Omega § (NEEE) NNE-NEN

journal homepage: www.elsevier.com/locate/omega .-

Contents lists available at ScienceDirect

Omega

Just-in-time scheduling with two competing agents on unrelated

parallel machines™

Yungiang Yin **, Shuenn-Ren Cheng”, T.C.E. Cheng ¢, Du-Juan Wang %* Chin-Chia Wu®

2 Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China

P Graduate Institute of Business Administration, Cheng Shiu University, Kaohsiung County, Taiwan

€ Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
d School of Management Science and Engineering, Dalian University of Technology, Dalian 116023, China

¢ Department of Statistics, Feng Chia University, Taichung, Taiwan

ARTICLE INFO

ABSTRACT

Article history:
Received 1 August 2014
Accepted 3 September 2015

Keywords:

Scheduling

Two agents

Unrelated parallel machines
Just-in-time scheduling
FPTAS

This paper considers two-agent just-in-time scheduling where agents A and B have to share m unrelated
parallel machines for processing their jobs. The objective of agent A is to maximize the weighted number
of its just-in-time jobs that are completed exactly on their due dates, while the objective of agent B is
either to maximize its maximum gain (income) from its just-in-time jobs or to maximize the weighted
number of its just-in-time jobs. We provide a bicriterion analysis of the problem, which seek to find the
Pareto-optimal solutions for each combination of the two agents' criteria. When the number of machines
is part of the problem instance, both the addressed problems are NP-hard in the strong sense. When the
number of machines is fixed, we show that the problem of maximizing agent A's weighted number of
just-in-time jobs while maximizing agent B's maximum gain can be solved in polynomial time, whereas
the problem of maximizing both agents' weighted numbers of just-in-time jobs is A’P-hard. For the latter
problem, we also provide a pseudo-polynomial-time solution algorithm, establishing that it is AP-hard
in the ordinary sense, and show that it admits a fully polynomial-time approximation scheme (FPTAS) for

finding an approximate Pareto solution.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In classical just-in-time scheduling, the objective is to minimize
the earliness—tardiness cost of completing jobs with respect to
their due dates. Most papers in this area consider the objective of
minimizing the sum of the earliness and tardiness penalties (see,
e.g., [9,24,27,28]). In some situations, the earliness and tardiness
penalties depend on whether the jobs are early or tardy, rather
than how early or how late they are. Lann and Mosheiov [15]
introduce a new objective of minimizing the weighted number of
jobs that are early or tardy, which corresponds to maximizing the
weighted number of jobs that are completed exactly on their due
dates. We refer to any scheduling problem with the objective of
maximizing the weighted number of just-in-time jobs as a just-in-
time scheduling problem.

Lann and Mosheiov's study has recently received growing
attention from the scheduling research community and just-in-

“This manuscript was processed by Associate Editor Tkindt
* Corresponding authors.
E-mail addresses: yinyungiang@126.com (Y. Yin),
wangdujuan@dlut.edu.cn (D.-J. Wang).

http://dx.doi.org/10.1016/j.0mega.2015.09.010
0305-0483/© 2015 Elsevier Ltd. All rights reserved.

time scheduling has been studied in various machine settings. For
the single-machine case, Lann and Mosheiov [15] show that the
just-in-time scheduling problem is solvable in O(n?) time, where n
is the number of jobs. For the two-machine flowshop case, Choi
and Yoon [8] prove that it is A’P-hard, but they leave an open
question whether the problem is A’/P-hard in the ordinary sense or
in the strong sense. In addition, they show that the unweighted
version of the problem can be solved in O(n*) time for the two
parallel-machine case and is A/P-hard in the strong sense for the
three parallel-machine case. Shabtay and Bensoussan [20] show
that the open problem left in Choi and Yoon [8] is A’P-hard in the
ordinary sense by developing a pseudo-polynomial-time algo-
rithm and a fully polynomial-time approximation scheme (FPTAS)
for the problem. Elalouf et al. [10] suggest another pseudo-
polynomial-time algorithm for the same problem, which can be
converted into a new FPTAS that reduces Shabtay and Bensous-
san's complexity result. Shabtay [19] studies the just-in-time
problem in the flowshop setting under four different scenarios.
For each scenario, he either presents a polynomial-time algorithm
or develops an efficient pseudo-polynomial-time algorithm.
Shabtay et al. [21] address a two-machine flowshop scheduling
problem where the job processing time is controllable by varying
the allocation of a resource to the job operations. They adopt a

(2015), http://dx.doi.org/10.1016/j.0mega.2015.09.010

Please cite this article as: Yin Y, et al. Just-in-time scheduling with two competing agents on unrelated parallel machines. Omega

www.sciencedirect.com/science/journal/03050483
www.elsevier.com/locate/omega
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
mailto:wangdujuan@dlut.edu.cn
mailto:cchwu@mail.fcu.edu.tw
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

2 Y. Yin et al. / Omega ® (ANEE) NRE-REN

bicriterion analysis of the problem in which the first objective is to
maximize the weighted number of just-in-time jobs while the
second objective is to minimize the total resource consumption
cost. They develop a pseudo-polynomial-time algorithm for the
problem and convert it into a two-dimensional FPTAS. In the
parallel-machine setting, Carlisle and Lloyd [6] consider the
unweighted version of the just-in-time scheduling problem on m
identical parallel machines and show that the problem can be
solved in O(n log n) time. Other solution algorithms for the same
problem can be found in Cepek and Sung [7], Frank [11], Yanna-
kakis and Gavril [26], and Hsiao et al. [13]. Arkin and Silverberg [2]
develop an O(n? log n) time solution algorithm for the weighted
case on m identical parallel machines by converting the problem
into a minimum cost flow problem. Bouzina and Emmonss [5], and
Carlisle and Lloyd [6] present more efficient minimum cost flow
algorithms with an O(mn log n) running time for the same pro-
blem by modelling it on a network that has only O(n) arcs. Kova-
lyov et al. [14] show that the just-in-time scheduling problem on
unrelated parallel machines is equivalent to that of maximizing
the weighted m legally colourable vertices in a given interval
graph. Both Arkin and Silverberg [2], and Sung and Vlach [23]
prove that the just-in-time scheduling problem on m unrelated
parallel machines can be solved in O(mn™+1) time, which is
polynomial when m is fixed. However, when m is arbitrary, they
show that the problem becomes AP-hard in the strong sense.
Leyvand et al. [16] consider just-in-time scheduling on a set of m
machines with controllable processing times, where the objectives
are to maximize the weighted number of just-in-time jobs and to
minimize the total resource allocation cost. They consider four
different models for treating the two criteria. For each model, they
either provide a polynomial-time solution algorithm or develop a
pseudo-polynomial-time solution algorithm and an FPTAS.

All the above papers focus on the traditional case of just-in-time
scheduling with a single agent. In recent years researchers have
increasingly considered scheduling with multiple competing
agents, which was initially investigated by Agnetis et al. [1] and
Baker and Smith [3]. In this case, multiple agents need to process
their own sets of jobs, competing for the use of a common resource.
Each agent wants to optimize a certain objective function, which
depends on the completion times of its jobs only. Variants of the
scheduling problem with multiple agents have found many appli-
cations in areas such as manufacturing, supply chain management,
telecommunication services, project scheduling, etc. A recent sur-
vey of multi-agent scheduling research is given in Perez-Gonzalez
and Framinan [17]. With a view to modelling a realistic production
system, this paper combines the two sub-fields into a unified fra-
mework. Specifically, we focus on the innovative just-in-time
scheduling model on unrelated parallel machines in the two-
agent setting. The purpose of this paper is twofold. One is to
investigate this unexplored scheduling model. Another is to ascer-
tain the computational complexity status and provide solution
procedures, if viable, for the problems under consideration.

The rest of the paper is organized as follows: In Section 2 we
formulate the problem and present a common property of the
optimal schedules for the two problems under consideration. In
Section 3 we show that the Pareto-optimization problem with a
fixed number of machines where agent A's objective is to max-
imize the weighted number of its just-in-time jobs while agent B's
objective is to maximize its maximum gain can be solved in
polynomial time. In Section 4 we show that the Pareto-
optimization problem with a fixed number of machines where
both agents' objectives are to maximize their weighted numbers of
just-in-time jobs is A’P-hard in the ordinary sense by developing a
pseudo-polynomial-time algorithm for the problem and we con-
vert the algorithm into an FPTAS. In the last section we provide
some concluding remarks and suggest topics for future research.

2. Problem formulation

We formally describe the problem under study as follows:
There are two competing agents (called agent A and agent B,
respectively) that have to schedule two families of independent
and non-preemptive jobs on m unrelated parallel machines
Mi{,Ms,...,M,. Agent A has to perform the job set
I =y1.J5....J5,), while agent B has to perform the job set
P =U8.J5.J5). We call the jobs of agents A and B the A-jobs and
B-jobs, respectively. All the jobs are available for processing from
time zero onwards. Let X € {A,B} and let n=n4+ng denote the
total number of jobs. Denote d;* as the due date of job J, w/ as the
gain (income) from completing job J just-in-time (i.e., exactly at
time d;X), and p;* as the processing time of job J* on machine M;
fori=1,...,mandj=1,...,nx. The jobs that are completed exactly
on their due dates in some schedule are called just-in-time jobs.
We assume, without loss of generality, that all the dX, w/, and p;
values are positive integers, and let W"= ZJ,: c]Aw',:‘ and
WB = ZJE E]BWE.

For any given solution, let E; be the set of just-in-time jobs
allocated to machine M;fori=1,.... m,withE=E; UE; U --- U Ep,
and let T = (J* U J®)\E be the set of the other jobs. A partition of set
JA U JB into two disjointed subsets E and T is considered to be a
feasible partition (or a feasible schedule) if it is possible to sche-
dule the jobs belonging to set E on the m unrelated parallel
machines such that they are all completed just in time. Following
Lann and Mosheiov [15], in a feasible schedule, it is assumed that
the jobs in T need not be executed, which means that they are
rejected. We also denote by E* and E the sets of just-in-time A-
jobs and B-jobs, respectively.

Each agent wants to optimize a certain objective function
depending on the completion times of its jobs only. Specifically,
agent A wants to maximize Q*(S) = Z]Q pW¢ (the weighted num-
ber of just-in-time A-jobs, i.e., the total gain from completing the jobs
in set E* just-in -time), while agent B wants to maximize Q5(S) =
max;s W5 (the maximum gain from completing the jobs in set EB
just-in-time) or to maximize Q%)= ng WP (the weighted
number of just-in-time B-jobs, i.e., the total gain from completing the
jobs in set EB just-in-time). Since increasing the objective value of
agent A will decrease the objective value of agent B, and vice versa,
we need to consider the trade-off between the two objective func-
tions carefully to achieve the best scheduling outcome. For such kind
of bicriterion problem, we focus on finding the set of all the Pareto-
optimal schedules (points) (Q%, Q%), where a schedule S with Q* =
QA(S) and Q% =Q5(S) is called Pareto-optimal (or efficient) if there
does not exist another schedule S’ such that Q*(S") > Q*(S) and Q°
(S") > QB(S) with at least one of these inequalities being strict. Using
the three-field notation proposed by Graham et al. [12] and extended
to multicriteria scheduling problems by T'kindt and Billaut [25], we
denote the problems under consideration by Rm| \(Z]/k; . EAWA

k>
max;s pwy) and Rm||(Cp . Wy, Y o pswy), respectively, when
the number of machines m is fixed. Note that the criterion in the
classical three-field notation is to be minimized, but in this paper the
criterion is to be maximized.

Sung and Vlach [23] have shown that the just-in-time sche-
duling problem on unrelated parallel machine is NP-hard in the
strong sense if the number of machines is part of the problem
instance. In fact, if the due dates of the B-jobs are made very large,
our problems reduce to their problem, so our problems are NP-
hard in the strong sense when the number of machines is part of
the problem instance, too. Hence, in what follows, we focus only
on the case where the number of the machines is fixed.

The following lemma provides an easy-to-prove property for
the problems under consideration.

(2015), http://dx.doi.org/10.1016/j.0mega.2015.09.010

Please cite this article as: Yin Y, et al. Just-in-time scheduling with two competing agents on unrelated parallel machines. Omega

http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

Y. Yin et al. / Omega ® (AREN) NRE-REN 3

Lemma 2.1. There exists an optimal solution in which the jobs in the
just-in-time set E are sequenced in the earliest due-date (EDD) order.

Let Jij, i=1,...m,j=1,...|E, be the jth just-in-time job on
machine M;, where X=A means that the jth job belongs to agent A
while X=B means that the jth job belongs to agent B. The following
inequality provides a necessary condition for including job]?Ei] in E;
right after job Ji;_:

Py <djy—dj . M

where dff(,] =0 and X, Y e {A, B}, because otherwise job]?fn cannot be
completed just-in-time on machine M;, given that job]}{,-,]] is com-
pleted just-in-time on the same machine Without loss of generality,

,,,, .,Nz, where
Z € (A, B). Otherwise, job J# cannot be completed Just in-time in any
schedule, so it can be eliminated from the problem.

3. The Rm| | (X . W}, MaX;s _sW) problem

k>
problem, in which agent A wants to maximize the weighted
number of its just-in-time jobs while agent B wants to maximize
its maximum gain.

It is evident that there exists an optimal schedule for the Rm|
| (X c Wi maxgs _swi) problem in which there is exactly one
just-in-time B-job. However, we do not know which B-job is
completed just-in-time and on which machine it is processed in
the optimal schedule. So we need to enumerate all the possible
cases. For each assigned just-in-time B-job Ji5, h=1,....n5 on
some machine M, t=1,...,m, there is an unavailability interval
[dg —pE, dﬁ) on machine M, so the only remaining question is how
to schedule the A-jobs on the m unrelated parallel machines in the
EDD order. However, both the algorithms developed in Arkin and
Silverberg [2], and Sung and Vlach [23] cannot be applied for this
case. In what follows, we design a dynamic programming (DP)
algorithm to solve it. Temporarily assume, in this section, that the
jobs in J* are re-indexed in the EDD order.

Let (S’U),VA)(L,,) be a state corresponding to a feasible partial
schedule for the first j jobs {J4, ...7]]’-‘}, given that the sole just-in-
time B-job J;? is assigned to machine M, in the final optimal
schedule, in which the following information is recorded:

In this section we consider the Rm| | (3 . prW}, maxgs _ pswy)

® FV =(ky,....km): ki (0 < k; <j) denotes that the last just-in-time
A-job on machine M; is]’,jl_ with k, # kg if k, # 0 and p # q (i.e,, no
job can be processed on two different machines), and k;=0
meaning that no job is scheduled on machine M; in the partial
schedule;

e VA the maximum weighted number of just-in-time A-jobs in
the partial schedule.

Before describing the DP algorithm in detail, let us first develop
an elimination property.

Lemma 3.1. For any two states (§9,V}),, and (§9,V4).n with
V4 > V4, the second state can be eliminated.

Proof. Let S; and S, be two partial schedules corresponding to
the states (O,V en and (F9 ,V’z‘)(t n Tespectively. And let N =
{]kl ,]k2]k’ } be a set of just-in-time A-jobs that are added to
the partial schedule S, with k; > --- > k; > k1 >j so as to create a
feasible schedule §2. In the resulting feasible schedule §2, the
objective value of agent A is given as follows:

Q' SH=V3+ > w,.

Ji eN

Since the first coordinates in the two states remain the same,
set N can also be added to the partial schedule S; to form a
feasible schedule S;. In the resulting feasible schedule S,, the
objective value of agent A is given as follows:

ASy=Vi+ > w.

Ji eN

It follows from V4 >V4 that QA(§1)2QA(§2). Therefore, the
partial schedule S; dominates S,, and the result follows. ©

Our algorithm uses Lemmas 2.1 and 3.1 to solve the problem in
pseudo-polynomial time by finding the entire set of non-
eliminated (partial) solutions. This is achieved by dynamically
updating a set £ of solution states (F7, V), from £ for
t=1,...,m, h=1,...,np and j=1,...,n4. We initialize the algo-
rithm by setting (§%=(0,...,0,V), for t=1,...m and
h=1,...,ng. For any combination of t=1,...,m and h=1,...,ns,
and each (97" = (k1 ..., km), V)ep € L4 D, to generate a new
state in £&M), there are two choices to consider:

(1) Jobj/ is not completed just-in-time, i.e., assign job J/* to set T.
In this case, include state (F9 = =Y, in &0,

(2) Job J#* is completed just-in-time on some machine M;
i=1,...,m, i.e, include job J in set E; after job Jk Since there
is an unavailabihty interval [dh p[h,dh) on machine M,, there
are two subcases to consider:
Subcase a: If i#t and dk +p < dj, then include state (FV =
(koo ki1, K1, - km), VA+WA) in L&)

Subcase b: If i=t and one of the followmg assertions holds:

(] Job],1 is completed _]U.St in-time prior to]k on machine M;, i.e.,
thrp")< <d,< and d} +p"‘§d ,

® job JJ can be completed just-in-time prior to J§ on machine
M; ie. di +pf <d; and di +pf, <dj,

® job JJ can be completed _IUSt -in-time immediately after J% on
machine M,, 1mplymg that], is a Just in-time job right prior
tO]h, ie, dk +pzh —dh and dh—l' i < j)

then include state (§9 = (kq, ...,
Leh

ki—l,].ykiJrl:-~-akm),VA+Wjﬂ) in

Summing up the above analysis, we formally present a solution
algorithm for the Rm)| |(ZJ Wi maxgs . sWP) problem as
follows:

Sum-Max-DP Algorithm SMDP

k>

Step 1. [Pre-processing] Re-number the jobs in /! in the EDD order.
Step 2. [Initialization] Set £ = (F* = (0, ..., 0),0))} for t =1
,....,mand h=1,...np
Step 3. [Generation] Generate £ from £&h -1,
For h=1 to ng do
For t=1 to m do
For j=1 to ns do
Set L) = g;
For each (91 = (k1, ... km), V)ep € L4~ do
/* Choice 1: Assigning job J* to set T*/
set LG pERD {(%(l) — &(171), VA)(t,h)};
/* Choice 2: Assigning job _’jA to set E on some
machine */
For i=1 to m do
lfi;étandd p‘l‘]‘sdj,then
set
Lthi) (_L(rsh:i) U {(8;(/) — (k] Y
Endif

ki—1.J.kit1, ... km), VA"‘WJA)}:

(2015), http://dx.doi.org/10.1016/j.0mega.2015.09.010

Please cite this article as: Yin Y, et al. Just-in-time scheduling with two competing agents on unrelated parallel machines. Omega

http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

4 Y. Yin et al. / Omega ® (ANEE) NRE-REN

If i=t and ((d} +pf, <d; and df,
or (dk +p) <dj‘ and

+pf<df)

d! +p% <dp) or (d} +pf <dj and
dyp+pf) <d")), then
set £EMD £OhD G ((§D = (kq, ...,
K, VA wih);
Endif
Endfor

Endfor
Endfor
[Elimination] /* Update set £&M) */
For any two states (F&%), V) and (F&M9,14) with
V4 >V4, keep the first
state in set £&M9,
Endfor
Endfor

Step 4. [Result] For every U® 0, max;s _swg], an efficient solu-
B =", wh) with the

maximum W value among all the states with wf > U®,
and the optimal schedule can be determined by tracing
back the solution from the end.

k,'_],j,ki+ 1,...

tion is given by the pair (V*, w

Theorem 3.2. Algorithm SMDP solves the Rm| | (3 WA, maxs _ s
wB) problem in O(mzn}?“ng) time.

Proof. For any given t,h, and j, job J/* can be appended in a max-
imum of m+1 possible ways (assigning job J* as the last just-in-
time job to some machine under the necessity condition, say Eq.
(1) or the set T) to the partial schedule represented by a state
(FU=D V) py e L8091, Thus, the algorithm generates all the
possible states (F9,1) that correspond to the optimal partial
schedules constructed according to Lemma 2.1. By Lemma 3.1, we
keep only the dominated states in the elimination process. Thus,
£ always keeps all the states that may potentially be com-
pleted in an optimal schedule generated in later iterations.
Therefore, after scheduling all the jobs, the optimal solution must
be the one with w8 > U? and the largest W value in some set
L-(i,k,n)'

Now, we consider the time complexity of Algorithm SSDP. The
pre-processing step needs a sorting operation, that requires O(n,
log n,) time. In Step 3, for each state (9= = (k;, ...,km),vA)(t!h) in
£E=D the upper bound on the number of values of the variables
are the following: 79~ is bounded by n,™ and V* is bounded by
e WA, Thus, for any combination of t and h, the total number
of dlfferent states in £&% =1 js at most n,™ due to the elimination
rule. In each iteration j, there are at most m+1 new states gen-
erated from each state in £&"~1, Thus, the number of new states
generated is at most (m+ 1)n}'. However, because of the elimina-
tion rule, the number of new states generated in £ is always at
most O(n}') after the elimination process. Since before the elim-
ination procedure, we have at most O(mn}') states in LERD the
elimination process can be executed in O(mnj}) time. Thus, the
construction of £&") requires O(mn}') time. Note that t goes from
1 to m, h goes from 1 to ng while j goes from 1 to na, so the
generation process can be implemented in O(m? nIT“nB) time. Step
4 requires O(m?nTng) time, hence the overall time complexity is
indeed O(m?njj'* 'ng). o

4. The Rm||(Xp Wy, X . ppWy) problem

We now turn to the Rm|| (3 p» ,{,Z] .pW5) problem, in
which both agents want to maximize their weighted numbers of
just-in-time jobs. We first show that this problem is AP-hard,
followed by a pseudo-polynomial-time DP algorithm, establishing
that it is AMP-hard in the ordinary sense, and then develop an
FPTAS for finding an approximate Pareto solution.

4.1. Complexity analysis

Here we show that the recognition version of the problem even
on a single machine is A’P-hard by a transformation from the
NP-complete Even-0dd Partition problem.

Theorem 4.1. The recognition version of the 11|(3 EEAW’;,EJ B B
wB) problem is N'P-complete.

Proof. The proof is by reduction from the A’P-complete Even-0Odd
Partition problem, which is defined as follows:

Even-0dd Partition: Given a finite set H={a;,qa,,...,ay,} of
positive integers, where 22’1 1a;=M, does there exist a partition
of H into two disjoint subsets H, and H,, such that ZjeHl a; =
>ien, 8 and such that for each j, 1<j<h, H; (and hence H,)
contains exactly one of {ay;_1,ay}?

Given any instance of the Even-Odd Partition problem, we
construct the following instance of the recognition version of the
TSy o Wi, Xogs ppW7) problem:

Ny = 2h,
pj‘:M-‘,—aj, j=],2,...,2h,

WJ/,‘:M-q-aj, j=1,2,...,2h,

=MQ2Jj/21-1)+a;, j=1,2,..,2h,
UA = (h+1/2)M,

ng = 2h,
pP=M-a, j=1.2,...2h,
wi=M-q, j=12,..2h

B . .
di =2M[j/2], j=1,2,...,2h,
UB=(h-1/2)M.o

Assume first that the given instance of the Even-Odd Partition
problem has a solution, and let us prove that there exists a feasible
solution for the recognition version of the 1| |(ZJ EEAWA ngeEB
wy) problem such that Y- _pwi > U* and Y _pwj > UP. Let EX
be the set of X-jobs that corresponds to the set H; of the solution
for the Even-0dd Partition instance, and let TX be the set of all the
other X-jobs, where X e {A, B}. Consider a schedule in which the
jobs in set EX are assigned to be completed just-in-time. Then the
total gain of the A-jobs for this schedule is
SpepWi= hM+3p pry = (h+l/2)M U, while the total gain
of “the B-jobs is 35 pWi=hM—3 s pa=(h-1/2M=U".
Therefore, the given schedule is a fea51ble solution for the recog-
nition version of the 1| |(ZJA eEAWA Z]ﬂ . pW5) problem.

Conversely, we show that if there exists a schedule for the
given instance of the recognition version of the 1| \(Z]AEEA s
s < p#Wf) problem such that Yo _pwf > U* and Y _ i > U”,
then the Even-Odd Partition problem has a solutlon For this
schedule, the following assertions hold:

(1) | E®| = h. Since there are exactly h different due dates of the
B-jobs and two jobs cannot be completed at the same time, we
have |E®| <h. Moreover, S epWE=>p pp(M— ak) M| EB|

=Yg gl <M\EB . On the other hand, - _pWE=M|E?| -
Z]BeEBak>U =(h—1/2)M. It follows that |E°| >h—1/2. Thus,

(2015), http://dx.doi.org/10.1016/j.0mega.2015.09.010

Please cite this article as: Yin Y, et al. Just-in-time scheduling with two competing agents on unrelated parallel machines. Omega

http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

Y. Yin et al. / Omega ® (AREN) NRE-REN 5

we get h—1/2 < |EB| <h, which implies that |E5| =h since both
[EB| and h are integers.

(2) E* = EB. Analogous to the proof of (1), it is easy to see that
|E*| =h. Thus, for each pair of A-jobs (]’z‘jfl,]’z‘j) for j=1,...,h,
there is exactly one job belonging to E*. Now, for each]f e EB,
assume that j is an even number (the case where “j is an odd
number” can be analogously analyzed), then the starting time of J#
isjM—M+a;=(G—-1M+aq; = d]A implying that job]J-A is completed
just-in-time, i.e., J! € E*. It follows from |E*| = |E°| that E* = E°.

3) Z]A Ak = M/2. 1t follows from ZJA c EAWf(\ = Z]A EEA(M+a,<
)=hM+3_pa > U =(h+1/2)M that S p = M/2. Simi-
larly, Y pwWi=hM—3 4 pac> UB=(h—1/2)M implies that
S e @< M/2. Thus, 35 _paaic = M/2 since EA=EB.

Summing up the above analysis, there is a solution for the
Even-0dd Partition problem.o

4.2. A pseudo-polynomial-time algorithm

In this subsection, we focus on the design of pseudo-
polynomial-time DP algorithm for the Rm| \(Z]/k; WA, Z]qu W)
problem.

The DP algorithm exploits the property stated in Lemma 2.1.
Hence, in what follows, we assume that the jobs in J* U J® are re-
numbered from J; to J, in the EDD order. We next give some
definitions that facilitate the design of our DP algorithm.

Let (F,V4,1%) be a state corresponding to a feasible partial
schedule for the first j jobs {J;,J;}, subject to the condition that
the last just-in-time job is job J; in which the following informa-
tion is recorded:

® Fi=(ky,....ki=j,....,km): ki denotes that the last just-in-time
job completed on machine M; is job J, with k, # kg if k, # 0 and
p # (q (i.e,, no job can be processed on two different machines),
where k;=0 meaning that no job is scheduled on machine M; in
the partial schedule, and j = k; = max; _ {__,k; indicates that the
current last just-in-time job is job Jj;

e VA the maximum weighted number of just-in-time A-jobs in
the partial schedule;

e VB: the maximum weighted number of just-in-time B-jobs in
the partial schedule.

The following lemma presents an elimination property, which
is necessary for justifying the DP algorithm.

Lemma 4.2. For any two states (F,V},V8) and (F,V4,V5) with V}
>V4 and V8 > V5, the second state can be eliminated.

Proof. The proof is analogous to that of Lemma 3.1.0

The DP algorithm uses Lemmas 2.1 and 4.3 to solve the problem
in pseudo-polynomial time by finding the entire set of non-
eliminated feasible (partial) solutions. This is achieved by dyna-
mically updating a set £% of solution states (77,4, V) from £©,
£, ..., £9=Y for j=1,...,n. We initialize the algorithm by setting
£9 = {(F°,0,0)} with 72 =(0, ...,0). For any combination of [=0,
1,...j—1 and i=1,..,m, and each (F'=(ki,....ki,....km),
VA VB e £0, to construct £9, do the following:

e If J; is an A-job and dy, +pj; < d;, then include state (F = (k. ...,
ki~ 1.3 iy 1. km), VA+wy, VP) in £9;

e If J; is a B-job and dj, +p; < dj, then include state (F/ = (ky....,
ki— 1 ’j’ ki+15 krn), VA, VB +W]) in ﬁ(l).

The condition dy, +p; < d; is necessary for including job J; to set
E right after job J,, on machine M; according to Eq. (1).

Summing up the above analysis, we formally present a solution
algorithm for the Rm||(Sp . p Wi, >ps . psW}) problem as follows:

Sum-Sum-DP Algorithm SSDP

Step 1. [Pre-processing] Re-number the jobs in J* U J from J;
to J, in the EDD order.
Step 2. [Initialization] Set £© = {(F° =(0, ..., 0),0, 0)}.
Step 3. [Generation] Generate £9 from £©, D, ..., 0=,
For j=1 to n do
Set 7 = @;
For [I=0toj—1 do
For each (F'= (kq, ..., km), VA, V) e £
For i=1 to m do
/* Assigning job J; to set E right after job Ji,
on machine Mj/
If J; is an A-job and dy, +pj;; < d;, then
set
L9 £9 U (F =Ky oo ki 1,0, Ki g 1 km), VAW, VB
Endif
If J; is a B-job and d,, +p;; <d;, then
set
[:(i) <—,C(j) U {(}-J = (k], ceey ki—l,j’ k,ur], km), VA, VB—FWJ')}:
Endif
Endfor
Endfor
Endfor
[Elimination] /* Update set £9 */
(1) For any two states (#,*,V8) and (7, ", V5)
with V& > V5, keep the first
state in set £9;
(2) For any two states (F,V},V8) and (F, V5, VB)
with V} >4, keep the first
state in set £9;
Endfor
Step 4. [Result] For every UB [0, ZJE .]Bwf], an efficient

solution is given by the pair (**, V%)= (14, VF) with
the maximum W value among all the states with

VB > U®, and the optimal schedule can be determined
by tracing back the solution from the end.

Theorem 4.3. Algorithm SSDP solves the Rm||(3 . EAWQ,ZJlk;E B
w¥) problem in O(m?n™+' min{W*, W¥}) time.

Proof. For each iteration on j, job J; can be appended in a max-
imum of m possible ways (assigning job J; as the last just-in-time
job to a machine under the necessity condition, say Eq. (1)) to the
partial schedule represented by a state (F, 4 1V8)ec?,
[=0,1,...,j—1. Thus, the algorithm generates all the possible
states (F7, V4, VF) corresponding to the optimal partial schedules
constructed according to Lemma 2.1. By Lemma 4.3, we keep only
the dominated states in the elimination process. Thus, £ always
keeps all the states that may potentially be completed in an
optimal schedule generated in later iterations. Therefore, after
scheduling all the jobs, the optimal solution must be the one with
VB > UB and the largest V* value in some set £9.

Now, we consider the time complexity of Algorithm SSDP. The
pre-processing step requires a sorting operation, which takes O(n
log n) time. In Step 2, for each state (F!, 4, VB)e £V~ ", the upper
bound on the number of values of the variables are the following:
F' is bounded by mn™~! (there are at most m possible ways to
assign job J; as the last just-in-time job to a machine under the
necessity condition, and once the assignment of job J; is determined,

(2015), http://dx.doi.org/10.1016/j.0mega.2015.09.010

Please cite this article as: Yin Y, et al. Just-in-time scheduling with two competing agents on unrelated parallel machines. Omega

http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

6 Y. Yin et al. / Omega ® (ANEE) NRE-REN

there are at most n™~1 possible vectors (k, ..., ki_1,j, ki1, km), and
VA and V8 have at most W* and W? possible values, respectively.
Due to the elimination rules, min {W#, W8} is an upper bound on
the number of different combinations of V4 and VB. In each itera-
tion, there are at most m new states generated from each state in
£9=Y. Moreover, | takes from the values 0 to j— 1. Thus, the con-
struction of £® requires O(m2n™ min {W*, W®}) time, which is also
the time required for the elimination process. After n iterations, the
generation process can be implemented in O(m2n™+!min{W?*, W&})
time. Step 4 requires O(m2n™ min{W", W5}) time, hence the overall
time complexity is indeed O(m2n™+1! min{W4, W2}). o

Note that Algorithm SSDP can also be used to solve the Rm| |
(ZJ? WA, | EB|) problem, which can be regarded as a special case
of the Rm| |(ZJ,:€EAW7:,Z]£EEBWE) problem, where |E2| denotes
the number of just-in-time B-jobs. In fact, we only need to let V8

denote the number of just-in-time B-jobs in the partial schedule.
Hence, we obtain the following result.

Corollary 4.4. The Rm| \(Z]/k; 6Eﬂwﬁ, |E®|) problem can be solved in
om2n™+1ng) time.

4.3. A fully polynomial-time approximation scheme (FPTAS)

In this subsection we show how to convert SSDP into an FPTAS
for finding an approximate Pareto solution on the trade-off curve
by using the static interval partitioning approach originally pro-
posed by Sahni [18]. Recall that, for any 0 < € < 1, an algorithm A,
is called an e-approximation algorithm for a maximization problem
if we have Z < (1 —¢&)Z* for all the instances, where Z denotes the
value of the solution given by algorithm A, and Z* is the value of
the optimal solution value [18]. A family of approximation algo-
rithms {A.} defines an FPTAS if, for any 0 <e <1, A is an &-
approximation algorithm that is polynomial in n and 1/¢.

For every U? €0, Zj{f .pWh and 0<e<1, let 5=¢eUB/n. We

split the interval [0, UB] into [n/e] equal subintervals of size § as

follows:
Ut 5
(1251},

015201 (1-2)a (12 1)s)

This partitions [0, >~ wE] into a set of [n/€]+1 subintervals.

In developing the approximation scheme, our Sum-Sum
Approximation Algorithm SSAA(U®) trims down every state set Yol
in Algorithm SSDP to a relatively small state set ¥ at the end of
the jth phase, j=1,2,...,n. The resulting state set 29 satisfies the
following properties:

° Z(ﬂ

is a subset of £9;
o 7% contains at most m(j—1)(j—2)...j—m+1) states whose V&
values fall within the same subinterval;)
e For every state (F,*,V5) in the untrimmed state set £%, Z?
contains some state (7, 7", 9%) such that V' and V? fall within

in the same subinterval with 7" > VA

We give a formal description of the algorithm as follows:
Sum-Sum Approximation Algorithm SSAA (U®)

Step 1. [Pre-processing] Re-number the jobs in J* U J8
from J; to J, in the EDD order.
Step 2. [Partitioning] Partition the interval [0, 3~ w5]

into [n/e]+1 subintervals as follows:

0521 (1-2)a (10 -1)s)

UB
{([71 - 1) 8, UB} (U Wi

Step 3. [mitialization] Set Z© = (° = (0, ..., 0),0,0)}.
Step 4. [Generation]: Generate 2 from 2, 2", 297V,
For j=1 to n do
set 2% = g
For [=0toj—1 do
For each (F! = (ky, ..., k), VA, V) e 2
For i=1 to m do
/* Assigning job J; to set E right after job Jj,
on machine M}/
If J; is an A-job and dy, +p;; < d;, then
set
2V <29 U =k, ki1, ki1, km), V2w, VB
Endif
If J; is a B-job and dy, +p;; < d;, then
set
2029 U =k, ki1, ki1, km), VA VE W)
Endif
Endfor
Endfor
Endfor
[Elimination] /* Update set 2 */
For any two states (F/,4,V%) and (F,V4) in z0,
where V8 and V5 are in the same subinterval with
VA > VA, keep the first state in 2.
Endfor
Step 5. [Result]: The efficient solution is given by the pair (

YA PBEy — (1A VB) with the maximum VW value

among all the states with V8 > [VeL-DeU and the
corresponding schedule can be determined by tracing
back the solution from the end.

Lemma 4.5. For any eliminated state (7,14, VP) e £, there exists a
state (71, 9", V%) e £V such that V* >4, and V° > VB —js if V° falls
within the same subinterval of [0,U®] as V& and V° > U if V° falls
within the interval (U?, 3" w¥).

Proof. We prove the lemma by induction on j. According to the
eliminating process of Algorithm SSAA(U?), for every eliminated
state (F1,14,8) e £, we keep an alternative state (', V%),
where 7" > VA, and PP falls within the same subinterval of [0, U]
as V& or V* falls in the subinterval (UB,ng]. In the former case,
we have VE—VP <5, and in the latter case, we have V* > U
Hence the result holds for j=1.

By the induction hypothesis, we assume that the result holds for
any I=1,....,j—1, ie., for any eliminated state (7!, V4, V8)) e c®,
there exists a state (7, V", 9*)e 2® such that ¥* >4, and ¥* >
VE_15 if P° falls within the same subinterval of [0, U] as V® and
PP > UP if P falls within the interval (U®,>> wf]. We now prove
that the result also holds for I=j, i.e, for any eliminated state
(FIA VB e 29, there exists a state (7,7, 7% e 2? such that
V>, and V? =18 s if V° falls within the same subinterval of
[0,U] as VB and V° > UP if ° falls within the interval (U5, wh).

(2015), http://dx.doi.org/10.1016/j.0mega.2015.09.010

Please cite this article as: Yin Y, et al. Just-in-time scheduling with two competing agents on unrelated parallel machines. Omega

http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

Y. Yin et al. / Omega ® (AREN) NRE-REN 7

Consider an arbitrary state (7,1, VF)e 9. While imple-
menting Algorithm SSDP, the state (F =k, ... ki1 ki1, km)
VA VB is constructed either from the state (]-‘Sz(k], ki1, h,
kiiq, ...,km),VA—wj,VB) (case 1), or from the sate (F° = (kq, ..., ki_1
ki1, o km), VA VB —wy) (case 2), where s =max (b, kq, ... ki1,
Kii1,...,km} <j. Next, we only show that the result holds for case 1.
The proof of case 2 is analogous.

The case where (F =(kq,....ki_1.j, ki1, ..., km), VA, VE) is con-
structed from the state (F* = (kq,....ki_ 1,0, ki 1, ..., km), VA—WI,VB)
implies that J; is an A-job and dj+p; <d;. Then accordmg to the
1nduct10n assumptlon there exists a state (F°, P ,V) e 2 such that
V> VA—Wj and V° > VB —s5. Since J; is an A-job and d, +pj; <d,
during the implementation of the [Generation] procedure, state (7,
A +WJ,V) is constructed. It follows directly from the ehmmatlon
process in SSAA(U®) that there exists a state (H, P Y) such that "
>VA+WJ >V —wj+w; = and V° > V" PV (s+1)6>vB
joif V falls within the same subinterval of [0, U] as V° and 7° > U5
if 7* falls within the interval (UB, > wE]. This completes the proof.o

Theorem 4.6. For any 0<e<1 and a Pareto-optimal solution
(UA, UB), Algorithm SSAA(U®) finds in O(m2n™+2/g) time a solution
pair V", P°) such that 7" > UA and V° > (1 - e)UP.

Proof. Let (#,V4,15) be a state corresponding to the Pareto-
optimal solution (U#, UB), i.e., VA =U" and VP = UE. If it has been
eliminated during the implementation of Algorlthm SSAA(UB),
there exists a non- ehmmated state (77, Vs V)eﬁ such that
V> WM=UA and ¥ 2VB—]52VB—n5:UB—8UB:(1—8)UB if
f/B falls within the same subinterval of [0,U®] as V& and V° > U?
> (1—e)U? if V* falls within the interval (U5, S"wh), as required.
Now we turn to the time complexity of Algorithm SSAA(U®). For
each iteration in Algorithm SSAA(U?), the whole value interval [0,
g . WP is divided into [n/s]+l subintervals. By the proof of
Theorem 4.3, we have |2 <m?n™-1([n/e]+1) and the time
complexity of Algorithm SSAA(U®) is indeed O(m2n"+2/g).0

5. Concluding remarks

In this paper we consider the just-in-time scheduling involving
two agents that compete for the usage of m unrelated parallel
machines, where one agent wants to maximize the weighted number
of its just-in-time jobs, while the other agent wants to maximize its
maximum gain or to maximize the weighted number of its just-in-
time jobs. The goal is to find Pareto-optimal solutions for each com-
bination of the two agents' criteria. When the number of machines is
part of the problem instance, both the addressed problems are NP-
hard in the strong sense. When the number of machines is fixed, we
show that the Rm| (3 _ p» wh, max;s . g#W5) problem can be solved
in O(m?nj*'ng) time, while the Rm||(Cp Wi, Yo pW}) pro-
blem is A/P-hard. For the latter problem, we present a pseudo-
polynomial-time algorithm that runs in O(m2n™+! min{W*, W5}
time, implying that the problem is A’P-hard in the ordinary sense, and
then convert the algorithm into an FPTAS for finding a Pareto optimal
solution.

For future research, it would be interesting to find out whether
or not a fast polynomial-time algorithm exists for the problems on
m parallel identical machines and to consider our problems in
other machine settings involving multiple agents.

Acknowledgements

We thank the Editor, an Associate Editor, and anonymous referees for
their many helpful comments on earlier versions of our paper. This
paper was supported in part by the National Natural Science Foundation
of China (Nos. 11561036, 71501024, 71301022); and in part by the
Ministry of Science Technology (MOST) of Taiwan under grant numbers
NSC 102-2221-E-035-070-MY3 and MOST 103-2410-H-035-022-MY2. T.
CE. Cheng was also supported in part by The Hong Kong Polytechnic
University under the Fung Yiu King - Wing Hang Bank Endowed Pro-
fessorship in Business Administration.

References

[1] Agnetis A, Mirchandani P, Pacciarelli D, Pacifici A. Scheduling problems with
two competing agents. Operations Research 2004;42(2):229-242.

[2] Arkin EM, Silverberg EL. Scheduling jobs with fixed start and finish times.
Discrete Applied Mathematics 1987;18:1-8.

[3] Baker KR, Smith JC. A multiple-criterion model for machine scheduling.
Journal of Scheduling 2003;6:7-16.

[5] Bouzina KI, Emmonss H. Interval scheduling on identical machines. Journal of
Global Optimization 1996;9:379-393.

[6] Carlisle MC, Lloyd EL. On the k-coloring of intervals. Discrete Applied
Mathematics 1995;59:225-235.

[7] Cepek O, Sung SC. A quadratic time algorithm to maximize the number of just-
in-time jobs on identical parallel machines. Computers and Operations
Research 2005;32:3265-3271.

[8] Choi BC, Yoon SH. Maximizing the weighted number of just-in-time jobs in
flow shop scheduling. Journal of Scheduling 2007;10:237-243.

[9] Defraeye M, Nieuwenhuyse IV. Staffing and scheduling under nonstationary
demand for service: a literature review. Omega 2016;58:4-25.

[10] Elalouf A, Levner E, Tang H. An improved FPTAS for maximizing the weighted
number of just-in-time jobs in a two-machine flow shop problem. Journal of
Scheduling 2013;16:429-435.

[11] Frank A. On chains and antichains families of a partially ordered set. Journal of
Combinatorial Theory Series B 1980;29:176-184.

[12] Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals
of Discrete Mathematics 1979;5:287-326.

[13] Hsiao JY, Tang CY, Chang RS. An efficient algorithm for finding a maximum weight 2-
independent set of interval graphs. Information Processing Letters 1992;43:229-235.

[14] Kovalyov MY, Ng CT, Cheng TCE. Fixed interval scheduling: models, applica-
tions, computational complexity and algorithms. European Journal of Opera-
tional Research 2007;178:331-342.

[15] Lann A, Mosheiov G. Single machine scheduling to minimize the number of
early and tardy jobs. Computers and Operations Research 1996;23:765-781.

[16] Leyvand Y, Shabtay D, Steiner G, Yedidsion L. Just-in-time scheduling with
controllable processing times on parallel machines. Journal of Combining
Optimization 2010;19:347-368.

[17] Perez-Gonzalez P, Framinan JM. A common framework and taxonomy for multi-
criteria scheduling problem with interfering and competing jobs: multi-agent
scheduling problems. European Journal of Operational Research 2014;235:1-16.

[18] Sahni S. Algorithms for scheduling independent tasks. Journal of the ACM
1976;23(1):116-127.

[19] Shabtay D. The just-in-time scheduling problem in a flowshop scheduling
system. European Journal of Operational Research 2012;216(3):521-532.

[20] Shabtay D, Bensoussan Y. Maximizing the weighted number of just-in-time jobs in
several two-machine scheduling systems. Journal of Scheduling 2012;15(1):39-47.

[21] Shabtay D, Bensoussan Y, Kaspi M. A bicriteria approach to maximize the
weighted number of just-in-time jobs and to minimize the total resource
consumption cost in a two-machine flow-shop scheduling system. Interna-
tional Journal of Production Economics 2012;136:67-74.

[23] Sung SC, Vlach M. Maximizing weighted number of just-in-time jobs on
unrelated parallel machines. Journal of Scheduling 2005;8:453-460.

[24] Sterna M. A survey of scheduling problems with late work criteria. Omega
2011;39:120-129.

[25] T'kindt V, Billaut JC. Multicriteria scheduling: theory, models and algorithms.
2nd ed.. Berlin: Springer; 2006.

[26] Yannakakis M, Gavril F. The maximum k-colorable subgraph problem for
chordal graphs. Information Processing Letters 1987;24:133-137.

[27] Yeniseya MM, Yagmahanb B. Multi-objective permutation flow shop sche-
duling problem: literature review, classification and current trends. Omega
2014;45:119-135.

[28] Yin Y, Cheng TCE, Hsu C-J, Wu C-C. Single-machine batch delivery scheduling
with an assignable common due window. Omega 2013;41:216-225.

(2015), http://dx.doi.org/10.1016/j.0mega.2015.09.010

Please cite this article as: Yin Y, et al. Just-in-time scheduling with two competing agents on unrelated parallel machines. Omega

http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref1
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref1
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref2
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref2
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref3
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref3
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref5
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref5
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref6
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref6
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref7
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref7
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref7
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref8
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref8
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref9
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref9
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref10
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref10
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref10
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref11
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref11
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref12
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref12
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref12
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref13
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref13
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref14
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref14
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref14
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref15
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref15
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref16
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref16
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref16
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref17
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref17
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref17
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref18
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref18
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref19
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref19
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref20
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref20
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref21
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref21
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref21
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref21
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref23
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref23
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref24
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref24
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref25
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref25
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref26
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref26
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref27
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref27
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref27
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref28
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref28
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

	Just-in-time scheduling with two competing agents on unrelated parallel machines
	Introduction
	Problem formulation
	The Rm||(sumJkAisinEAwkA,maxJkBisinEBwkB) problem
	The Rm||(sumJkAisinEAwkA,sumJkBisinEBwkB) problem
	Complexity analysis
	A pseudo-polynomial-time algorithm
	A fully polynomial-time approximation scheme (FPTAS)

	Concluding remarks
	Acknowledgements
	References

