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a b s t r a c t

We study the dynamic bilateral price negotiations from the perspective of a monopolist seller. We first
study the classical static problem with an added uncertainty feature. Next, we review the dynamic
negotiation problem, and propose a simple deterministic “fluid” analog. The main emphasis of the paper
is in analyzing the relationship of the dynamic negotiation problem and the classical revenue manage-
ment problems; and expanding the formulation to the case where both the buyer and seller have limited
prior information on their counterparty valuation. Our first result shows that if both the seller and buyer
are bidding so as to minimize their maximum regret, then it is optimal for them to bid as if the unknown
valuation distributions were uniform. Building on this result and the fluid formulation of the dynamic
negotiation problem, we characterize the seller’s minimum acceptable price at any given point in time.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Many transactions between a seller and a buyer follow some
form of a negotiation. This is typical in business-to-business settings
as well as in transactions that involve end consumers for expensive
items such as cars, furniture, and real-estate [5,,16,,18]. There are
also examples in consumer commerce [34,,19,,15,7,10,30]. The out-
come of each such negotiation depends on the reservation values of
the seller and buyer, their negotiation skills, and their beliefs on the
same parameters of their opponent. This process is known as a
“bilateral negotiation”, and if the focus of the negotiation process is
restricted to prices specifically, as “bilateral price negotiations”.

Despite the importance and prevalence of negotiation pro-
blems in practice, quantitative dynamic pricing and revenue
management, which has “evolved into a mature research area to
support a seller’s tactical capacity allocation choices and pricing
decisions with inventory considerations [24]” has mostly focused
on posted price mechanisms [11,35] and auctions [36]. There have
been several extensions of the classical revenue management
problem, for instance Bodily and Weatherford [4] consider the
situations with continuous resources and several pricing classes;
Sen [32] develops dynamic pricing heuristics as an extension to
the Gallego and Van Ryzin’s model that perform substantiall\y
better than the fixed price policy. Lan et al. [20,21] provide
r M. Shen.
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successful examples of combining the overbooking and seat allo-
cation decisions with the regret models. (Among other interesting
line of research lie Kim and Bell’s work [17] on the optimal pricing
and production decisions in the presence of substitution, Tsai and
Hung’s paper [33] on the use of integrated real options internet
retailing, Zhao et al. [37] regarding dynamic pricing in the pre-
sence of customer inertia, and Ghoniem and Maddah [13] opti-
mizing retail assortment, pricing, and inventory decisions with
substitutable products.) However, this broad research area has
largely ignored the bilateral price negotiation problems perhaps
regarding them as being in the scope of game theory. However, as
we emphasize in this paper, the two problem types could be very
similar and revenue management methods can be readily applic-
able in bilateral negotiation problems.

In more detail, we hereby focus on the revenue maximization
problem of a vendor that has C units of capacity to sell over a time
horizon of length T to a market of prospective buyers. These
buyers arrive according to a Poisson process with rate Λ, each has
a willingness-to-pay that is an independent draw from a dis-
tribution Fb, and engage in a bilateral negotiation with the seller
for a single unit. The salvage value of the seller is private infor-
mation, and buyers assume that it follows some distribution Fs and
is constant over time. The reservation price of the seller at time t
depends on the salvage value and the state of the sales process, i.e.,
the time-to-go and remaining capacity. The bilateral negotiation is
modeled as a one-off negotiation, where the buyer and seller
submit bids and where the unit is awarded if the buyer’s bid is
higher than the seller’s bid. When the seller has market power, the
transaction price is the seller’s posted price (SPP); when the buyer
ment with minimax regret negotiations. Omega (2015), http://dx.
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has market power, the transaction price is the buyer’s posted price
(BPP); in other cases the transaction price splits the difference
between the two bids according to a fixed ratio that models the
relative negotiation power of the two players.1

Among the papers that involve revenue management problems
in the form of bilateral negotiations, the work of Bhandari and
Secomandi [3] is perhaps closest to ours regarding the problem
under consideration. However, the authors use a stylized MDP to
investigate the negotiation processes and measure the perfor-
mances of the seller under various negotiation mechanisms via
numerical studies, while we resort to fluid approximation and
develop an analytical result. Still, our findings in the numerical
analysis section has common elements with their work. Our focus
is not on the mechanism design, nor does it involve “strategic
buyers” who refuse to buy at high prices, which are the main
differences of our work from Riley and Zeckhauser [31] and Gallien
[12]. Furthermore, Huang et al. [15] and Chen et al. [7] study the
two selling mechanisms, namely, “posted price” versus “name-
your-own-price” in a retail environment; however, the existence
of several competing sellers, the forward-looking customers and
other details differentiate their models from the model of
our paper.

Finally, Kuo et al. [19] study a very similar problem to ours in
the sense that they focus on retailers for whom take-it-or-leave-it
price is the main mode of operation, but who nonetheless allow
price negotiation when they encounter “bargainers”. The retailer,
as in the dynamic setting of our paper, encounters a series of
bargainers over time, and the outcome of the negotiation with
each bargainer will depend on the retailer's inventory and the
remaining time until the end of the selling season. Their for-
mulation differs from ours in how the outcome of each negotiation
is characterized: in their work, the retailer sets a posted price,
which acts as a ceiling on the revenue obtained from buyers, and a
cutoff price which affects the final price according to the general
Nash bargaining solution (GNBS); while we adopt the Chatterjee
and Samuelson’s model in which the seller sets a single bid value.
Therefore, each party’s lack of information about each other’s
valuation does not create a problem in their setting in terms of
reaching a bargaining outcome, while the assumption in the
classical one-to-one negotiation problem we consider is both
parties having perfect information about each other’s valuation
distribution, which we happen to relax in the course of the paper.
Moreover, the main focus of Kuo et al. is to study the effects of
negotiation on the retailer’s dynamic prices and revenues and the
payments of both bargainers and price-takers in a variety of set-
tings; while the ultimate focus of our paper is to study the classical
and the dynamic bilateral negotiation problem with various
extensions and to create a link between the economics and rev-
enue management literatures by establishing its connection with
the classical revenue management problems.

The first modeling and methodological contribution of our
paper is in formulating the classical bilateral negotiation problem
in an uncertain environment, where buyers and the seller do not
have information about Fs, Fb, respectively. There are three natural
ways to specify this type of model uncertainty. The first one is
stochastic, wherein the unknown distributions are assumed to be
drawn from a given set of possible distributions according to some
known probability law, and where the firm’s goal is to optimize its
expected revenues over all possible market model realizations. Its
main shortcoming is that it requires detailed information on the
distribution of the model uncertainty. As a second formulation,
both the seller and the buyer adopt a max-min criterion where
1 A detailed definition of each negotiation mechanism can be found in Bhan-
dari and Secomandi [3].
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they aim to optimize their respective worst-case revenues. This
criterion may yield overly pessimistic results. Finally, a third
approach that reduces the conservatism of max-min formulations
while maintaining their appealing low informational requirements
is through the use of the competitive ratio or maximum regret
criteria, which measure the performance relative to that of a fully-
informed decision maker. They have been used extensively in the
computer science literature, and have recently been applied in
pricing and operations management problems. Specifically, Ball
and Queyranne [1], Eren and Maglaras [8], Perakis and Roels [29],
Lan et al. [22] and Eren and Van Ryzin [9] adopt different versions
of this idea. Adopting the maximum regret criterion, we formulate
jointly the buyer and seller bidding problems in the setting where
the underlying distribution functions Fs, Fb are unknown to the
respective counterparties, and show that the optimal strategies are
to bid as if these distributions were uniform. This result, to our
knowledge, is novel in the literature; although there are several
papers that accept that the players will de facto believe that the
other party has uniform distribution and act on it.

Secondly, we turn our attention to the dynamic setting. The key
finding is to recognize that in the buyer’s market (i.e. BPP setting)
where the seller is simply making accept or reject decisions of the
buyer bids, the problem can be reduced to a single resource
capacity control problem in the form analyzed by Lee and Hersh
[23]. Specifically, the distribution of buyer bids is analogous to a
continuous distribution of fare classes. This observation allows us
to completely characterize the structure of the optimal policy. We
note in passing that the problem in the seller’s market is similarly
analogous to the well-studied dynamic pricing problem in Gallego
and van Ryzin [11].

Next, motivated by the goal of studying the dynamic settings,
we start with a simpler approximated problem where the buyer
arrival process is replaced by a deterministic and continuous
process. This model can be justified as a limit as the capacity and
market potential grow large and the sales horizon and distribu-
tional assumptions stay unchanged. This is often referred to as a
“fluid” model and admits a static solution. Furthermore, extending
the findings of the one-to-one problem with the added uncer-
tainty feature, it becomes possible to study a setting where the
distributional assumptions are not known.

The main contributions of the paper are as follows: first, the
maximum regret formulation and associated results are novel, and
important on their own right as they offer a robust analog of the
one-to-one bilateral negotiations problem. Parenthetically, we find
that the uniform distribution appears as the natural assumption
under incomplete information, which is consistent with results
derived in the robust optimization literature. Secondly, we draw
attention to the analogy between the dynamic bilateral negotia-
tion problems and the classical revenue management problems;
which is a first in the literature. Third, the formulation of the
seller’s dynamic problem with uncertain Fs, Fb distributions
assumed as being uniform, as motivated by the result in the one-
to-one setting, is novel. The numerical analysis section comple-
ments the analytical findings from other interesting perspectives,
namely investigating the effect of the negotiation power and the
effect of the uniform distribution assumption on the revenues of
the seller and the bids of the two parties.

1.1. The remainder of the paper

In Section 2, we analyze a variant of the classical one-to-one
negotiation problem with an added uncertainty element. In Sec-
tion 3, the analysis is carried to a dynamic setting. Section 3.1
sheds light on the analogy of the negotiation and the revenue
management problems. Section 3.2 presents the dynamic pricing
model that extends the results of the static negotiation problem to
ment with minimax regret negotiations. Omega (2015), http://dx.
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a dynamic setting using a fluid model approach. Next, in Section
3.3, the results of Section 2 are extended to the dynamic setting
under a regret criterion. Numerical illustrations and extensions are
presented in Section 4. Finally, Section 5 concludes our findings
and presents avenues for further research.
2. An extension to the 1-to-1 bilateral negotiation problem

The literature of two-person bargaining games goes back to
Nash [28] and Harsanyi [14], and the ones to pioneer the analysis
of the dynamics of an environment with shifting negotiation
power are Myerson (et al.) [25–,27] and Chatterjee and Samuelson
[6]. In these studies the problem is analyzed within a static context
as a game between a single seller and a single buyer.

The one-to-one bilateral negotiation problem involves the
trading interactions between two individuals where one of the
individuals (the seller) owns an object that the other (the buyer)
wants to buy. Both players are risk neutral. From the seller’s per-
spective the valuation of the buyer for this unit is random variable
vb, distributed according to probability density and distribution
functions fb and Fb with support [vb ,vb ]. A symmetric argument
holds for the buyer, where he assumes that the seller’s valuation
for the unit, vs, is distributed according to cumulative distribution
function Fs (with pdf fs) on the range [vs ,vs ]. Fs and Fb are both
strictly increasing and differentiable on their supports, and are
common knowledge.

The rules of the bargaining game are as follows: at the begin-
ning of the sales interval the seller sets a reservation price s(vs),
then the buyer submits a bid b(vb), and a successful trade is con-
cluded if b(vb) exceeds s(vs). The resulting sales price is kb(vb)þ
(1�k)s(vs), where k A [0, 1] is a parameter that determines the
bargaining power of the buyers. Specifically, if k¼0, the problem
reduces to a “seller posted price” (SPP) setting where the trade is
concluded at the price s(vs) as long as s(vs)rb(vb). At the other
extreme k¼1, the problem becomes a “buyer posted price” (BPP)
formulation where the sales price is equivalent to the buyer’s bid b
(vb), again provided that s(vs)rb(vb) holds. In general, the equi-
librium of the game is found by solving the following “best
response problems” of the seller and the buyer simultaneously:

max
sϵ vs ;b
� �

Z b

s
kbþ 1�kð Þs�vsð Þgb bð Þdb;

and

max
bϵ s ;vb
� �

Z b

s
vb�kb� 1�kð Þsð Þgs sð Þds;

where gs and gb are the pdf’s of the optimal bidding functions s∗(.)
and b∗(.) respectively, s is the minimum value the seller’s bid can
take and b is the maximum value the buyer’s bid can assume.

Chatterjee and Samuelson [6] characterize the class of equili-
bria for the above game in which player bidding strategies are
“well-behaved”. In particular, they make the following assumption
regarding the buyer and the seller bidding functions s(.) and b(.),
which is also relevant for our analyzes:

Assumption 1. In the equilibrium, both b(.) and s(.) are bounded
above and below and are strictly increasing and differentiable
except possibly at the boundary points.

Under the above assumption, the equilibrium bidding strate-
gies of the two parties2 happen to be the solutions to the following
2 We will use the terms “bidding function” and “bidding strategy” inter-
changeably throughout the paper.
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two linked differential equations:

�kFs s�1 b vbð Þ� �� �
s’ s�1 b vbð Þ� �� �þ f s s�1 b vbð Þ� �� �

vb�b vbð Þð Þ ¼ 0; ð1Þ

1�kð Þ 1�Fb b�1 s vsð Þ½ �
� �� �

b’ b�1 s vsð Þ½ �
� �

þ f b b�1 s vsð Þ½ �
� �

vs�s vsð Þð Þ ¼ 0;

ð2Þ
where k A [0, 1] is the parameter determining the bargaining

power of the buyer.
The Eqs. (1) and (2) take the following simpler forms in the BPP

environment (i.e. k¼1):

b� vbð Þ ¼ bj �Fs bð Þþ vb�bð Þf s bð Þ ¼ 0
� 	 8vbA vb; vb

h i
; ð3Þ

s� vsð Þ ¼ vs; 8vsA vs; vs
h i

; ð4Þ

and the same equations produce the following bidding func-
tions in the SPP (k¼0) case:

b� vbð Þ ¼ vb; 8vbA vb; vb
h i

ð5Þ

s� vsð Þ ¼ sj1�Fb sð Þþ vs�sð Þf b sð Þ ¼ 0
� 	

; 8vsA vs; vs
h i

ð6Þ

As evident from these sets of equations, the seller’s optimal
bidding function is independent from the buyer’s value distribu-
tion function in the BPP setting and vice versa in the SPP setting.
The intuition behind this fact is obvious: under the BPP mechan-
ism the seller has no influence on determining the final price,
therefore she is willing to accept any offer above her own valua-
tion to obtain positive return. That makes bidding her own
valuation, vs, her best response to all bids of the buyers. Thus, gs
becomes identical to fs in the BPP setting and the buyer bidding
function assumes the simple form as in (3). A symmetrical argu-
ment holds for the SPP setting, justifying (5) and (6).

The classical one-to-one bilateral negotiation problem is
famous and explicitly analyzed in the literature. However, the
following variant of the problem with an added uncertainty fea-
ture is, to our knowledge, not specifically discussed. In particular,
we assume that both agents are able to estimate the minimum and
the maximum values that their opponent's valuation could
assume; however, they do not have any knowledge regarding the
distribution of this value in its given range.

As discussed in Section 1, there are various ways to model this
type of uncertainty, and among those, we will adopt the “absolute
regret minimization criterion” approach (ARMC). The rationale
behind this method is to improve the average quality of decisions
under uncertainty.

Adopting the ARMC approach, the problems that the seller and
the buyer need to solve in order to minimize their maximum
regret are respectively as follows:

argmin
s

max
b

max
s0

kbþ 1�kð Þs0�vs
� �

:1 bZ s0f g� kbþ 1�kð Þs�vsð Þ:1 bZ sf g
h i


¼ 0
�

ð7Þ

argmin
b

max
s

max
b0

vb�kb0� 1�kð Þs
� �

:1
b0 Z s
� 	� vb�kb� 1�kð Þsð Þ:1 bZ sf g

� 


¼ 0

�

ð8Þ
In the first of the above problems, the seller tries to select the

bid s which minimizes the revenue loss across all bids b of the
buyer; where the seller's revenue loss in each instance is the dif-
ference between the maximum revenue she could have achieved
by bidding her best response s0 (i.e. (kbþ(1�k)s0 �vs) �1{bZ s0})
and the realized revenue at her selected bid s (i.e. (kbþ(1�k)
s�vs) �1{bZ s}). The problem of the buyer is symmetrical.

The equilibrium bidding functions s∗ARMC and b∗ARMC that solve
the above problems and are best responses to each other are
characterized in the following theorem.
ment with minimax regret negotiations. Omega (2015), http://dx.
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Theorem 1. (Equivalence of ARMC and the uniform distribution
case). When each party in the bilateral negotiation game only pos-
sesses the support information of the opponent’s value distribution
and uses ARMC to maximize revenues, the equilibrium bidding
functions are given as:

s�ARMC vsð Þ ¼ vs
2�k

þ 1�kð Þvb
2

þk 1�kð Þvs
2 2�kð Þ ; 8vsA vs; vs

h i
ð9Þ

b�ARMC vbð Þ ¼ vb
1þk

þkvs
2

þk 1�kð Þvb
2 1þkð Þ ; 8vbA vb; vb

h i
ð10Þ

which are also the equilibrium bidding functions of a game where
Fs, Fb are both uniform on the given ranges.

For the proof, please refer to A.1 Appendix A.
The above result brings a theoretical motivation to use uniform

distribution as the opponent’s distribution function when there is
no relevant information. In other words, the results of the ARMC
analysis support the intuition that the valuation of the counter-
party could be anywhere over its support with equal probabilities
when nothing is known regarding its distribution. This is a very
widely used approximation in the literature, since Myerson [26]
introduced the famous SUTP (symmetric uniform trading pro-
blem) where both parties believe that their opponent’s distribu-
tion is uniform on the range [0,1]. However, other than regarding it
as a simple de facto belief, the theoretical roots of the uniform
distribution assumption had not been analyzed in the literature
before. Next, we extend this result to a dynamic setting and
complete the analysis in the numerical results section by exploring
the effect of this assumption on the seller revenues.
3. Dynamic bilateral negotiation problems

We next turn our attention to the main motivating problem of
this paper: the revenue maximization problem of a firm that has C
units to sell over a time horizon of length T to a market of pro-
spective buyers that arrive according to a Poisson process with
rate Λ (which might or might not be changing with time), each has
a willingness-to-pay that is an independent draw from a dis-
tribution Fb, and each engages in a bilateral negotiation with the
seller for one unit of that good. The salvage value of the seller is
private information, and buyers assume that it is drawn from some
distribution Fs, and is constant over time.

This problem is extensively analyzed in the revenue manage-
ment literature, but not taking into account the negotiation per-
spective. In the following subsection, we establish the connection
of the dynamic negotiation problem with the classical problems of
the revenue management literature. Next, we develop the solution
of the problem by using fluid formulation and extend it to an
uncertain environment by combining the elements of the one-to-
one setting and the fluid formulation.

3.1. The analogy of revenue management and bilateral negotiation
problems

In this part, we focus on the connection between the dynamic
bilateral negotiation problem and the revenue management
problems.

First, consider the SPP (seller posted price) setting: in this
setting, given the arrival rate Λt and the buyer bidding function
b∗SPP(vb)¼vb, the problem of the seller is to find the best dynamic
pricing policy that would maximize the total net revenues of the
seller, which is the cumulative of the net revenues extracted from
each successful individual negotiation. Given the seller’s bid st, the
demand process can be regarded as a one-dimensional non-
homogeneous Poisson process with rate vector λ determined
Please cite this article as: Ayvaz-Cavdaroglu N, et al. Revenue manage
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through a demand function λ(st) where λ(st)¼Λt(1�Fb(st)), with a
continuous inverse demand function p(λ)¼ st, since the buyers
pay the seller's bid in SPP environment regardless of their value.
Then, adopting a discrete-time formulation (which assumes that
time has been discretized in small intervals of length δt indexed by
t¼1,…,T such that P(arrival in [0, δt])¼λδtþo(δt) and P(two
arrivals in [0, δt])¼(λδt)2 þo((δt)2), where o(x) implies that o(x)/
x-0 as x-0); the corresponding demand random variable for
period t, denoted by ξ(t;λ), is Bernoulli with probabilities that are
controlled by the posted price (i.e. seller’s bid st), and P(ξ(t)¼1)¼λ
(st)δt and P(ξ(t)¼0)¼1�λ(st)δt. In this environment, the seller’s
revenue maximization problem could be formulated as follows:

max
st ; t ¼ 1;…;Tf g

Eξ
XT
t ¼ 1

st�vsð Þξ t; λ
� �" #

ð11Þ

subject to
XT
t ¼ 1

ξ t; λ
� �

rC a:s:; stAP; 8 t ð12Þ

where P denotes the feasible price set. This formulation is
mathematically equivalent to the famous “dynamic pricing pro-
blem” of a monopolist seller selling a homogenous product in a
discrete-time setting; which is readily analyzed by Gallego and
Van Ryzin [11] (which will be referred to as GVR paper in the
sequel). For further details of this formulation, please see Maglaras
and Meissner [24].

Similarly, consider the BPP (buyer posted price) setting: in this
environment, given the buyer bidding function b∗BPP, it is possible to
define the expected net revenue from each prospective negotiation
at instant t as p(st)¼bt�vs where bt:¼bBPP

∗(vt), provided that btZst.
That is, the seller bid st has no direct effect on the exogenously fixed
product prices, and a priori fixed prices also fix the demand rate.
The seller can only control which product requests (given that the
products in our example refer to the same unit with different prices,
this is equivalent to determining which buyer bids) to accept at any
given time. That is, it effectively works as a control that leads to
“opening” product classes (buyer bids) that exceed st and “closing”
classes that bring lower revenue than st.

Hence, the problem is in the same spirit as the “capacity control
problem” of the revenue management literature, which is studied
by Lee and Hersh [23] among many others. In this problem the
prices are exogenously determined by competition or through a
higher order optimization problem defining the market condi-
tions, and the firm chooses a dynamic capacity allocation rule. To
see the connection more clearly, assume that we approximate all
buyer bids with n finite values; i.e. define b� Zb1Z b2Z…Zbn
Zb� as n finite “fare classes”, where the arrival rate of bid bi is

approximated by Λt Gb bið Þ�Gb bi�1ð Þ
� �

, &for all;i A {2,…,n} and

that of b1 is approximated by ΛtGb b1ð Þ at each instant t, where
Gb stð Þ is the complement of the cumulative distribution function
(cdf) of b∗BPP. Then, the problem above pours into the following
capacity allocation problem of a firm which has discretion as to
which product requests to accept at any given time:

max
u tð Þ; t ¼ 1;…;Tf g

Eξ
XT
t ¼ 1

b'�vsð Þξ t;uλ
� �" #

subject to
XT
t ¼ 1

e'ξ t;uλ
� �

rC a:s:;ui tð ÞA 0;1f g; 8 t ð13Þ

where ui(t)’s are the controls that take a value of one when a
bid of value biis accepted at time t and zero otherwise (i.e. ui(t)¼1
if biZst and ui(t)¼0 otherwise), b’¼{b1,b2,…,bn}, e’ the n-dimen-
sional unit vector, and ξ(t;uλ) is the corresponding demand ran-
dom variable for period t with coordinates uiλi, where P(ξ(t;uiλi)¼
1)¼ui(t)δt[Λt Gb bið Þ�Gb bi�1ð Þ

� �
], P(ξ(t;uiλi)¼0)¼1�ui(t)δt[Λt Gb

�
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gb b0
� �

Z0; 8bA b ;b
h i

ð19Þ

is a sufficient condition to ensure that rt,a(vs, α) is concave in α for all

vsA vs ; vs
h i

. This condition simply ensures that the second derivative of the

function rt,a(vs, � ) is negative at all α. Observe that if both functions Fs, Fbare uni-
form, Condition (19) is satisfied.
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bið Þ� Gb bi�1ð ÞÞ] &for all;i A {2,…,n} and P(ξ(t;u1λ1)¼1)¼u1(t)δt
[ΛtGb b1ð Þ], P(ξ(t;u1λ1)¼0)¼1�u1(t)δt[ΛtGb b1ð Þ], The formulation
(13) is equivalent to the discretized version of the capacity control
problem of Lee and Hersh [23]. Thus, if the buyer bids could be
approximated by a finite class of fares, the BPP formulation is
equivalent to the capacity allocation problem of a seller selling a
single resource to multiple demand classes in a perfect competi-
tion setting. For further details on the formulation, we refer the
reader to Maglaras and Meissner [24].

Both of the above equivalences stem from the fact that each
buyer is naive (i.e. does not strategize on the time of purchase,
does not take into account previous sales prices, etc.). Moreover,
while each buyer negotiates with the seller only once, the seller
will engage in a sequence of negotiations over the sales horizon.
Hence, in SPP setting, the seller will pursue a dynamic pricing
strategy to maximize the revenues to be extracted from the sto-
chastically arriving buyers, whereas in BPP, she will determine the
minimum bid to be accepted at each instant to control the amount
of capacity to be sold. Therefore, in broad terms, the SPP setting
reduces to the dynamic pricing problem and the BPP setting to the
capacity allocation problem of the literature. We state this result as
a proposition.

Proposition 1. If the buyers in the market are naive, the dynamic
SPP game becomes equivalent to the dynamic pricing problem and
the dynamic BPP game to the capacity allocation problem of the
revenue management literature.

3.2. Fluid formulation of the dynamic problem

Even when the buyers are naive, it is difficult to analyze the
stochastic dynamic pricing problem of the seller. This type of
multi-stage stochastic optimization problems has elicited much
interest from various research communities and there are several
established methodologies to expound them involving dynamic
programming, stochastic programming and robust optimization.
However, the problem usually remains hard to solve analytically.
Therefore, in practice, one would typically solve the recursions
numerically or resort to some approximations such as approx-
imate dynamic programming or simulation. For instance, the
authors have adopted a fluid formulation in the GVR paper and
developed asymptotically optimal policies. In addition, in nego-
tiation problems, there is a continuous stream of buyer bids often
with their range and frequency varying in time; therefore it is
practically impossible to approximate the buyer bids as finite
number of fare classes as in Lee and Hersh [23]. Even if this
approximation is valid, the issue of “curse of dimensionality”
prevails. Thus, the size of the problem renders the computation of
the optimal bids st, &for all;t, almost impossible, which leads us to
develop a fluid formulation equivalent of the dynamic negotiation
problems and focus on the analysis in this fluid setting, hoping to
obtain insights towards the solution of the stochastic problem. As
commonly known, fluid formulation is a good approximation of
the real stochastic problem when number of interactions per unit
time is sufficiently large.

To this end, consider the following fluid version of the dynamic
negotiation game: infinitesimal buyers arrive with a (determinis-
tic) rate Λt at t, t A [0,T]. Both parties know Λt and the distribution
function of their opponent. Then the revenue maximization pro-
blem of the seller is as follows:

max
st ; 8 tf g

Z T

t ¼ 0
rt vs; stð Þdt

� 

ð14Þ

subject to
Z T

t ¼ 0
Λt

Z b

st
gb bð Þdb

" #
dtrC ð15Þ
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where rt(vs, st) is the instantaneous net revenue function of the
seller at time t when her valuation is vs and her reservation price
st; which is given by:

rt vs; stð Þ ¼
Z b

st
Λt kbþ 1�kð Þst�vsð Þgb bð Þdb ð16Þ

and gbis the pdf of the buyer bidding function b( � ) character-
ized in (1) and s( � ) is given by (2).

If the above problem is modeled as a stochastic control pro-
blem in the price space, finding its solution could be extremely
difficult. Therefore, following a similar approach as in GVR, we will
analyze the problem by focusing on the optimal sales rate, rather
than the optimal pricing policy.

If the seller sets st as the lowest price to be accepted at t, the
fraction of buyers that are accepted at

that instant is given by αtðstÞ ¼ R b
st
gb bð Þdb¼ Gb stð Þ, inducing an

inverse function:

st αtð Þ ¼ G�1
b 1�αtð Þ:

The function st(αt) is well-defined for all αtA [0, 1] as a result of
Assumption 1.

Then, the instantaneous net revenue function of the seller at
time t in terms of the fraction of accepted buyers becomes:

rt;a vs;αtð Þ ¼
Z b

G� 1
b 1 � αtð Þ

Λt kbþ 1�kð ÞG�1
b 1 � αtð Þ�vs

� �
gb bð Þdb

Thus, the seller’s revenue maximization problem (14) and (15)
in the price space is equivalent to:

max
αt ; 8 tf g

Z T

t ¼ 0
rt;a vs;αtð Þdt

� 

ð17Þ

subject to
Z T

t ¼ 0
ΛtαtdtrC ð18Þ

which is a formulation in the demand space.
Provided that rt,a(vs, α) is concave in α3, the formulation (17)

and (18) becomes maximization of a concave function over a
convex set; and its solution is then given as in the following
theorem.

Theorem 2. If rt,a(vs, α) is concave in α, the equilibrium bidding
strategy st(.), t A [0,T], of the seller in the dynamic negotiation pro-
blem takes the form:

st vsð Þ ¼ max G�1
b 1 � CR T

t ¼ 0 Λtdt

 !
; s� vsð Þ

( )
; 8 tA 0; T½ � ð20Þ

where s∗(vs) is the bidding function of the seller given in (2); and
the equilibrium bidding strategy bt(.) of each infinitesimal buyer
arriving at time t is characterized by (1), with Gb being its cdf.

Proof.. As we have alreadyoted, the buyers have neither the
knowledge of the sales rate nor the remaining inventories of the
seller. Therefore, they regard the situation as a one-to-one
ment with minimax regret negotiations. Omega (2015), http://dx.
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negotiation game and employ the equilibrium bidding function
b∗(.) regardless of their arrival time.

To see how the seller behaves, note that the problem (17) and
(18) is maximized at the maximizer of rt,a(.,vs), which is α∗¼
Gb (s

∗(vs)), provided that it is feasible to admit this fraction at each
instant t (i.e. if α� R T

t ¼ 0 ΛtdtrC). This case is equivalent to apply-
ing the bid st(vs)¼s∗(vs), &for all;t.

If, on the other hand, α� R T
t ¼ 0 Λtdt4C, then by the concavity of

rt,a(.,vs), it is optimal to admit the constant fraction p0 ¼ CR T

t ¼ 0
Λtdt

at each t. This second case corresponds to bidding st(vs)¼
G�1
b 1 � CR T

t ¼ 0
Λtdt

 !
; 8 tA 0; T½ �. So the seller will set her reser-

vation price as st vsð Þ ¼ max G�1
b 1� CR T

t ¼ 0
Λtdt

 !
; s� vsð Þ

( )
.

The above theorem is in the same spirit as the Proposition 2 of
GVR paper and forms the first major result of this section. Basically
it states that the seller has a unique “acceptable bid”, which remains
unchanged whereas the final price of the good in each negotiation
might vary depending on the bids of the buyers. The value of the
seller’s minimum acceptable bid depends on the bidding function of
the buyers, namely the parameter k. Although we expect the
minimum acceptable bid and the revenues of the seller to increase
as k decreases (i.e. as we approach a SPP setting), this is not always
the case. This interesting phenomenon is analyzed in further detail
in the first part of the numerical analysis section.

3.3. Dynamic negotiation problems under uncertainty

In this part, we study a variant of the dynamic negotiation
problems where the primitives of the buyer valuation distribution
are unknown. The problem setting is as follows: at each instant t, t
A [0,T], independent negotiations take place between the seller
and the entire population of infinitesimal buyers whose valuation
distribution function is only revealed at t. The players know each
other’s distribution range at each instant t A [0,T] (and suppose
that, for convenience, this range does not change across time).

In this situation, the ARMC (absolute regret minimization)
approach is again a viable choice for all parties, and we can state
and prove the following Theorem, which emphasizes the analogy
between the dynamic problem with no distribution information
and the stochastic one-to-one problem.

Theorem 3. The dynamic negotiation problem with infinitesimal
buyers and unknown valuation distributions reduces to the dynamic
Fig. 1. Seller revenues (as % of revenue at k
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deterministic problem of Section 3.2, with Fs and Fb being uniform
distribution functions on their given ranges at each t.

The proof of the above Theorem can be found in the Appendix B.
The basic idea is that the seller bids as if the prospective buyers will
have uniform distribution in the given range. In a fluid setting with
an unvarying buyer valuation range, the result is a stationary bid-
ding policy for the seller. Although this result is oversimplified, it is
in the same spirit as the “feedback policy” of Besbes and Maglaras
[2], who state that the optimal policy for a monopolist seller in a
stochastic environment that is similar to our original problem can
be written in feedback form that dynamically tracks the revenue/
financial milestones. Similarly, the implication of the fluid for-
mulation's optimal solution for a seller in the stochastic environ-
ment is to dynamically track the sales rate, and correct the bidding
price as to keep the stationary sales rate of the fluid solution.

As careful readers should immediately notice, the above theo-
rem relies on the assumption that there is no “learning effect” for
the seller. That is, the seller cannot infer the value distribution
function of the future buyers from the current distribution func-
tion or the instantaneous sales rate. Because if this were the case,
the problem becomes trivial and once the seller infers Fb, she can
employ the optimal pricing policy which is characterized in (20).

Although the assumption that “seller cannot learn from experi-
ence” might seem unrealistic, it is in fact equivalent to assuming that
the buyers' valuation distribution is continuously changing over time.
Hence, observing the past sales will not help the seller in predicting
the future sales. This situation should not come as idiosyncratic to
the reader. There are several industries where the willingness-to-pay
values of the buyers depend closely on macroeconomic terms, and
especially in instable economies, these terms can fluctuate sub-
stantially from one time instance to another. In many real life
situations the reality falls in-between: that is, to a certain degree, it is
possible to infer the valuation distribution of future buyers by
observing the current valuations. However, this is an avenue that
could itself be a complete research project and for the sake of brevity,
we leave the pursuit of this research direction to a future work.
4. Numerical results

4.1. The effect of the negotiation parameter

So far, we have characterized the general form of the seller
bidding function regardless of the underlying negotiation setting.
In this subsection, we would like to measure the effect of the
¼0) for various k and C values.
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Fig. 2. Average seller bid values over time across 500 instances, for a capacity level of C¼26, at different k values.

4 Similar results were obtained for a problem in an SPP setting, but we do not
consider it necessary to involve the results here for the sake of brevity.
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“buyer’s negotiation power” (which is reflected in the parameter k)
on the seller bids and revenues and on the prices paid by the
buyers by a set of numerical experiments.

To this end, consider a dynamic setting where the buyers and
the seller both have uniform valuation distributions on the ranges
[vb ,vb ]¼[1, 3] and [vs ,vs ]¼[0.5,1.5] respectively. Assume that the
buyers arrive according to a Poisson distribution with rate Λ¼1
per period through a sales horizon of T¼50 periods. Recall that the
buyer and the seller bidding functions in the dynamic problem for
a given value of the parameter k take the forms:

b� vbð Þ ¼ vb
1þk

þkvs
2

þk 1�kð Þvb
2 1þkð Þ ; 8vbA vb; vb

h i
ð21Þ

s�t vsð Þ ¼ max
vs

2�k
þ 1�kð Þvb

2
þk 1�kð Þvs

2 2�kð Þ ;G�1
b 1 � x tð ÞR T

τ ¼ t Λτdτ

 !( )

8 t; 8vsA vs; vs
h i

ð22Þ

respectively, where x(t) is the remaining inventory at t, and
Gb(.) is the cdf of b∗(.).

We vary the value of k from 0 (i.e. SPP setting) to 1 (i.e. BPP
setting) and use 500 random instances in which the valuation of
the seller, the number of arriving buyers, and the valuation of each
arriving buyer are randomly determined according to the problem
parameters. The ratio of average seller revenues for a given k value
to the revenues under the SPP setting at various levels of seller
capacity is depicted in the Fig. 1.

Although an SPP environment essentially yields higher profits
for the seller than a BPP setting as expected, an interesting
observation is that the seller with a high load factor might actually
benefit from a slight shift in the negotiation power. This is an
interesting observation, since the average seller bids tend to
decrease in k and in the available inventory as expected (which
can be seen in Figs. 2 and 3). However, considering the number of
successful trades (as seen in Fig. 4), even a slight increase in k (e.g.
from k¼0 to k¼0.2) is seen to produce a considerable increase in
the average number of buyers that are accepted at high levels of
capacity. This observation shows that the seller might actually
benefit from “selling more at slightly reduced prices” which would
be possible by shifting a small proportion of the negotiation power
to the other party. This result is also consistent with the results of
Bhandari and Secomandi [3], who find that “in structured nego-
tiations a seller with an exceptionally high relative inventory
availability can benefit from splitting the difference between his
offer and that of each arriving buyer, rather than making a first and
final offer”, and, in a broader sense, with the findings of Kuo et al.
Please cite this article as: Ayvaz-Cavdaroglu N, et al. Revenue manage
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[19] who claim that “the retailer’s benefit from allowing negotia-
tion increases in the retailer’s bargaining power (…) which is
particularly helpful when the inventory level is high relative to the
remaining selling season”. Moreover, although their bids are lower,
the prices paid by the high-valued buyers (with valuations above
2.5) do not decrease much on average for low-to-moderate k
values (e.g. k¼0.2 or k¼0.3) compared to the k¼0 setting (Fig. 5).
This result could be attributed to the fact that the seller’s bid
increases towards the end of the sales horizon because of a fast
initial sale at low-to-moderate k values, and the final price paid by
the late-arriving, high-valued buyers becomes similar to, or even
higher than the prices paid under the SPP setting. This observation
also strengthens our initial conclusion that the seller might benefit
from selling more at slightly reduced prices initially, which is the
result of sharing a small portion of the negotiation power with the
other party.

Another interesting observation is the fact that the buyer bids
might first increase and then decrease in k for lower-valued buy-
ers. (For instance, take a buyer with vb¼1.2. His bid will be
equivalent to b(vb)¼vb¼1.2 for k¼0; b(vb)¼ vb

1:2þ 0:5x0:2
2 þ 0:2x0:8x3

2x1:2
¼ 1:25 for k¼0.2, and b(vb)¼vb

2 þ 0:5
2 ¼ 0:85 for k¼ 1) This effect

can be seen more explicitly in Fig. 6, which shows the bid values of
buyers with various valuations. However, considering that the
lower-valued buyers are less likely to conclude a successful trade
with the seller (as seen in Fig. 5), the effect of this observation on
the total seller revenues does not seem to be significant unless the
seller has a much lower valuation for the good with respect to all
buyers.

4.2. The effect of uniform distribution assumption

Next, we would like to investigate the seller's loss when she
does not have the real distribution information and assumes that
the buyers' valuations are distributed uniformly in their range as a
natural conclusion of the ARMC approach. Our experiments con-
trast the revenues obtained by the seller in the “no distribution
information” setting to the revenues in the “full information”
setting. To this end, we consider the revenue maximization pro-
blem of a seller who operates in a BPP setting, where the market
size is Poisson with rate Λ¼100 per period for T¼15 periods.4

For the Normal and Gumbel distributions, we extracted the
mean as the midpoint of the range and selected the standard
ment with minimax regret negotiations. Omega (2015), http://dx.
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Fig. 3. Average seller bid values over time across 500 instances at k¼0.5, at different C levels.

Fig. 4. Average number of successful trades across 500 instances over the k values at different C levels.

Fig. 5. : The average prices paid by buyers with different valuations across 500 instances.
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deviation σ by assuming that the range is equal to 73σ. For the
exponential distribution we assumed that the valuation of a
typical consumer is given by vb þ w where w is exponentially
distributed in [0, vb � vb ] and its rate parameter m is selected so
that the probability that w lies in that range is 99.5% (this is
consistent with the 73σ assumption of the Normal distribution).
Please cite this article as: Ayvaz-Cavdaroglu N, et al. Revenue manage
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In each test case, we assumed that the buyers bid believing that
the seller’s value is uniform in [vs ,vs ]¼[$750 K, $2000 K]; inducing
b� vbð Þ ¼ min vb;0:5vbþ0:5vs

� 	
.

The sets of results summarized in Tables 1 and 2 illustrate the
performance of the policy under uniform distribution assumption
in a variety of settings as we varied the range ([vb ,vb ]) the
ment with minimax regret negotiations. Omega (2015), http://dx.
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Fig. 6. : The value of buyer bids over the k values for buyers with different valuations.

Table 1
The ratio of seller’s revenue under ARMC to seller’s revenue under full information

[vb;vb ]¼[$500 K, $1500 K]C¼250,

C¼500, C¼750

[vb;vb ]¼[$1000 K, $2000 K]C¼250,

C¼500, C¼750

[vb;vb ]¼[$1000 K, $2500 K]C¼250,

C¼500, C¼750

[vb;vb ]¼[$1000 K, $3000 K]C¼250,

C¼500, C¼750

Exponential 96.49%, 100%, 100% 44.83%, 71.19%, 90.65% 45.60%, 64.43%, 83.99% 47.13%, 63.95%, 80.34%
Normal 92.65%, 100%, 100% 86.85%, 97.00%, 100% 91.57%, 98.22%, 100% 92.14%, 98.35%, 100%
Gumbel 85.15%, 100%, 100% 32.56%, 60.41%, 82.50% 35.35%, 54.51%, 76.20% 37.84%, 52.64%, 73.59%

Table 2
The ratio of seller’s revenue under ARMC to Seller’s revenue under full information

[vb;vb ]¼[$500 K, $1500 K] [vb ;vb ]¼[$1000 K, $2000 K] [vb;vb ]¼[$1000 K, $2500 K] [vb;vb ]¼[$1000 K, $3000 K]

vs ¼$750 K, $1000 K, $1500 K vs ¼$750 K, $1000 K, $1500 K vs ¼$750 K, $1000 K, $1500 K vs ¼$750 K, $1000 K, $1500 K

Exponential 80.46%, 100%, 100% 80.47%, 80.46%, 100% 74.89%, 74.39%, 100% 68.34%, 68.52%, 98.40%
Normal 97.87%, 100%, 100% 98.35%, 97.00%, 100% 98.92%, 98.22%, 100% 98.86%, 98.35%, 99.28%
Gumbel 98.24%, 100%, 100% 70.49%, 60.41%, 100% 64.49%, 54.51%, 100% 61.21%, 52.64%, 98.19%
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inventory of the seller (C), and the seller valuation (vs). In Table 1,
vs is fixed at vs¼$1000 K, while C and [vb ,vb ] are varied to test
different cases. In Table 2, C is fixed at C¼500 where [vb ,vb ] and vs
are varied. We display the revenues of the no-information case as
a percentage of the revenues of the full information case (i.e.
maximum revenues to be achieved).

As the figures in the Tables 1 and 2 suggest, the uniform dis-
tribution assumption performs well when the underlying dis-
tribution is normal. It may perform poorly for the exponential and
Gumbel distributions, especially under very low capacity and
moderate seller values. This is mainly because, if the underlying
distribution is too skewed, the uniform distribution assumption
yields a significant miscalculation in the value of the optimal bid. If
the capacity is sufficiently large, the initial mishap could be
remedied quickly as the bid given according to the uniform dis-
tribution assumption converges fast to the real optimal bid value,
hence resulting in low revenue loss. If the seller valuation is too
large, again the two revenue figures are close to each other, which
is because buyers whose bids are accepted are almost the same
regardless of the underlying distribution.

5. Conclusion

In this paper, we study a monopolist seller’s revenue manage-
ment problem with the twist that transactions between the seller
Please cite this article as: Ayvaz-Cavdaroglu N, et al. Revenue manage
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and each arriving buyer are bilaterally negotiated, a situation that
has not been fully considered in the extant literature. We start
with the one-to-one negotiation problems and discuss how to
account for uncertainty in valuation distributions. Next, we extend
our analysis to the dynamic environment: we establish the con-
nection of the bilateral negotiation problems with the classical
revenue management problems; and by studying the determinis-
tic fluid problem, we observe the stationary nature of the optimal
pricing policy. We are then able to extend the analysis to uncertain
environments. Finally, two sets of numerical analyzes complement
the theoretical study in other interesting perspectives, answering
the questions “how the impact of parameter k in a dynamic setting
might be different than in a static setting” and “how the uniform
distribution assumption might affect the performance of the
seller”.

Although our results are limited, they offer various avenues for
future research: first, several other dynamic negotiation problems
may be analyzed from the perspective we presented. Of these, we
believe that the games involving “strategic” buyers (or, “non-
naive” buyers, as in the terminology of this paper) is of utmost
interest. Another research avenue might involve characterizing the
future bidding strategy of the seller with the “partial information”
provided by the valuation distribution of the current buyers in a
stochastic environment. Finally, the structural results regarding
ment with minimax regret negotiations. Omega (2015), http://dx.
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the nature of the optimal pricing policies might be inspiring and
insightful in the formulation and solution of various bilateral
negotiation problems.

There are several real life settings in which a variant of the
dynamic negotiation problems can be observed. These settings
provide a rich scale of problems in terms of the varying negotiation
power of the two parties, added uncertainty in the current and
future market conditions, strategic considerations of the players,
etc. We believe that there is a rich research potential in this area for
interested revenue management researchers and hope that this
paper serves as a starting point to lead a fruitful line of research.
Appendix A. Proof of Theorem 1

First, note that any optimal strategy should satisfy b(vb)rvb
and s(vs)Zvs to be feasible. This, combined with the assumption
that the optimal strategies are nondecreasing in the valuations of
the bidders, will be our implicit assumptions throughout the
analysis and will be shown to hold.

In the minimax absolute regret minimization problem (7) of
the seller, the innermost maximization takes the following values
depending on the relationship among b, s and vs:

max
s0

kbþ 1�kð Þs0�vs
� �

:1 bZ s0f g� kbþ 1�kð Þs�vsð Þ:1 bZ sf g
h i

¼
0; if bovs
b�vs; if vsrbrs

b�vsð Þ� kbþ 1�kð Þs�vsð Þ: if b4s

8><
>:

That is, if the buyer bid is less than the seller’s valuation, then
any feasible bid of the seller returns zero net profit. If, the buyer
bid exceeds vs, the seller achieves her maximum profit by selecting
the same bid as the buyer; which is the situation in the second and
third cases in the above equivalence. Observe that in the second
case, the seller overbids; whereas in the last case, she underbids
and loses additional revenue she could have obtained if she had
increased her bid up to b. Adding the outside maximization pro-
blem, the mathematical quantity to be minimized by selecting s is:

maxbmaxs0 kbþ 1�kð Þs0�vs
� �

:1 bZ s0f g� kbþ 1�kð Þs�vsð Þ:1 bZ sf g
h i

;

¼
0; if bovs
s�vs; if vsrbrs
1�kð Þ b�vsð Þ; if b4s

8><
>:

¼maxfðs�vsÞ; ð1�kÞðb�sÞg ðA:1Þ
where b is the unknown maximum value of the buyer’s bid b.

Thus, the problem of the seller pours into selecting the bid to
minimize the maximum of two regret values: in situation 1, the
regret stems from overbidding and losing the chance to obtain
positive return; whereas in situation 2, it stems from bidding too
low and losing the chance of higher profits.

Since the first of the quantities inside the maximization in (A.1)
is increasing and the second is decreasing in s, the minimizer is
attained at the intersection point, i.e:

s�ARMC vsð Þ ¼ argmin
s

max s �vsð Þ; 1�kð Þ b�s
� �n o

) s�ARMC vsð Þ�vs ¼ 1�kð Þ b�s�ARMC vsð Þ
� �

) s�ARMC vsð Þ ¼ vs
2�k

þ 1 � kð Þ
2�k

b

Via a symmetrical analysis for the buyers, we obtain
b�ARMC vsð Þ ¼ vb

1þkþ k
1þks. Finally, since s

∗ and b∗ should be best responses

to each other, we find that s�ARMC vsð Þ ¼ vs
2�kþ 1�kð Þvb

2 þk 1�kð Þvs
2 2�kð Þ and

b�ARMC vbð Þ ¼ vb
1þkþ

kvs
2 þk 1�kð Þvb

2 1þkð Þ . Furthermore, when the Eqs. (1) and (2)
Please cite this article as: Ayvaz-Cavdaroglu N, et al. Revenue manage
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are solved simultaneously for a game where both Fs and Fb are uni-
form, the resulting equilibrium bidding functions are identical to
s�ARMC vsð Þ and b�ARMC vbð Þ.
Appendix B. Proof of Theorem 3

As before, our implicit assumptions are that the optimal stra-
tegies satisfy b(vb)rvb and s(vs)Zvs; and that the optimal stra-
tegies are nondecreasing in the valuations of the bidders.

Since buyers are naive, their problem takes the form:

argmin
b

max
s

max
b0

vb�kb0� 1�kð Þs
� �

:1
b0 Z s
� 	� vb�kb� 1�kð Þsð Þ:1 bZ sf g

� 

�

ðB:1Þ

¼ max f vb�bð Þ; kðb�sÞg ðB:2Þ

As they assume that the seller is playing a one-to-one game
with them, they simply compute their optimal bidding strategy by
solving the two ARMC problems simultaneously, therefore reach-
ing at the equilibrium bidding function of the one-to-one game,
i.e. b�ARMC .

However, the seller's problem is now different: given that
buyers bid according to b∗ARMC, she should select bid st¼s, &for all;t,
that minimizes her maximum regret for all distribution functions
Fb:

argmin
s

max
Fb

max
s0

Z T

t ¼ 0
Λt

Z vb

b� 1 s0ð Þ
kb vbð Þþ 1�kð Þs0�vs
� �

f b vbð Þdvb
" #

dt

"(

�
Z min T ;T0

� 	
t ¼ 0

Λt

Z vb

b� 1 sð Þ
kb vbð Þþ 1�kð Þs�vsð Þf b vbð Þdvb

" #
dt

#


where s0 is the best bid against Fb as in (20) and T0 is such thatR T0

t ¼ 0 Λt
R vb
b� 1 sð Þ f b vbð Þdvb

h i
dt ¼ C; if sos0. Regarding the inner max-

imization problem, we have two cases:
Case (i):sos0: in this case the seller underbids and fails to

capture a higher profit. The loss is at its maximumwhen all buyers
have the highest valuation, i.e. fb(vb )¼1, which leads to s0¼b(vb )
and the total

amount of sales to be min C;
R T
t ¼ 0 Λtdt

n o
. Thus:

max
Fb

max
s0

R T
t ¼ 0 Λt

R vb
b� 1 s0ð Þ kb vbð Þþ 1�kð Þs0�vs

� �
f b vbð Þdvb

� 

dt

�

�
Z min T ;T0

� 	
t ¼ 0

Λt

Z vb

b� 1 sð Þ
kb vbð Þþ 1�kð Þs�vsð Þf b vbð Þdvb

" #
dt

#

¼ min C;
Z T

t ¼ 0
Λtdt

� 

kb vbð Þþ 1�kð Þb vbð Þ�vs
� �

�
Z min T ;T0

� 	
t ¼ 0

Λt kb vbð Þþ 1�kð Þb vbð Þ�vs
� �

dt

¼ min C;
Z T

t ¼ 0
Λtdt

� 

1�kð Þ b vbð Þ�vsð Þ� �

Case (ii):s4s0: in this case the seller overbids and fails to sell a
proportion of her inventories. This loss is at its maximumwhen all
buyers bid just slightly below the seller's bid s and the seller
cannot sell at all, i.e. f b b�1 s�εð Þ

� �
¼ 1 for small ε40. Thus, the

two inner maximization problems take the form:

max
Fb

max
s0

R T
t ¼ 0 Λt

R vb
b� 1 s0ð Þ kb vbð Þþ 1�kð Þs0�vs

� �
f b vbð Þdvb

� 

dt

�

�
Z min T ;T0

� 	
t ¼ 0

Λt

Z vb

b� 1 sð Þ
kb vbð Þþ 1�kð Þs�vsð Þf b vbð Þdvb

" #
dt

#

¼ min C;
Z T

t ¼ 0
Λtdt

� 

k s�εð Þþ 1�kð Þ s�εð Þ�vs
� ��0
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¼ min C;
Z T

t ¼ 0
Λtdt

� 

s�vs½ �

Combining the two cases, the seller should bid to minimize the

two maximum regrets, i.e. s¼ argmin max s�vsð Þmin C;
R

t ¼

��
0TΛtdtg; 1�kð Þ b�s

� �
min C;

R T
t ¼ 0 Λtdt

n o
g. But these two regret

terms are the same as in the one-to-one game, only multiplied by
a coefficient min C;

R T
t ¼ 0 Λtdt

n o
. Thus, we arrive at the same con-

clusion as before; i.e. the seller bids as if Fb is uniform on its given
range, which also validates the buyers’ bidding game.
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