency scores than for the less
efficient DMUs. The scores are the sum of weights generated by
the multi-factor weight function for each step. For each DMU the
paths to all peers are calculated by the method and the minimum
score has been decided as the optimal shortest path.

Fig. 5 shows the effect of fixed cost on the number of steps of
the shortest stepwise paths. From the figure we can see that the
stepwise benchmarking path from unit 2 to unit 36 has a length of
four in Fig. 5 a, three in Fig. 5 b, and two in Fig. 5 c (having w0¼0,
0.01, 0.03 respectively while w1¼w2). Although the method pro-
vides paths with less average length, the effect of length reduction
is not equal for all paths, since it is determined by the available
ladder toward efficiency: Proposing network-based stepwise
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Fig. 5. Shortest path for sample unit 2 toward efficient peers. The numbers in
parenthesis are, respectively, the input endowment distance and the percentages of
efficiency improvement in each one, both rounded down. (a) 3 steps from unit 2 to
unit 36. (b) 2 steps from unit 2 to unit 36. (c) 1 step from unit 2 to unit 36.

Table 2
Shortest stepwise benchmarking paths for the first 10 inefficient units.

From To Penalty scorea Path Length Optimal

1 2 36 0.050 2–12–26–36 3 *
2 2 34 0.055 2–58–18–15–34 4
3 2 65 0.060 2–58–18–15–65 4
4 2 54 0.066 2–45–57–54 3
5 2 4 0.092 2–47–4 2
6 3 39 0.090 3–39 1 *
7 3 59 0.096 3–59 1
8 3 4 0.100 3–4 1
9 3 36 0.146 3–36 1

10 6 34 0.066 6–58–18–15–34 4 *
11 6 42 0.067 6–58–18–15–42 4
12 6 65 0.071 6–58–18–15–65 4
13 6 54 0.079 6–56–45–57–54 4
14 7 36 0.049 7–68–36 2 *
15 7 29 0.050 7–68–29 2
16 7 69 0.054 7–26–69 2
17 7 65 0.069 7–13–65 2
18 7 39 0.073 7–33–39 2
19 8 36 0.053 8–43–36 2 *
20 8 69 0.054 8–13–69 2
21 8 65 0.065 8–13–65 2
22 8 49 0.072 8–50–35–49 3
23 9 21 0.022 9–21 1 *
24 9 34 0.027 9–57–34 2
25 9 54 0.035 9–57–54 2
26 10 55 0.059 10–22–68–55 3 *
27 10 36 0.069 10–22–68–36 3
28 10 69 0.071 10–22–13–69 3
29 10 49 0.090 10–22–13–49 3
30 12 69 0.033 12–26–69 2 *
31 12 36 0.035 12–26–36 2
32 12 34 0.041 12–18–15–34 3
33 12 65 0.045 12–18–15–65 3
34 13 65 0.020 13–65 1 *
35 13 42 0.023 13–42 1
36 13 49 0.028 13–49 1
37 15 69 0.009 15–69 1 *
38 15 29 0.011 15–29 1
39 15 65 0.020 15–65 1
40 15 36 0.020 15–36 1
41 15 49 0.027 15–49 1

a Penalty scores are calculated using function p in Formula (3). The penalty
score is higher for benchmark paths with less input similarity or more efficiency
score gaps covered in individual steps of each path. The optimal path (n) describes
the minimum “penalty score” from the specific unit to the frontier.
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data. While having overall control over the path length can be
useful for the CD-DEA, it also seems that forcing the method to
provide paths with fixed length is not optimal. In general, it can be
seen that the method is able to control the length of
benchmarking paths.

4.2.3. Clustering DMUs based on benchmarking segments
To provide benchmark segmentation or clustering of DMUs we

assume that the DMUs can change the amount of inputs and
outputs by 10% at each step. Given this assumption, JI is a matrix of
m�n and JO is a matrix of s�n with all elements equal to 10.
Utilizing these matrices, we filter the graph generated in the
previous step and the resulting network is shown in Fig. 6, where
the components with more than two connected members are
highlighted.

The graph has several unconnected inefficient units. We put
them in one cluster and this cluster shows the inefficient units that
cannot be connected to an intermediate benchmark with max-
imum 10% change in inputs and outputs. It is also obvious that
none of the units can reach the efficient unit having the given
possible changes. There are several components that demonstrate
ladder toward efficiency: Proposing network-based stepwise
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Fig. 6. Clustering DMUs based on their benchmarking status.
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the possibilities of stepwise benchmarking inside the allowed
interval. As shown in Fig. 6, unit 1 can benchmark unit 52, directly
or through other units. The node sizes here show the popularity of
the DMUs in term of the possibility of their being benchmarked by
other DMUs, taking into account the maximum allowed changes.

By slightly increasing the input and output change intervals,
the network evolves and its evolution reveals some important
information. For example the isolated units connect to other better
performers and make the clusters bigger.

Gradually, the clusters join together until all units are con-
nected. The units that connect later are more isolated, inefficient
units and are potential choices for shutdown, since they are so
inefficient that pushing them toward efficiency requires much
effort and time.

4.2.4. Highlighting the possible outliers and special units
Deviation in the network may be due to the existence of out-

liers. To exaggerate the effect of input similarities, we change the
weight preferences into w0¼0, w1¼0.9 and w2¼0.1. Fig. 7 shows
the network after the change. The outcome is that there are four
units with significant different input endowments. This may be
due to heterogeneity in scale or an indication of the presence of
outliers (units 1, 5 and 59). Since it is not possible to disentangle
what type of error it is, we assume that units 1 and 5 are outliers
and unit 59 is a very large unit. To solve the outliers problem we
replace them with unit 4, the second most similar unit to unit
1 and 5. We construct the network with w0¼0, w1¼0.5 and
Please cite this article as: Ghahraman A, Prior D. A learning
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w2¼0.5. This time the network shows a smoother deviation in
terms of node sizes. We apply alpha-centrality fixing alpha at 0.05.

Note that by removing the hypothetical outliers, the mean
efficiency score of the sample increases by 2%.
5. Conclusion and implications

The main purpose of this paper is to develop a network-based
method of stepwise benchmarking that takes into account the
input similarities and efficiency gap of each step. Based on the
absorptive capacity, and the similarity of the teaching and learning
organizations, it facilitates the knowledge transfer and inter-
organizational learning process. The study starts from the impos-
sibility of a specific unit removing all the existent inefficiencies in
a single step.

Therefore, we consider the benchmarking process as a network
of learning organizations and try to provide the most appropriate
stepwise benchmarking paths. The proposed method first evalu-
ates the efficiency scores and then, using a multi-factor weight
function, transforms the initial DEA efficiency scores and bench-
marking information into a directed and weighted network. Then
the method provides the shortest stepwise benchmarking path. To
the best of our knowledge, this is the first time that an SNA
method has been proposed for benchmarking purposes in the DEA
context.
ladder toward efficiency: Proposing network-based stepwise
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Fig. 7. Highlighting possible outlier or specialized DMUs.
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Using the empirical showcase of 79 Canadian bank branches,
we explored several characteristics of the method. The model
transformed the input/output information into a network of
learning DMUs. Then, using the shortest path concept, we calcu-
lated the optimal and shortest stepwise benchmarking path for
each DMU. Afterwards, using the alpha centrality concept, we
highlighted the possible outliers or specialized DMUs and clus-
tered the DMUs based on their benchmarking status in the
bounded change network. The final conclusion is that our propo-
sal, based on the knowledge-based view of efficiency, facilitates
the knowledge transfer and inter-organizational learning process.
It is flexible enough to allow the decision maker to decide on the
appropriate stepwise benchmarking paths for learning DMUs.

In addition to its uses in a range of organizations, this method
has a direct application in education. Teachers can use it to set
desirable and achievable targets for students based on already
existing performance of other students. The similarity of students'
personal, family and social characteristics can be taken as inputs.
The method finds the most similar but better performer bench-
marks in the sample.

Unlike other proposals in the field of efficiency and effective-
ness, the singularity of this method lies in the way it optimizes the
whole path of benchmarking and can control the number of steps.
This ability is crucial for short- and long-term planning.

Practitioners can also apply the clustering method to group
DMUs and their internal managers to design educational packages.
They can cluster the DMUs and design specific training courses for
each group. The method has the flexibility to provide variety of
Please cite this article as: Ghahraman A, Prior D. A learning
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group size and numbers based on maximum allowed changes in
each step.

The present method has some limitations. First, the ability of
benchmarking paths depends on the breadth of the generated
network. Thus, for a very inefficient isolated network with no close
better performer, the first step of real benchmarks contains a
relatively large change in inputs, and efficiency gap removal. This
limitation affects the control of method over the exact number
of steps.

Second, the method has three decision-maker preference
weight parameters, which means there is a trade-off between the
flexibility and capabilities of the method, and its ease of use. On
the one hand, it provides an impressive tool to distinguish
benchmarking conditions of the network and, on the other, it is
relatively complex to adjust all three at the same time.

Apart from the eigenvector and alpha centralities, other appli-
cations of SNA concepts and techniques in DEA are unexplored. We
propose two directions for future research. One possibility is to
extend the present paper in other areas of DEA concepts such as
dynamic or network DEA. Network DEA opens the organizational
‘black box’ to evaluate the efficiency of internal interconnected
processes, and must not be confused with the network-based
approach. We also aim to extend the present research in other DEA
models or technological assumption such as Free Disposal Hull
(FDH) and Slack-Based Models (SBM) models in dynamic and
network DEA. Specifically, we will attempt to combine this method
with the proposal by Lozano and Villa [18] to provide a sequence
of hypothetical targets that will resolve the first research limita-
tion noted above.
ladder toward efficiency: Proposing network-based stepwise
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The second possibility for future research is to introduce other
SNA techniques such as dual networks and network evolution into
the DEA concept. We will also try to improve the method for
sensitivity analysis of decision-making parameters to provide
some guidelines for the decision maker. Finally, there are several
other DEA concepts that could potentially be applied in the DEA
concept, e.g., some other centrality concepts, network flows, con-
nectivity and structural balance.
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