
Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎
Contents lists available at ScienceDirect
Omega
http://d
0305-04

☆This
n Corr
E-m

wangdu

Pleas
(2015
journal homepage: www.elsevier.com/locate/omega
Just-in-time scheduling with two competing agents on unrelated
parallel machines$

Yunqiang Yin a,n, Shuenn-Ren Cheng b, T.C.E. Cheng c, Du-Juan Wang d,n, Chin-Chia Wu e

a Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China
b Graduate Institute of Business Administration, Cheng Shiu University, Kaohsiung County, Taiwan
c Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
d School of Management Science and Engineering, Dalian University of Technology, Dalian 116023, China
e Department of Statistics, Feng Chia University, Taichung, Taiwan
a r t i c l e i n f o

Article history:
Received 1 August 2014
Accepted 3 September 2015

Keywords:
Scheduling
Two agents
Unrelated parallel machines
Just-in-time scheduling
FPTAS
x.doi.org/10.1016/j.omega.2015.09.010
83/& 2015 Elsevier Ltd. All rights reserved.

manuscript was processed by Associate Edito
esponding authors.
ail addresses: yinyunqiang@126.com (Y. Yin),
juan@dlut.edu.cn (D.-J. Wang).

e cite this article as: Yin Y, et al. Ju
), http://dx.doi.org/10.1016/j.omega.
a b s t r a c t

This paper considers two-agent just-in-time scheduling where agents A and B have to share m unrelated
parallel machines for processing their jobs. The objective of agent A is to maximize the weighted number
of its just-in-time jobs that are completed exactly on their due dates, while the objective of agent B is
either to maximize its maximum gain (income) from its just-in-time jobs or to maximize the weighted
number of its just-in-time jobs. We provide a bicriterion analysis of the problem, which seek to find the
Pareto-optimal solutions for each combination of the two agents' criteria. When the number of machines
is part of the problem instance, both the addressed problems are NP-hard in the strong sense. When the
number of machines is fixed, we show that the problem of maximizing agent A's weighted number of
just-in-time jobs while maximizing agent B's maximum gain can be solved in polynomial time, whereas
the problem of maximizing both agents' weighted numbers of just-in-time jobs is NP-hard. For the latter
problem, we also provide a pseudo-polynomial-time solution algorithm, establishing that it is NP-hard
in the ordinary sense, and show that it admits a fully polynomial-time approximation scheme (FPTAS) for
finding an approximate Pareto solution.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In classical just-in-time scheduling, the objective is to minimize
the earliness–tardiness cost of completing jobs with respect to
their due dates. Most papers in this area consider the objective of
minimizing the sum of the earliness and tardiness penalties (see,
e.g., [9,24,27,28]). In some situations, the earliness and tardiness
penalties depend on whether the jobs are early or tardy, rather
than how early or how late they are. Lann and Mosheiov [15]
introduce a new objective of minimizing the weighted number of
jobs that are early or tardy, which corresponds to maximizing the
weighted number of jobs that are completed exactly on their due
dates. We refer to any scheduling problem with the objective of
maximizing the weighted number of just-in-time jobs as a just-in-
time scheduling problem.

Lann and Mosheiov's study has recently received growing
attention from the scheduling research community and just-in-
r Tkindt

st-in-time scheduling with
2015.09.010i
time scheduling has been studied in various machine settings. For
the single-machine case, Lann and Mosheiov [15] show that the
just-in-time scheduling problem is solvable in Oðn2Þ time, where n
is the number of jobs. For the two-machine flowshop case, Choi
and Yoon [8] prove that it is NP-hard, but they leave an open
question whether the problem is NP-hard in the ordinary sense or
in the strong sense. In addition, they show that the unweighted
version of the problem can be solved in Oðn4Þ time for the two
parallel-machine case and is NP-hard in the strong sense for the
three parallel-machine case. Shabtay and Bensoussan [20] show
that the open problem left in Choi and Yoon [8] is NP-hard in the
ordinary sense by developing a pseudo-polynomial-time algo-
rithm and a fully polynomial-time approximation scheme (FPTAS)
for the problem. Elalouf et al. [10] suggest another pseudo-
polynomial-time algorithm for the same problem, which can be
converted into a new FPTAS that reduces Shabtay and Bensous-
san's complexity result. Shabtay [19] studies the just-in-time
problem in the flowshop setting under four different scenarios.
For each scenario, he either presents a polynomial-time algorithm
or develops an efficient pseudo-polynomial-time algorithm.
Shabtay et al. [21] address a two-machine flowshop scheduling
problem where the job processing time is controllable by varying
the allocation of a resource to the job operations. They adopt a
two competing agents on unrelated parallel machines. Omega

www.sciencedirect.com/science/journal/03050483
www.elsevier.com/locate/omega
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
mailto:wangdujuan@dlut.edu.cn
mailto:cchwu@mail.fcu.edu.tw
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
bicriterion analysis of the problem in which the first objective is to
maximize the weighted number of just-in-time jobs while the
second objective is to minimize the total resource consumption
cost. They develop a pseudo-polynomial-time algorithm for the
problem and convert it into a two-dimensional FPTAS. In the
parallel-machine setting, Carlisle and Lloyd [6] consider the
unweighted version of the just-in-time scheduling problem on m
identical parallel machines and show that the problem can be
solved in Oðn log nÞ time. Other solution algorithms for the same
problem can be found in C̆epek and Sung [7], Frank [11], Yanna-
kakis and Gavril [26], and Hsiao et al. [13]. Arkin and Silverberg [2]
develop an Oðn2 log nÞ time solution algorithm for the weighted
case on m identical parallel machines by converting the problem
into a minimum cost flow problem. Bouzina and Emmonss [5], and
Carlisle and Lloyd [6] present more efficient minimum cost flow
algorithms with an Oðmn log nÞ running time for the same pro-
blem by modelling it on a network that has only O(n) arcs. Kova-
lyov et al. [14] show that the just-in-time scheduling problem on
unrelated parallel machines is equivalent to that of maximizing
the weighted m legally colourable vertices in a given interval
graph. Both Arkin and Silverberg [2], and Sung and Vlach [23]
prove that the just-in-time scheduling problem on m unrelated
parallel machines can be solved in Oðmnmþ1Þ time, which is
polynomial when m is fixed. However, when m is arbitrary, they
show that the problem becomes NP-hard in the strong sense.
Leyvand et al. [16] consider just-in-time scheduling on a set of m
machines with controllable processing times, where the objectives
are to maximize the weighted number of just-in-time jobs and to
minimize the total resource allocation cost. They consider four
different models for treating the two criteria. For each model, they
either provide a polynomial-time solution algorithm or develop a
pseudo-polynomial-time solution algorithm and an FPTAS.

All the above papers focus on the traditional case of just-in-time
scheduling with a single agent. In recent years researchers have
increasingly considered scheduling with multiple competing
agents, which was initially investigated by Agnetis et al. [1] and
Baker and Smith [3]. In this case, multiple agents need to process
their own sets of jobs, competing for the use of a common resource.
Each agent wants to optimize a certain objective function, which
depends on the completion times of its jobs only. Variants of the
scheduling problem with multiple agents have found many appli-
cations in areas such as manufacturing, supply chain management,
telecommunication services, project scheduling, etc. A recent sur-
vey of multi-agent scheduling research is given in Perez–Gonzalez
and Framinan [17]. With a view to modelling a realistic production
system, this paper combines the two sub-fields into a unified fra-
mework. Specifically, we focus on the innovative just-in-time
scheduling model on unrelated parallel machines in the two-
agent setting. The purpose of this paper is twofold. One is to
investigate this unexplored scheduling model. Another is to ascer-
tain the computational complexity status and provide solution
procedures, if viable, for the problems under consideration.

The rest of the paper is organized as follows: In Section 2 we
formulate the problem and present a common property of the
optimal schedules for the two problems under consideration. In
Section 3 we show that the Pareto-optimization problem with a
fixed number of machines where agent A's objective is to max-
imize the weighted number of its just-in-time jobs while agent B's
objective is to maximize its maximum gain can be solved in
polynomial time. In Section 4 we show that the Pareto-
optimization problem with a fixed number of machines where
both agents' objectives are to maximize their weighted numbers of
just-in-time jobs is NP-hard in the ordinary sense by developing a
pseudo-polynomial-time algorithm for the problem and we con-
vert the algorithm into an FPTAS. In the last section we provide
some concluding remarks and suggest topics for future research.
Please cite this article as: Yin Y, et al. Just-in-time scheduling with
(2015), http://dx.doi.org/10.1016/j.omega.2015.09.010i
2. Problem formulation

We formally describe the problem under study as follows:
There are two competing agents (called agent A and agent B,
respectively) that have to schedule two families of independent
and non-preemptive jobs on m unrelated parallel machines
M1;M2;…;Mm. Agent A has to perform the job set
JA ¼ fJA1 ; JA2 ;…; JAnA

g, while agent B has to perform the job set
JB ¼ fJB1; JB2;…; JBnB g. We call the jobs of agents A and B the A-jobs and
B-jobs, respectively. All the jobs are available for processing from
time zero onwards. Let XAfA;Bg and let n¼ nAþnB denote the
total number of jobs. Denote dj

X as the due date of job Jj
X, wj

X as the
gain (income) from completing job Jj

X just-in-time (i.e., exactly at
time dj

X), and pij
X as the processing time of job Jj

X on machine Mi

for i¼ 1;…;m and j¼ 1;…;nX . The jobs that are completed exactly
on their due dates in some schedule are called just-in-time jobs.
We assume, without loss of generality, that all the dj

X, wj
X, and pij

X

values are positive integers, and let WA ¼PJAk A JAw
A
k and

WB ¼PJBk A JBw
B
k .

For any given solution, let Ei be the set of just-in-time jobs
allocated to machine Mi for i¼ 1;…;m, with E¼ E1 [E2 [⋯ [Em,
and let T ¼ ðJA [JBÞ⧹E be the set of the other jobs. A partition of set
JA [JB into two disjointed subsets E and T is considered to be a
feasible partition (or a feasible schedule) if it is possible to sche-
dule the jobs belonging to set E on the m unrelated parallel
machines such that they are all completed just in time. Following
Lann and Mosheiov [15], in a feasible schedule, it is assumed that
the jobs in T need not be executed, which means that they are
rejected. We also denote by EA and EB the sets of just-in-time A-
jobs and B-jobs, respectively.

Each agent wants to optimize a certain objective function
depending on the completion times of its jobs only. Specifically,
agent A wants to maximize QAðSÞ ¼PJAk AEAw

A
k (the weighted num-

ber of just-in-time A-jobs, i.e., the total gain from completing the jobs
in set EA just-in -time), while agent B wants to maximize QBðSÞ ¼
maxJBk AEBw

B
k (the maximum gain from completing the jobs in set EB

just-in-time) or to maximize QBðSÞ ¼PJBk AEBw
B
k (the weighted

number of just-in-time B-jobs, i.e., the total gain from completing the
jobs in set EB just-in-time). Since increasing the objective value of
agent A will decrease the objective value of agent B, and vice versa,
we need to consider the trade-off between the two objective func-
tions carefully to achieve the best scheduling outcome. For such kind
of bicriterion problem, we focus on finding the set of all the Pareto-
optimal schedules (points) ðQA;QBÞ, where a schedule S with QA ¼
QAðSÞ and QB ¼QBðSÞ is called Pareto-optimal (or efficient) if there
does not exist another schedule S0 such that QAðS0ÞZQAðSÞ and QB

ðS0ÞZQBðSÞ with at least one of these inequalities being strict. Using
the three-field notation proposed by Graham et al. [12] and extended
to multicriteria scheduling problems by T'kindt and Billaut [25], we
denote the problems under consideration by Rmj j ðPJAk AEAw

A
k ;

maxJBk AEBw
B
k Þ and Rmj j ðPJAk AEAw

A
k ;
P

JBk AEBw
B
k Þ, respectively, when

the number of machines m is fixed. Note that the criterion in the
classical three-field notation is to be minimized, but in this paper the
criterion is to be maximized.

Sung and Vlach [23] have shown that the just-in-time sche-
duling problem on unrelated parallel machine is NP-hard in the
strong sense if the number of machines is part of the problem
instance. In fact, if the due dates of the B-jobs are made very large,
our problems reduce to their problem, so our problems are NP-
hard in the strong sense when the number of machines is part of
the problem instance, too. Hence, in what follows, we focus only
on the case where the number of the machines is fixed.

The following lemma provides an easy-to-prove property for
the problems under consideration.
two competing agents on unrelated parallel machines. Omega

http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
Lemma 2.1. There exists an optimal solution in which the jobs in the
just-in-time set E are sequenced in the earliest due-date (EDD) order.

Let JXi½j�, i¼ 1;…;m; j¼ 1;…; jEi j , be the jth just-in-time job on
machine Mi, where X¼A means that the jth job belongs to agent A
while X¼B means that the jth job belongs to agent B. The following
inequality provides a necessary condition for including job JXi½j� in Ei
right after job JYi½j�1�:

pXi½j�rdX½j� �dY½j�1�; ð1Þ

where dXi½0� ¼ 0 and X;YAfA;Bg, because otherwise job JXi½j� cannot be
completed just-in-time on machine Mi, given that job JYi½j�1� is com-
pleted just-in-time on the same machine. Without loss of generality,
we may assume that mini ¼ 1;…;mpZijrdZj for j¼ 1;…;nZ , where
ZAfA;Bg. Otherwise, job Jj

Z cannot be completed just-in-time in any
schedule, so it can be eliminated from the problem.
Ste
Ste
3. The Rmj j ðPJAk AEAw
A
k ;maxJBk AEBw

B
k Þ problem

In this section we consider the Rmj j ðPJAk AEAw
A
k ;maxJBk AEBw

B
k Þ

problem, in which agent A wants to maximize the weighted
number of its just-in-time jobs while agent B wants to maximize
its maximum gain.

It is evident that there exists an optimal schedule for the Rmj
j ðPJAk AEAw

A
k ;maxJBk AEBw

B
k Þ problem in which there is exactly one

just-in-time B-job. However, we do not know which B-job is
completed just-in-time and on which machine it is processed in
the optimal schedule. So we need to enumerate all the possible
cases. For each assigned just-in-time B-job Jh

B, h¼ 1;…;nB, on
some machine Mt, t ¼ 1;…;m, there is an unavailability interval
½dBh�pBth; d

B
hÞ on machine Mt, so the only remaining question is how

to schedule the A-jobs on the m unrelated parallel machines in the
EDD order. However, both the algorithms developed in Arkin and
Silverberg [2], and Sung and Vlach [23] cannot be applied for this
case. In what follows, we design a dynamic programming (DP)
algorithm to solve it. Temporarily assume, in this section, that the
jobs in JA are re-indexed in the EDD order.

Let ðFðjÞ;VAÞðt;hÞ be a state corresponding to a feasible partial
schedule for the first j jobs fJA1 ;…; JAj g, given that the sole just-in-
time B-job Jh

B is assigned to machine Mt in the final optimal
schedule, in which the following information is recorded:

� FðjÞ ¼ ðk1;…; kmÞ: ki (0rkir j) denotes that the last just-in-time
A-job on machine Mi is J

A
ki
with kpakq if kpa0 and paq (i.e., no

job can be processed on two different machines), and ki¼0
meaning that no job is scheduled on machine Mi in the partial
schedule;

� VA: the maximum weighted number of just-in-time A-jobs in
the partial schedule.

Before describing the DP algorithm in detail, let us first develop
an elimination property.

Lemma 3.1. For any two states ðFðjÞ;VA
1Þðt;hÞ and ðFðjÞ;VA

2Þðt;hÞ with
VA
1ZVA

2 , the second state can be eliminated.

Proof. Let S1 and S2 be two partial schedules corresponding to
the states ðFðjÞ;VA

1Þðt;hÞ and ðFðjÞ;VA
2Þðt;hÞ, respectively. And let N¼

fJAk1 ; J
A
k2 ;…; JAkl g be a set of just-in-time A-jobs that are added to

the partial schedule S2 with kl4⋯4k24k14 j so as to create a
feasible schedule bS2. In the resulting feasible schedule bS2, the
objective value of agent A is given as follows:

QAðbS2Þ ¼ VA
2þ

X
JAkr AN

wkr :
Please cite this article as: Yin Y, et al. Just-in-time scheduling with
(2015), http://dx.doi.org/10.1016/j.omega.2015.09.010i
Since the first coordinates in the two states remain the same,
set N can also be added to the partial schedule S1 to form a
feasible schedule bS1. In the resulting feasible schedule bS1, the
objective value of agent A is given as follows:

QAðbS1Þ ¼ VA
1þ

X
JAkr AN

wkr :

It follows from VA
1ZVA

2 that QAðbS1ÞZQAðbS2Þ. Therefore, the
partial schedule S1 dominates S2, and the result follows. □

Our algorithm uses Lemmas 2.1 and 3.1 to solve the problem in
pseudo-polynomial time by finding the entire set of non-
eliminated (partial) solutions. This is achieved by dynamically
updating a set Lðt;h;jÞ of solution states ðFðjÞ;VAÞðt;hÞ from Lðt;h;j�1Þ for
t ¼ 1;…;m, h¼ 1;…;nB, and j¼ 1;…;nA. We initialize the algo-
rithm by setting ðFð0Þ ¼ ð0;…;0Þ;VAÞðt;hÞ for t ¼ 1;…;m and
h¼ 1;…;nB. For any combination of t ¼ 1;…;m and h¼ 1;…;nB,
and each ðFðj�1Þ ¼ ðk1;…; kmÞ;VAÞðt;hÞALðt;h;j�1Þ, to generate a new
state in Lðt;h;jÞ, there are two choices to consider:

(1) Job Jj
A is not completed just-in-time, i.e., assign job Jj

A to set T.
In this case, include state ðFðjÞ ¼Fðj�1Þ;VAÞðt;hÞ in Lðt;h;jÞ;

(2) Job Jj
A is completed just-in-time on some machine Mi,

i¼ 1;…;m, i.e., include job Jj
A in set Ei after job JAki . Since there

is an unavailability interval ½dBh�pBth; d
B
hÞ on machine Mt, there

are two subcases to consider:
Subcase a: If iat and dAki þpAijrdAj , then include state ðFðjÞ ¼
ðk1;…; ki�1; j; kiþ1;…; kmÞ;VAþwA

j Þ in Lðt;h;jÞ;
Subcase b: If i¼t and one of the following assertions holds:

� job JBh is completed just-in-time prior to JAki on machine Mi, i.e.,
dBhþpAiki rdAki and dAki þpAijrdAj ,� job JjA can be completed just-in-time prior to JBh on machine
Mi, i.e., d

A
ki þpAijrdAj and dAj þpBihrdBh ,� job JjAcan be completed just-in-time immediately after JBh on

machine Mi, implying that JAki is a just-in-time job right prior
to JBh, i.e., d

A
ki
þpBihrdBh and dBhþpAijrdAj ,

then include state ðFðjÞ ¼ ðk1;…; ki�1; j; kiþ1;…; kmÞ;VAþwA
j Þ in

Lðt;h;jÞ.

Summing up the above analysis, we formally present a solution
algorithm for the Rmj j ðPJAk AEAw

A
k ;maxJBk AEBw

B
k Þ problem as

follows:
Sum–Max–DP Algorithm SMDP
two com
p 1. [
Pre-processing] Re-number the jobs in JA in the EDD order.

p 2. [
Initialization] Set Lðt;h;0Þ ¼ fðFð0Þ ¼ ð0;…;0Þ;0Þðt;hÞg for t ¼ 1

;…;m and h¼1,…,nB.

p 3. [
Generation] Generate Lðt;h;jÞ from Lðt;h;j�1Þ.
Ste
For h¼1 to nB do

For t¼1 to m do

For j¼1 to nA do
Set Lðt;h;jÞ ¼∅;
For each ðFðj�1Þ ¼ ðk1;…; kmÞ;VAÞðt;hÞALðt;h;j�1Þ do
=n Choice 1: Assigning job Jj
A to set Tn=
set Lðt;h;jÞ’Lðt;h;jÞ [fðFðjÞ ¼Fðj�1Þ;VAÞðt;hÞg;

=n Choice 2: Assigning job Jj

A to set E on some
machine n=
For i¼1 to m do
If iat and dAki þpAijrdAj , then
set

Lðt;h;jÞ’Lðt;h;jÞ [fðFðjÞ ¼ ðk1;…; ki�1; j; kiþ1;…; kmÞ;VAþwA
j Þg;
Endif
peting agents on unrelated parallel machines. Omega

http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
Ste

Please
(2015),
If i¼t and ((dBhþpAiki rdAki and dAki þpAijrdAj)

or (dAki þpAijrdAj and
dAj þpBihrdBh) or (d
A
ki þpBihrdBh and

dBhþpAijrdAj)), then
set Lðt;h;jÞ’Lðt;h;jÞ [fðFðjÞ ¼ ðk1;…; ki�1; j; kiþ 1;…
; kmÞ;VAþ wA

j Þg;

Endif
Endfor

Endfor
Endfor
[Elimination] =n Update set Lðt;h;jÞ n=
For any two states ðF ðt;h;jÞ; VA
1Þ and ðF ðt;h;jÞ;VA

2Þ with
VA
1ZVA

2 , keep the first
state in set Lðt;h;jÞ.

Endfor
Endfor

p 4. [
Result] For every UBA ½0;maxJBk A JBw

B
k �, an efficient solu-

tion is given by the pair ðVAn;wB
hn Þ ¼ ðVA;wB

k Þ with the

maximum VA value among all the states with wB
kZUB,

and the optimal schedule can be determined by tracing
back the solution from the end.
Theorem 3.2. Algorithm SMDP solves the Rmj j ðPJAk AEAw
A
k ;maxJBk AEB

wB
k Þ problem in Oðm2nmþ1

A nBÞ time.

Proof. For any given t,h, and j, job Jj
A can be appended in a max-

imum of mþ1 possible ways (assigning job Jj
A as the last just-in-

time job to some machine under the necessity condition, say Eq.
(1) or the set T) to the partial schedule represented by a state
ðF ðj�1Þ;VAÞðt;hÞALðt;h;j�1Þ. Thus, the algorithm generates all the
possible states ðF ðjÞ;VAÞ that correspond to the optimal partial
schedules constructed according to Lemma 2.1. By Lemma 3.1, we
keep only the dominated states in the elimination process. Thus,
Lðt;h;jÞ always keeps all the states that may potentially be com-
pleted in an optimal schedule generated in later iterations.
Therefore, after scheduling all the jobs, the optimal solution must
be the one with wB

kZUB and the largest VA value in some set
Lði;k;nÞ.

Now, we consider the time complexity of Algorithm SSDP. The
pre-processing step needs a sorting operation, that requires OðnA

log nAÞ time. In Step 3, for each state ðFðj�1Þ ¼ ðk1;…; kmÞ;VAÞðt;hÞ in
Lðt;h;j�1Þ, the upper bound on the number of values of the variables
are the following: F ðj�1Þ is bounded by nA

m and VA is bounded byP
JAk AEAw

A
k . Thus, for any combination of t and h, the total number

of different states in Lðt;h;j�1Þ is at most nA
m due to the elimination

rule. In each iteration j, there are at most mþ1 new states gen-
erated from each state in Lðt;h;j�1Þ. Thus, the number of new states
generated is at most ðmþ1Þnm

A . However, because of the elimina-
tion rule, the number of new states generated in Lðt;h;jÞ is always at
most Oðnm

A Þ after the elimination process. Since before the elim-
ination procedure, we have at most Oðmnm

A Þ states in Lðt;h;jÞ, the
elimination process can be executed in Oðmnm

A Þ time. Thus, the
construction of Lðt;h;jÞ requires Oðmnm

A Þ time. Note that t goes from
1 to m, h goes from 1 to nB while j goes from 1 to nA, so the
generation process can be implemented in Oðm2nmþ1

A nBÞ time. Step
4 requires Oðm2nm

A nBÞ time, hence the overall time complexity is
indeed Oðm2nmþ1

A nBÞ. □
cite this article as: Yin Y, et al. Just-in-time scheduling with
http://dx.doi.org/10.1016/j.omega.2015.09.010i
4. The Rmj j ðPJAk AEAw
A
k ;
P

JBk AEBw
B
k Þ problem

We now turn to the Rmj j ðPJAk AEAw
A
k ;
P

JBk AEBw
B
k Þ problem, in

which both agents want to maximize their weighted numbers of
just-in-time jobs. We first show that this problem is NP-hard,
followed by a pseudo-polynomial-time DP algorithm, establishing
that it is NP-hard in the ordinary sense, and then develop an
FPTAS for finding an approximate Pareto solution.

4.1. Complexity analysis

Here we show that the recognition version of the problem even
on a single machine is NP-hard by a transformation from the
NP-complete Even–Odd Partition problem.

Theorem 4.1. The recognition version of the 1j j ðPJAk AEAw
A
k ;
P

JBk AEB

wB
k Þ problem is NP-complete.

Proof. The proof is by reduction from the NP-complete Even–Odd
Partition problem, which is defined as follows:

Even–Odd Partition: Given a finite set H¼ fa1; a2;…; a2hg of
positive integers, where

P2h
j ¼ 1 aj ¼M, does there exist a partition

of H into two disjoint subsets, H1 and H2, such that
P

jAH1
aj ¼P

jAH2
aj and such that for each j, 1r jrh, H1 (and hence H2)

contains exactly one of fa2j�1; a2jg?
Given any instance of the Even–Odd Partition problem, we

construct the following instance of the recognition version of the
1j j ðPJAk AEAw

A
k ;
P

JBk AEBw
B
k Þ problem:

nA ¼ 2h;

pAj ¼Mþaj; j¼ 1;2;…;2h;

wA
j ¼Mþaj; j¼ 1;2;…;2h;

dAj ¼Mð2⌈j=2⌉�1Þþaj; j¼ 1;2;…;2h;

UA ¼ ðhþ1=2ÞM;

nB ¼ 2h;

pBj ¼M�aj; j¼ 1;2;…;2h;

wB
j ¼M�aj; j¼ 1;2;…;2h;

dBj ¼ 2M⌈j=2⌉; j¼ 1;2;…;2h;

UB ¼ ðh�1=2ÞM:□

Assume first that the given instance of the Even–Odd Partition
problem has a solution, and let us prove that there exists a feasible
solution for the recognition version of the 1j j ðPJAk AEAw

A
k ;
P

JBk AEB

wB
k Þ problem such that

P
JAk AEAw

A
k ZUA and

P
JBk AEBw

B
kZUB. Let EX

be the set of X-jobs that corresponds to the set H1 of the solution
for the Even–Odd Partition instance, and let TX be the set of all the
other X-jobs, where XAfA;Bg. Consider a schedule in which the
jobs in set EX are assigned to be completed just-in-time. Then the
total gain of the A-jobs for this schedule isP

JAk AEAw
A
k ¼ hMþPJAk AEAak ¼ ðhþ1=2ÞM¼ UA, while the total gain

of the B-jobs is
P

JBk AEBw
B
k ¼ hM�PJBk AEBak ¼ ðh�1=2ÞM ¼UB.

Therefore, the given schedule is a feasible solution for the recog-
nition version of the 1j j ðPJAk AEAw

A
k ;
P

JBk AEBw
B
k Þ problem.

Conversely, we show that if there exists a schedule for the
given instance of the recognition version of the 1j j ðPJAk AEAw

A
k ;P

JBk AEBw
B
k Þ problem such that

P
JAk AEAw

A
k ZUA and

P
JBk AEBw

B
kZUB,

then the Even–Odd Partition problem has a solution. For this
schedule, the following assertions hold:

(1) jEB j ¼ h. Since there are exactly h different due dates of the
B-jobs and two jobs cannot be completed at the same time, we
have jEB jrh. Moreover,

P
JBk AEBw

B
k ¼

P
JBk AEB ðM�akÞ ¼MjEB j

�PJBk AEBakoMjEB j . On the other hand,
P

JBk AEBw
B
k ¼MjEB j �P

JBk AEBakZUB ¼ ðh�1=2ÞM. It follows that jEB j4h�1=2. Thus,
two competing agents on unrelated parallel machines. Omega

http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

Ste

Ste

Ste

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5
we get h�1=2o jEB jrh, which implies that jEB j ¼ h since both
jEB j and h are integers.

(2) EA ¼ EB. Analogous to the proof of (1), it is easy to see that
jEA j ¼ h. Thus, for each pair of A-jobs ðJA2j�1; J

A
2jÞ for j¼ 1;…;h,

there is exactly one job belonging to EA. Now, for each JBj AEB,
assume that j is an even number (the case where “j is an odd
number” can be analogously analyzed), then the starting time of JjB

is jM�Mþaj ¼ ðj�1ÞMþaj ¼ dAj , implying that job Jj
A is completed

just-in-time, i.e., JAj AEA. It follows from jEA j ¼ jEB j that EA ¼ EB.
(3)

P
JAk AEAak ¼M=2. It follows from

P
JAk AEAw

A
k ¼

P
JAk AEA ðMþak

Þ ¼ hMþPJAk AEAakZUA ¼ ðhþ1=2ÞM that
P

JAk AEAakZM=2. Simi-
larly,

P
JBk AEBw

B
k ¼ hM�PJBk AEBakZUB ¼ ðh�1=2ÞM implies thatP

JBk AEBakrM=2. Thus,
P

JAk AEAak ¼M=2 since EA ¼ EB.
Summing up the above analysis, there is a solution for the

Even–Odd Partition problem.□

4.2. A pseudo-polynomial-time algorithm

In this subsection, we focus on the design of pseudo-
polynomial-time DP algorithm for the Rmj j ðPJAk AEAw

A
k ;
P

JBk AEBw
B
k Þ

problem.
The DP algorithm exploits the property stated in Lemma 2.1.

Hence, in what follows, we assume that the jobs in JA [JB are re-
numbered from J1 to Jn in the EDD order. We next give some
definitions that facilitate the design of our DP algorithm.

Let ðF j;VA;VBÞ be a state corresponding to a feasible partial
schedule for the first j jobs fJ1;…; Jjg, subject to the condition that
the last just-in-time job is job Jj, in which the following informa-
tion is recorded:

� F j ¼ ðk1;…; kl ¼ j;…; kmÞ: ki denotes that the last just-in-time
job completed on machine Mi is job Jki with kpakq if kpa0 and
paq (i.e., no job can be processed on two different machines),
where ki¼0 meaning that no job is scheduled on machine Mi in
the partial schedule, and j¼ kl ¼maxi ¼ 1;…;mki indicates that the
current last just-in-time job is job Jj;

� VA: the maximum weighted number of just-in-time A-jobs in
the partial schedule;

� VB: the maximum weighted number of just-in-time B-jobs in
the partial schedule.

The following lemma presents an elimination property, which
is necessary for justifying the DP algorithm.

Lemma 4.2. For any two states ðF j;VA
1 ;VB

1Þ and ðF j;VA
2 ;VB

2Þ with VA
1

ZVA
2 and VB

1ZVB
2, the second state can be eliminated.

Proof. The proof is analogous to that of Lemma 3.1.□

The DP algorithm uses Lemmas 2.1 and 4.3 to solve the problem
in pseudo-polynomial time by finding the entire set of non-
eliminated feasible (partial) solutions. This is achieved by dyna-
mically updating a set LðjÞ of solution states ðF j;VA;VBÞ from Lð0Þ;
Lð1Þ;…;Lðj�1Þ for j¼ 1;…;n. We initialize the algorithm by setting
Lð0Þ ¼ fðF 0;0;0Þg with F 0 ¼ ð0;…;0Þ. For any combination of l¼ 0;
1;…; j�1 and i¼ 1;…;m, and each ðF l ¼ ðk1;…; ki;…; kmÞ;
VA;VBÞÞALðlÞ, to construct LðjÞ, do the following:

� If Jj is an A-job and dki þpijrdj, then include state ðF j ¼ ðk1;…;

ki�1; j; kiþ1; kmÞ;VAþwj;VBÞ in LðjÞ;
� If Jj is a B-job and dki þpijrdj, then include state ðF j ¼ ðk1;…;

ki�1; j; kiþ1; kmÞ;VA;VBþwjÞ in LðjÞ.

The condition dki þpijrdj is necessary for including job Jj to set
E right after job Jki on machine Mi according to Eq. (1).

Summing up the above analysis, we formally present a solution
algorithm for the Rmj j ðPJAk AEAw

A
k ;
P

JBk AEBw
B
k Þ problem as follows:
Please cite this article as: Yin Y, et al. Just-in-time scheduling with
(2015), http://dx.doi.org/10.1016/j.omega.2015.09.010i
Sum–Sum–DP Algorithm SSDP
two comp
p 1.
 [Pre-processing] Re-number the jobs in JA [JB from J1
to Jn in the EDD order.
p 2.
 [Initialization] Set Lð0Þ ¼ fðF 0 ¼ ð0;…;0Þ;0;0Þg.

p 3.
 [Generation] Generate LðjÞ from Lð0Þ;Lð1Þ;…;Lðj�1Þ.
Ste
For j¼1 to n do

Set F j ¼∅;

For l¼0 to j�1 do
For each ðF l ¼ ðk1;…; kmÞ;VA;VBÞALðlÞ
For i¼1 to m do

=n Assigning job Jj to set E right after job Jki

on machine Mn

i =
If Jj is an A-job and dki þpijrdj, then

set

LðjÞ’LðjÞ [fðF j ¼ ðk1;…; ki�1; j; kiþ1; kmÞ;VAþwj;VBÞg;

Endif

If Jj is a B-job and dki þpijrdj, then

set

LðjÞ’LðjÞ [fðF j ¼ ðk1;…; ki�1; j; kiþ1; kmÞ;VA;VBþwjÞg;

Endif
Endfor

Endfor
Endfor

[Elimination] =n Update set LðjÞ n=
(1) For any two states ðF j;VA;VB
1Þ and ðF j;VA;VB

2Þ
with VB

1ZVB
2, keep the first
state in set LðjÞ;

(2) For any two states ðF j;VA

1 ;VBÞ and ðF j;VA
2 ;VBÞ

with VA
1ZVA

2, keep the first
state in set LðjÞ;

Endfor
p 4.
 [Result] For every UBA ½0;PJBk A JBw
B
k �, an efficient

solution is given by the pair ðVAn;VBnÞ ¼ ðVA;VBÞ with
the maximum VA value among all the states with
VBZUB, and the optimal schedule can be determined
by tracing back the solution from the end.
Theorem 4.3. Algorithm SSDP solves the Rmj j ðPJAk AEAw
A
k ;
P

JBk AEB

wB
k Þ problem in Oðm2nmþ1 minfWA;WBgÞ time.

Proof. For each iteration on j, job Jj can be appended in a max-
imum of m possible ways (assigning job Jj as the last just-in-time
job to a machine under the necessity condition, say Eq. (1)) to the
partial schedule represented by a state ðF l;VA;VBÞALðlÞ,
l¼ 0;1;…; j�1. Thus, the algorithm generates all the possible
states ðF j;VA;VBÞ corresponding to the optimal partial schedules
constructed according to Lemma 2.1. By Lemma 4.3, we keep only
the dominated states in the elimination process. Thus, LðjÞ always
keeps all the states that may potentially be completed in an
optimal schedule generated in later iterations. Therefore, after
scheduling all the jobs, the optimal solution must be the one with
VBZUB and the largest VA value in some set LðjÞ.

Now, we consider the time complexity of Algorithm SSDP. The
pre-processing step requires a sorting operation, which takes Oðn
log nÞ time. In Step 2, for each state ðF l;VA;VBÞALðj�1Þ, the upper
bound on the number of values of the variables are the following:
F l is bounded by mnm�1 (there are at most m possible ways to
assign job Jj as the last just-in-time job to a machine under the
necessity condition, and once the assignment of job Jj is determined,
eting agents on unrelated parallel machines. Omega

http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

Ste

Ste

Ste

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
there are at most nm�1 possible vectors ðk1;…; ki�1; j; kiþ1; km), and
VA and VB have at most WA and WB possible values, respectively.
Due to the elimination rules, min fWA;WBg is an upper bound on
the number of different combinations of VA and VB. In each itera-
tion, there are at most m new states generated from each state in
Lðj�1Þ. Moreover, l takes from the values 0 to j�1. Thus, the con-
struction of LðkÞ requires Oðm2nm min fWA;WBgÞ time, which is also
the time required for the elimination process. After n iterations, the
generation process can be implemented in Oðm2nmþ1minfWA;WBgÞ
time. Step 4 requires Oðm2nm minfWA;WBgÞ time, hence the overall
time complexity is indeed Oðm2nmþ1 minfWA;WBgÞ. □

Note that Algorithm SSDP can also be used to solve the Rmj j
ðPJAk AEAw

A
k ; jEB j Þ problem, which can be regarded as a special case

of the Rmj j ðPJAk AEAw
A
k ;
P

JBk AEBw
B
k Þ problem, where jEB j denotes

the number of just-in-time B-jobs. In fact, we only need to let VB

denote the number of just-in-time B-jobs in the partial schedule.
Hence, we obtain the following result.

Corollary 4.4. The Rmj j ðPJAk AEAw
A
k ; jEB j Þ problem can be solved in

Oðm2nmþ1nBÞ time.

4.3. A fully polynomial-time approximation scheme (FPTAS)

In this subsection we show how to convert SSDP into an FPTAS
for finding an approximate Pareto solution on the trade-off curve
by using the static interval partitioning approach originally pro-
posed by Sahni [18]. Recall that, for any 0oεo1, an algorithm Aε
is called an ε-approximation algorithm for a maximization problem
if we have Zr ð1�εÞZn for all the instances, where Z denotes the
value of the solution given by algorithm Aε and Zn is the value of
the optimal solution value [18]. A family of approximation algo-
rithms fAεg defines an FPTAS if, for any 0oεo1, Aε is an ε-
approximation algorithm that is polynomial in n and 1=ε.

For every UBA ½0;PJBk AEBw
B
k � and 0oεo1, let δ¼ εUB=n. We

split the interval ½0;UB� into ⌈n=ε⌉ equal subintervals of size δ as
follows:

0; δ
� �

; δ;2δ
� �

;…; ⌈
UB

δ
⌉�2

 !
δ; ⌈

UB

δ
⌉�1

 !
δ

" !
; ⌈

UB

δ
⌉�1

 !
δ;UB

" #
:

This partitions ½0;PwB
k � into a set of ⌈n=ε⌉þ1 subintervals.

In developing the approximation scheme, our Sum–Sum
Approximation Algorithm SSAAðUBÞ trims down every state set LðjÞ

in Algorithm SSDP to a relatively small state set ~LðjÞ
at the end of

the jth phase, j¼ 1;2;…;n. The resulting state set ~LðjÞ
satisfies the

following properties:
� ~LðjÞ
is a subset of LðjÞ;

� ~LðjÞ
contains at most mðj�1Þðj�2Þ…ðj�mþ1Þ states whose VB

values fall within the same subinterval;
� For every state ðF j;VA;VBÞ in the untrimmed state set LðjÞ, ~LðjÞ

contains some state ðF j; ~VA
; ~V BÞ such that ~V B

and VB fall within
in the same subinterval with ~VA

ZVA.

We give a formal description of the algorithm as follows:
Sum–Sum Approximation Algorithm SSAA ðUBÞ
Ste

Ste

Please cit
(2015), ht
p 1.
 [Pre-processing] Re-number the jobs in JA [JB

from J1 to Jn in the EDD order.

p 2.
 [Partitioning] Partition the interval ½0;PwB

k �
into ⌈n=ε⌉þ1 subintervals as follows:
e this article as: Yin Y, et al. Just-in-time scheduling with two comp
tp://dx.doi.org/10.1016/j.omega.2015.09.010i
0; δ
� �

; δ;2δ
� �

;…; ⌈
UB

δ
⌉�2

 !
δ; ⌈

UB

δ
⌉�1

 !
δ

" !
;

⌈
UB

δ
⌉�1

 !
δ;UB

" #
; ðUB;

X
wB

k �:
p 3.
 [Initialization] Set ~Lð0Þ ¼ fðF 0 ¼ ð0;…;0Þ;0;0Þg.

p 4.
 [Generation]: Generate ~LðjÞ

from ~Lð0Þ
; ~Lð1Þ

;…; ~Lðj�1Þ
.

For j¼1 to n do
Set ~LðjÞ ¼∅;

For l¼0 to j�1 do
For each ðF l ¼ ðk1;…; kmÞ;VA;VBÞA ~Lðl Þ
For i¼1 to m do

=n Assigning job Jj to set E right after job Jki

on machine Mn

i =
If Jj is an A-job and dki þpijrdj, then

set

~LðjÞ
’ ~LðjÞ [fðF j ¼ ðk1;…; ki�1; j; kiþ1; kmÞ;VAþwj;VBÞg;
Endif

If Jj is a B-job and dki þpijrdj, then

set

~LðjÞ
’ ~LðjÞ [fðF j ¼ ðk1;…; ki�1; j; kiþ1; kmÞ;VA;VBþwjÞg;
Endif

Endfor
Endfor

Endfor
[Elimination] =n Update set ~LðjÞ n=
For any two states ðF j;VA
1 ;VB

1Þ and ðF j;VA
2Þ in ~LðjÞ

,
where VB

1 and VB
2 are in the same subinterval with

VA
1ZVA

2, keep the first state in ~LðjÞ
.

Endfor

p 5.
 [Result]: The efficient solution is given by the pair ð

VAn;VBnÞ ¼ ðVA;VBÞ with the maximum VA value

among all the states with VBZ ð⌈n=ε⌉�1ÞεUB

n , and the
corresponding schedule can be determined by tracing
back the solution from the end.
Lemma 4.5. For any eliminated state ðF j;VA;VBÞALðjÞ, there exists a
state ðF j; ~VA

; ~V BÞA ~LðjÞ
such that ~VA

ZVA, and ~V B
ZVB� jδ if ~V B

falls
within the same subinterval of ½0;UB� as VB and ~V B

4UB if ~V B
falls

within the interval ðUB;
P

wB
k �.

Proof. We prove the lemma by induction on j. According to the
eliminating process of Algorithm SSAAðUBÞ, for every eliminated
state ðF 1;VA;VBÞALð1Þ, we keep an alternative state ðF 1; ~VA

; ~V BÞ,
where ~VA

ZVA, and ~V B
falls within the same subinterval of ½0;UB�

as VB or ~V B
falls in the subinterval ðUB;

P
wB

k �. In the former case,
we have VB� ~V Brδ, and in the latter case, we have ~V B

4UB.
Hence the result holds for j¼1.

By the induction hypothesis, we assume that the result holds for
any l¼ 1;…; j�1, i.e., for any eliminated state ðF l;VA;VBÞÞALðlÞ,
there exists a state ðF l; ~VA

; ~V BÞA ~LðlÞ
such that ~V A

ZVA, and ~V B
Z

VB� lδ if ~V B
falls within the same subinterval of ½0;UB� as VB and

~V B
4UB if ~V B

falls within the interval ðUB;
P

wB
k �. We now prove

that the result also holds for l¼ j, i.e., for any eliminated state
ðF j;VA;VBÞALðjÞ, there exists a state ðF j; ~VA

; ~V BÞA ~LðjÞ
such that

~VA
ZVA, and ~V B

ZVB� jδ if ~V B
falls within the same subinterval of

½0;UB� as VB and ~V B
4UB if ~V B

falls within the interval ðUB;
P

wB
k Þ.
eting agents on unrelated parallel machines. Omega

http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
Consider an arbitrary state ðF j;VA;VBÞALðjÞ. While imple-
menting Algorithm SSDP, the state ðF j ¼ ðk1;…; ki�1; j; kiþ1;…; kmÞ
;VA;VBÞ is constructed either from the state ðF s ¼ ðk1;…; ki�1;h;
kiþ1;…; kmÞ;VA�wj;VBÞ (case 1), or from the sate ðF s ¼ ðk1;…; ki�1

;h; kiþ1;…; kmÞ;VA;VB�wjÞ (case 2), where s¼max fh; k1; …; ki�1;

kiþ1;…; kmgo j. Next, we only show that the result holds for case 1.
The proof of case 2 is analogous.

The case where ðF j ¼ ðk1;…; ki�1; j; kiþ1;…; kmÞ;VA;VBÞ is con-
structed from the state ðF s ¼ ðk1;…; ki�1;h; kiþ1;…; kmÞ;VA�wj;VBÞ
implies that Jj is an A-job and dhþpijrdj. Then, according to the
induction assumption, there exists a state ðF s;V A

;V BÞA ~LðsÞ
such that

VA
ZVA�wj and V B

ZVB�sδ. Since Jj is an A-job and dhþpijrdj,
during the implementation of the [Generation] procedure, state ðF j;

VAþwj;V BÞ is constructed. It follows directly from the elimination
process in SSAAðUBÞ that there exists a state ðF j; ~VA

; ~V BÞ such that ~V A

ZVAþwjZVA�wjþwj ¼ VA and ~V B
ZV B�δZVB�ðsþ1ÞδZVB�

jδ if ~V B
falls within the same subinterval of ½0;UB� as V B and ~V B

4UB

if ~V B
falls within the interval ðUB;

P
wB

k �. This completes the proof.□

Theorem 4.6. For any 0oεo1 and a Pareto-optimal solution
ðUA;UBÞ, Algorithm SSAAðUBÞ finds in Oðm2nmþ2=εÞ time a solution
pair ð ~V A

; ~V BÞ such that ~V A
ZUA and ~V B

Z ð1�εÞUB.

Proof. Let ðF j;VA;VBÞ be a state corresponding to the Pareto-
optimal solution ðUA;UBÞ, i.e., VA ¼UA and VB ¼UB. If it has been
eliminated during the implementation of Algorithm SSAAðUBÞ,
there exists a non-eliminated state ðF j; ~V A

; ~V BÞA ~LðjÞ
such that

~VA
ZVA ¼UA, and ~V B

ZVB� jδZVB�nδ¼ UB�εUB ¼ ð1�εÞUB if
~V B

falls within the same subinterval of ½0;UB� as VB and ~V B
4UB

Z ð1�εÞUB if ~V B
falls within the interval ðUB;

P
wB

k �, as required.
Now we turn to the time complexity of Algorithm SSAAðUBÞ. For

each iteration in Algorithm SSAAðUBÞ, the whole value interval ½0;P
JBk AEBw

B
k � is divided into ⌈n=ε⌉þ1 subintervals. By the proof of

Theorem 4.3, we have j ~LðjÞ jrm2nm�1ð⌈n=ε⌉þ1Þ and the time
complexity of Algorithm SSAAðUBÞ is indeed Oðm2nmþ2=εÞ.□
5. Concluding remarks

In this paper we consider the just-in-time scheduling involving
two agents that compete for the usage of m unrelated parallel
machines, where one agent wants to maximize the weighted number
of its just-in-time jobs, while the other agent wants to maximize its
maximum gain or to maximize the weighted number of its just-in-
time jobs. The goal is to find Pareto-optimal solutions for each com-
bination of the two agents' criteria. When the number of machines is
part of the problem instance, both the addressed problems are NP-
hard in the strong sense. When the number of machines is fixed, we
show that the Rmj j ðPJAk AEAw

A
k ;maxJBk AEBw

B
k Þ problem can be solved

in Oðm2nmþ1
A nBÞ time, while the Rmj j ðPJAk AEAw

A
k ;
P

JBk AEBw
B
k Þ pro-

blem is NP-hard. For the latter problem, we present a pseudo-
polynomial-time algorithm that runs in Oðm2nmþ1 minfWA;WBgÞ
time, implying that the problem isNP-hard in the ordinary sense, and
then convert the algorithm into an FPTAS for finding a Pareto optimal
solution.

For future research, it would be interesting to find out whether
or not a fast polynomial-time algorithm exists for the problems on
m parallel identical machines and to consider our problems in
other machine settings involving multiple agents.
Please cite this article as: Yin Y, et al. Just-in-time scheduling with
(2015), http://dx.doi.org/10.1016/j.omega.2015.09.010i
Acknowledgements

We thank the Editor, an Associate Editor, and anonymous referees for
their many helpful comments on earlier versions of our paper. This
paper was supported in part by the National Natural Science Foundation
of China (Nos. 11561036, 71501024, 71301022); and in part by the
Ministry of Science Technology (MOST) of Taiwan under grant numbers
NSC 102-2221-E-035-070-MY3 and MOST 103-2410-H-035-022-MY2. T.
C.E. Cheng was also supported in part by The Hong Kong Polytechnic
University under the Fung Yiu King - Wing Hang Bank Endowed Pro-
fessorship in Business Administration.
References

[1] Agnetis A, Mirchandani P, Pacciarelli D, Pacifici A. Scheduling problems with
two competing agents. Operations Research 2004;42(2):229–242.

[2] Arkin EM, Silverberg EL. Scheduling jobs with fixed start and finish times.
Discrete Applied Mathematics 1987;18:1–8.

[3] Baker KR, Smith JC. A multiple-criterion model for machine scheduling.
Journal of Scheduling 2003;6:7–16.

[5] Bouzina KI, Emmonss H. Interval scheduling on identical machines. Journal of
Global Optimization 1996;9:379–393.

[6] Carlisle MC, Lloyd EL. On the k-coloring of intervals. Discrete Applied
Mathematics 1995;59:225–235.

[7] C̆epek O, Sung SC. A quadratic time algorithm to maximize the number of just-
in-time jobs on identical parallel machines. Computers and Operations
Research 2005;32:3265–3271.

[8] Choi BC, Yoon SH. Maximizing the weighted number of just-in-time jobs in
flow shop scheduling. Journal of Scheduling 2007;10:237–243.

[9] Defraeye M, Nieuwenhuyse IV. Staffing and scheduling under nonstationary
demand for service: a literature review. Omega 2016;58:4–25.

[10] Elalouf A, Levner E, Tang H. An improved FPTAS for maximizing the weighted
number of just-in-time jobs in a two-machine flow shop problem. Journal of
Scheduling 2013;16:429–435.

[11] Frank A. On chains and antichains families of a partially ordered set. Journal of
Combinatorial Theory Series B 1980;29:176–184.

[12] Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals
of Discrete Mathematics 1979;5:287–326.

[13] Hsiao JY, Tang CY, Chang RS. An efficient algorithm for finding amaximumweight 2-
independent set of interval graphs. Information Processing Letters 1992;43:229–235.

[14] Kovalyov MY, Ng CT, Cheng TCE. Fixed interval scheduling: models, applica-
tions, computational complexity and algorithms. European Journal of Opera-
tional Research 2007;178:331–342.

[15] Lann A, Mosheiov G. Single machine scheduling to minimize the number of
early and tardy jobs. Computers and Operations Research 1996;23:765–781.

[16] Leyvand Y, Shabtay D, Steiner G, Yedidsion L. Just-in-time scheduling with
controllable processing times on parallel machines. Journal of Combining
Optimization 2010;19:347–368.

[17] Perez-Gonzalez P, Framinan JM. A common framework and taxonomy for multi-
criteria scheduling problem with interfering and competing jobs: multi-agent
scheduling problems. European Journal of Operational Research 2014;235:1–16.

[18] Sahni S. Algorithms for scheduling independent tasks. Journal of the ACM
1976;23(1):116–127.

[19] Shabtay D. The just-in-time scheduling problem in a flowshop scheduling
system. European Journal of Operational Research 2012;216(3):521–532.

[20] Shabtay D, Bensoussan Y. Maximizing the weighted number of just-in-time jobs in
several two-machine scheduling systems. Journal of Scheduling 2012;15(1):39–47.

[21] Shabtay D, Bensoussan Y, Kaspi M. A bicriteria approach to maximize the
weighted number of just-in-time jobs and to minimize the total resource
consumption cost in a two-machine flow-shop scheduling system. Interna-
tional Journal of Production Economics 2012;136:67–74.

[23] Sung SC, Vlach M. Maximizing weighted number of just-in-time jobs on
unrelated parallel machines. Journal of Scheduling 2005;8:453–460.

[24] Sterna M. A survey of scheduling problems with late work criteria. Omega
2011;39:120–129.

[25] T'kindt V, Billaut JC. Multicriteria scheduling: theory, models and algorithms.
2nd ed.. Berlin: Springer; 2006.

[26] Yannakakis M, Gavril F. The maximum k-colorable subgraph problem for
chordal graphs. Information Processing Letters 1987;24:133–137.

[27] Yeniseya MM, Yagmahanb B. Multi-objective permutation flow shop sche-
duling problem: literature review, classification and current trends. Omega
2014;45:119–135.

[28] Yin Y, Cheng TCE, Hsu C-J, Wu C-C. Single-machine batch delivery scheduling
with an assignable common due window. Omega 2013;41:216–225.
two competing agents on unrelated parallel machines. Omega

http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref1
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref1
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref2
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref2
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref3
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref3
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref5
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref5
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref6
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref6
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref7
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref7
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref7
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref8
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref8
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref9
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref9
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref10
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref10
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref10
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref11
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref11
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref12
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref12
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref12
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref13
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref13
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref14
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref14
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref14
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref15
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref15
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref16
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref16
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref16
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref17
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref17
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref17
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref18
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref18
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref19
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref19
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref20
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref20
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref21
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref21
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref21
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref21
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref23
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref23
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref24
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref24
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref25
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref25
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref26
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref26
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref27
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref27
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref27
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref28
http://refhub.elsevier.com/S0305-0483(15)00204-2/sbref28
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1016/j.omega.2015.09.010

	Just-in-time scheduling with two competing agents on unrelated parallel machines
	Introduction
	Problem formulation
	The Rm||(sumJkAisinEAwkA,maxJkBisinEBwkB) problem
	The Rm||(sumJkAisinEAwkA,sumJkBisinEBwkB) problem
	Complexity analysis
	A pseudo-polynomial-time algorithm
	A fully polynomial-time approximation scheme (FPTAS)

	Concluding remarks
	Acknowledgements
	References

