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The no-wait flowshop scheduling problem (NWFSP) with makespan minimization is a well-known
strongly NP-hard problem with applications in various industries. This study formulates this problem as
an asymmetric traveling salesman problem, and proposes two matheuristics to solve it. The performance
of each of the proposed matheuristics is compared with those of the best existing algorithms on 21
benchmark instances of Reeves and 120 benchmark instances of Taillard. Computational results show
that the presented matheuristics outperform all existing algorithms. In particular, all tested instances of
the problem, including a subset of 500-job and 20-machine test instances, are solved to optimality in an
acceptable computational time. Moreover, the proposed matheuristics can solve very hard and large
NWFSPs to optimality, including the benchmark instances of Vallada et al. and a set of 2000-job and 20-
machine problems. Accordingly, this study provides a feasible means of solving the NP-hard NWFSP
completely and effectively.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The flowshop scheduling problem (FSP) has been one of the
most intensively discussed classes of problems in operations
research literature over the past five decades [1–5]. Of particular
practical interest is variants of FSPs, called no-wait FSPs (NWFSPs),
that are widely applied in various industries, such as the chemi-
cals, plastics, metals, electronics, pharmaceuticals, and food-
processing industries [6,7]. For technological reasons, in these
industries, no in-process waiting is allowed between any two
consecutive machines, such that once the processing of a job
begins, subsequent processing must be continuously carried out
on all machines with no interruption until completion. This paper
focuses on the NWFSP with the objective of minimizing the
makespan, which can be written as Fm jnwt jCmax using the stan-
dard 3-tuple notation of Graham et al. [8], where Fm is a flowshop
with m machines, nwt denotes the no-wait restriction and Cmax

indicates that the objective is to minimize the makespan. This
problem is a member of the set of strongly NP-hard problems for
three or more machines [9].
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: þ886 2 2731 7168.

ing K-C. Optimization of
tp://dx.doi.org/10.1016/j.om
In view of the significance of the Fm jnwt jCmax problem in both
theory and engineering applications, effective and efficient algo-
rithms for solving it are required. Gilmore and Gomory solved the
two-machine case of the Fm jnwt jCmax problem using an Oðn log
nÞ time algorithm with a sub-tour patching technique [10]. Reddi
and Ramamoorthy [11] and Wismer [12] were the first to address
the Fm jnwt jCmax problem with three or more machines. Many
researchers have since attempted to develop effective and efficient
algorithms for solving this problem. An early comprehensive sur-
vey of the Fm jnwt jCmax problem can be found in Hall and Sris-
kandarajah [13].

With respect to exact methods, Selen and Hott [14] presented a
mixed integer goal programming model for solving the multi-
objective NWFSP. Van der Veen and Van Dal [15] have proven that
some special cases of NWFSPs are solvable using polynomial time
solution algorithms if the processing times on all but two
machines are fixed. To the best of our knowledge, no exact method
has yet been proposed for solving the Fm jnwt jCmax problem.
Given the NP-nature of this problem, all previous studies of this
topic have focused on developing heuristic algorithms in order to
find good (although not necessarily optimal) solutions to this
intractable problem in a relatively short time.

The heuristic algorithms that are available for solving the Fm j
nwt jCmax problem can be classified into two main categories:
constructive heuristics and meta-heuristics. Table 1 summarizes
the various constructive heuristics and meta-heuristics in
makespan for no-wait flowshop scheduling problems using
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Table 1
Constructive heuristics and meta-heuristics for the Fm jnwt jCmax problem.

Year Author(s) Acronym Typea Performance be superior to

1976 Bonney and Gundry [16] S/M C Palmer's method, Gupta's algorithm
1980 King and Spachis [17] LBJD(sc), LBJD(sc)a), LBJD(mc), MLSS(mc), MCL(mc) C MCL(mc) is better than other four compared heuristics
1993 Gangadharan and Rajendran [18] GAN-RAJ C S/M, SC, MC
1994 Rajendran [19] RAJ C S/M, SC, MC
1995 Gonzalez et al. [22] GA M Palmer's method, Gupta's algorithm, RAJ
2003 Aldowaisan and Allahverdi [23] SA, SA-1, SA-2, GEN, GEN-1, GEN-2 M GAN-RAJ, RAJ
2005 Grabowski and Pempera [26] DS, DSþM, TS, TSþM, TSþMP M RAJ, VNS, GASA
2006 Schuster [27] FTS M GASA
2007 Liu et al. [28] HPSO M VNS, GASA
2008 Pan et al. [29] DPSO M HPSO, RAJ, VNS, GASA
2008 Pan et al. [30] HDPSO M HPSO, DPSO
2008 Pan et al. [31] IIG M RAJ, TS, TSþM, TSþMP, DPSO
2008 Li et al. [20] CH C GAN-RAJ, RAJ
2009 Laha and Chakraborty [21] LC C GAN-RAJ, RAJ and two compared heuristics
2009 Qian et al. [32] HDE M HPSO
2010 Tseng and Lin [33] HGA M RAJ, VNS, GASA, TS, HPSO
2011 Jarboui et al. [34] GA-VNS M SA, TS, VNS, DPSO
2012 Samarghandi and ElMekkawy [35] TS-PSO M VNS, GASA, DS, DSþM, TS, TSþM, TSþMP
2013 Davendra et al. [36] DSOMA M DPSO
2015 Ding et al. [37] TMIIG M DPSO, IIG, HDE, HGA, GA-VNS, TS-PSO

a C: constructive heuristic, M: meta-heuristic.
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chronological order by publication. Several noteworthy con-
structive heuristics have been proposed for solving the Fm jnwt j
Cmax problem. Bonney and Gundry [16] and King and Spachis [17]
pioneered constructive heuristic algorithms to solve the Fm jnwt j
Cmax problem. In 1976, Bonney and Gundry [16] developed a slope
matching (S/M) method which used geometrical relationships
between the cumulative process times. In the same year, King and
Spachis [17] proposed two single-chain heuristics (LBJD(sc) and
LBJD(sc)*) and three multiple-chain heuristics (LBJD(mc), MLSS
(mc) and MCL(mc)), to solve the Fm jnwt jCmax problem. Their
computational results revealed that the overall performance of the
MCL(mc) heuristic to be excellent. Gangadharan and Rajendran
[18] and Rajendran [19] presented additional heuristics, named
GAN-RAJ and RAJ, for solving the same problem; their heuristics
were shown to be superior to the S/M [16], SC and MC heuristics
[17]. Li et al. [20] introduced a composite heuristic (CH), based on
an objective increment method, which outperformed GAN-RAJ
[18] and RAJ [19] and had the lowest CPU time of all the algorithms
to which it is compared. Laha and Chakraborty [21] presented a
constructive heuristic, called the LC heuristic, for solving the Fm j
nwt jCmax problem, based on the principle of job insertion. The
empirical results demonstrated that the solutions found using the
LC heuristic were significantly better than those using the GAN-
RAJ [18], RAJ [19] and two other compared heuristics. To the best of
the authors' knowledge, the LC heuristic is currently the state-of-
the-art constructive heuristic for solving the Fm jnwt jCmax

problem.
Some remarkable meta-heuristics have been developed for

solving the Fm jnwt jCmax problem. Gonzalez et al. [22] developed a
hybrid genetic algorithm (GA) for solving the Fm jnwt jCmax pro-
blem; it produced comparable or better solutions to benchmark
problems than known heuristic algorithms. Aldowaisan and
Allahverdi [23] proposed six meta-heuristics (SA, SA-1, SA-2, GEN,
GEN-1, GEN-2) based on simulated annealing (SA) and GA to solve
the problem. Their computational results showed the best two of
the six algorithms to be SA-2 and GEN-2, which outperformed
GAN-RAJ [18] and RAJ [19], but required significantly more
processing time.

In the same year that Aldowaisan and Allahverdi [23] proposed
their six meta-heuristics, Schuster and Framinan [24] provided
two algorithms, including a variable neighborhood search (VNS)
algorithm and a hybrid algorithm that used both SA and GA
Please cite this article as: Lin S-W, Ying K-C. Optimization of
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(GASA) for solving the no-wait jobshop scheduling problem. The
authors showed that the VNS and GASA algorithms were superior
to the RAJ [19], even though they were not specifically designed
for solving the Fm jnwt jCmax problem. Framinan and Schuster [25]
improved upon the results of Schuster and Framinan [24] in the
jobshop case, using a meta-heuristic called complete local search
with memory (CLM).

Subsequently, more meta-heuristics have been developed for
solving the Fm jnwt jCmax problem. Grabowski and Pempera [26]
developed and compared two variants of descending search (DS,
DSþM) and three Tabu search (TS)-based algorithms (TS, TSþM,
TSþMP) which were more effective in finding high quality solu-
tions than all other previous methods, including RAJ [19], VNS [24]
and GASA [24]. Schuster [27] implemented a fast Tabu search (FTS)
algorithm for solving the no-wait jobshop scheduling problem and
the Fm jnwt jCmax problem, and find that it compared extremely
well to the GASA algorithm [24]. Liu et al. [28] presented an
effective hybrid particle swarm optimization (HPSO) for solving
the problem. Their comparisons of HPSO with other algorithms,
such as the VNS [24] and GASA [24] algorithms, demonstrated the
effectiveness of the HPSO algorithm. Pan et al. conducted a series
of studies and proposed a discrete particle swarm optimization
(DPSO) algorithm [29], a hybrid discrete particle swarm optimi-
zation (HDPSO) algorithm [30] and an improved iterated greedy
(IIG) algorithm [31]. Their computational results showed that
these meta-heuristic algorithms to be superior to several of the
best heuristics reported in the literature, in terms of quality of the
search, robustness and efficiency. Qian et al. [32] proposed an
effective hybrid differential evolution (HDE) algorithm for solving
the same problem; the simulation results demonstrated that it was
superior to the HPSO algorithm [28]. Tseng and Lin [33] proposed a
hybrid genetic algorithm (HGA), which hybridized the genetic
algorithm and a novel local search scheme. Their computational
results, based on two well-known benchmarks, showed that the
proposed HGA yielded better results than those obtained using the
RAJ [19], VNS [24], GASA [24], TS [26] and HPSO [28] algorithms.
Jarboui et al. [34] propose a hybrid genetic algorithm (GA-VNS)
that applied VNS as an improvement procedure in the final step of
the genetic algorithm. Their computational results show that GA-
VNS provided competitive results and better upper bounds (UBs),
while the VNS algorithm [24] was better than the GA-VNS for large
test instances. Samarghandi and ElMekkawy [35] developed a
makespan for no-wait flowshop scheduling problems using
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hybrid TS and PSO algorithm (TS-PSO). Their computational results
showed that it outperformed the VNS [24], GASA [24], DS [26],
DSþM [26], TS [26], TSþM [26] and TSþMP [26] algorithms and
improved upon some of the best-known solutions to the con-
sidered test problems. Recently, Davendra et al. [36] introduced a
novel discrete self-organizing migrating algorithm (DSOMA) for
solving the Fm jnwt jCmax problem. Although it is not the best
algorithm for solving this class of problem, the results obtained
using DSOMA are comparable with those of the best-performing
heuristics in the literature. More recently, Ding et al. [37] proposed
a Tabu-mechanism-improved iterated greedy (TMIIG) algorithm
for solving the problem. Their empirical results confirmed that the
TMIIG algorithm was more effective than all of the other well-
performing heuristic algorithms. To the best of our knowledge,
TMIIG is by far the best meta-heuristic algorithm for solving the
Fm jnwt jCmax problem.

In spite of the fact that the Fm jnwt jCmax problem has been
extensively studied over the last four decades, none of the avail-
able algorithms can generate optimal solutions to large Fm jnwt j
Cmax problems in a reasonable amount of time. Therefore, this
work presents two matheuristics to solve this problem optimally.
The proposed matheuristics consist of three phases. In the first
phase, an initial seed sequence is quickly generated using a
modified Nawaz–Enscore–Ham (MNEH) constructive heuristic
based on the well-known Nawaz–Enscore–Ham (NEH) heuristic
[38,39]. In the second phase, after the Fm jnwt jCmax problem is
reformulated as a special case of the asymmetric traveling sales-
man problem (ATSP), an improved solution that serves as an upper
bound (UB) of the optimal solution is obtained by using the Lin–
Kernighan–Helsgaun (LKH) heuristic [40] to enhance the search
efficiency. In the third phase, an optimal solution is obtained by
solving the binary integer programming (BIP) mathematical model
that corresponds to the transformed ATSP.

The remainder of this paper is organized as follows. Section 2
formally defines the Fm jnwt jCmax problem, which is then for-
mulated as a BIP mathematical model of its equivalent ATSP.
Section 3 describes in detail the procedures for implementing the
proposed matheuristics. Section 4 discusses the computational
results obtained by using four benchmark problem sets, and then
compares the performance of the proposed matheuristics with
that of the best-so-far algorithms. Section 5 provides some final
remarks and suggests directions for future research.
2. Problem formulation

This section defines the Fm jnwt jCmax problem. The connection
of this problem to a special case of the ATSP is exploited and a
corresponding BIP mathematical model is described.

2.1. Problem definition

The following notation is used to define the Fm jnwt jCmax

problem and to simplify the exposition of the mathematical
models.

2.1.1. Parameters

i; i' machine index
j; j' job/city index
k position index
n number of jobs to be scheduled
m number of machines in the no-wait flowshop
pj;i processing time of job j on machine i
oj;i operation of job j on machine i
Please cite this article as: Lin S-W, Ying K-C. Optimization of
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2.1.2. Decision variables

π a feasible solution/schedule
πk job in position k of a feasible schedule π
dπk� 1 ;πk minimum delay on the first machine between the

initiations of two consecutive jobs in positions k�1 and
k, rendered necessary by the no-wait restriction

Cj completion time of job j
Ck;i completion time of job in position k on machine i
Cmax makespan
Xj;k a binary variable, Xj;k ¼

1; if job j occupies position k

0;otherwise

8><
>:
CmaxðπÞ makespan of a given schedule π
φ a Hamiltonian tour of the ATSP
dðφÞ length of a given Hamiltonian tour φ
cj;j' difference between the completion times of two con-

secutive jobs/cities j and j' in a given Hamiltonian tour φ
xjj' a binary variable, xjj' ¼

1; if job j' is directly visited followed by job j

0;otherwise

8><
>:

Q a nonempty proper subset of n jobs
X a feasible solution to the ATSP
S a feasible solution set for the ATSP, where

S¼ fxjj' j
P
jAQ

P
j'=2Q

xjj'Z1; for every nonempty proper subset

Q of the n jobs}

Based on the above notation, the Fm jnwt jCmax problem that is
considered herein can be defined formally as follows. Consider a
set ϑ¼ fJ1;…; Jng of n pre-determined jobs to be processed on m
machines, such that the sequences of jobs on all machines are
identical. All jobs are simultaneously available for processing at
the beginning of the planning horizon, while all machines are
continuously available. Each job j (j¼ 1;2; :::;n) comprises of a
strictly ordered sequence of m operations (oj; 1; oj; 2; :::; oj; m), where
oj;i is the operation of job j that is pre-assigned to machine i
(i¼ 1;2; :::;m), and should be processed during processing time pj;i
without interruption. At any moment, every job is being processed
at most by one machine, and every machine can execute no more
than one job at a time. No job queue is allowed to form at any
machine, except the first one. Once the processing of a job is
initiated on the first machine, that job must be processed con-
tinuously on all machines until completion. In order to ensure that
the jobs are processed without interruption on all machines, the
jobs must be processed in the same order on all machines
(assuming non-zero processing times). Therefore, the Fm jnwt j
Cmax problem is generally assumed to be a permutation FSP. To
satisfy the no-wait constraint, the beginning processing time of
the job on the first machine may be delayed as required to ensure
that it need not wait for processing on subsequent machines. The
goal of this study is to find a feasible schedule π ¼ ðπ1; :::;πnÞ for
the n jobs that minimizes the maximum completion time (or
makespan), where πk (k¼ 1; :::;n) denotes the job that is assigned
to position k. The no-wait constraint follows the fact that the
makespan of π, CmaxðπÞ can be obtained using the following
equation [12,41]:

CmaxðπÞ ¼
Xn
k ¼ 2

dπk� 1 ;πk þ
Xm
i ¼ 1

pπn ; i

where dπk� 1 ;πk ¼ max
1r irm

Pi
i' ¼ 1 pπk� 1 ;i'�

Pi
i' ¼ 2 pπk ;i'�1

n o
for

k¼ 2; :::;n.
makespan for no-wait flowshop scheduling problems using
ega.2015.12.002i

http://dx.doi.org/10.1016/j.omega.2015.12.002
http://dx.doi.org/10.1016/j.omega.2015.12.002
http://dx.doi.org/10.1016/j.omega.2015.12.002


S.-W. Lin, K.-C. Ying / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
The mixed integer programming (MIP) model of the addressed
Fm jnwt jCmax problem can be formulated as follows:

Minimize Cmax ð1Þ
subject to

Ck;i ¼ Ck;i�1þ
Xn
j ¼ 1

Xj;k Upj;i; 8k; i41; ð2Þ

Ck;iZ
Xn
j ¼ 1

Xj;k Upj;i; 8k; i¼ 1; ð3Þ

Ck;iZCk�1;iþ
Xn
j ¼ 1

Xj;k Upj;i; 8k41; i; ð4Þ

CmaxZCk;m; 8k; ð5Þ

Xn
k ¼ 1

Xj;k ¼ 1; 8 j; ð6Þ

Ck;iZ0; 8k; i; ð7Þ

Xj;kAf0;1g; 8 j; k: ð8Þ
The objective function (1) is to minimize the maximal com-

pletion time (makespan). Constraint set (2) specifies the rela-
tionship between the completion times of each job on two
sequential machines. Constraint set (3) ensures that the comple-
tion time of each job on the first machine is more than or equal to
its processing time on that machine. Constraint set (4) presents
the relationship between the completion times of two consecutive
jobs on each machine. Constraint set (5) sets the maximal com-
pletion time. Constraint set (6) ensures that every job is assigned
to a single job position. Constraint set (7) defines that the com-
pletion time of each job is nonnegative. Finally, Constraint set (8)
defines the binary variables.

2.2. Converting the problem into an ATSP, and formulating it as a BIP
model

The Fm jnwt jCmax problem can be transformed into a special
case of the ðnþ1Þ-city ATSP [12]. Let G denote the complete, arc-
weighted, directed graph with vertex set fJ0; J1;…; Jng and the
traffic cost cj;j' (8 j; j'Af0;1; :::ng) on the arc from job/city Jj to Jj'
defined as follows, where J0 is a dummy job with zero processing
time on all machines:

cj;j0 ¼

Xm
i ¼ 1

pj0 ; i; if j¼ 0

0; if j0 ¼ 0

Cj0 �Cj ¼ max
1r irm

0;
Xm
i0 ¼ i

ðpj0 ;i0 �pj;i0 Þþpj;i0

( )
;otherwise

8>>>>>>><
>>>>>>>:

ð9Þ

As is well known [12,15], a feasible schedule π ¼ ðπ1; :::;πnÞ of
the Fm jnwt jCmax problem can be represented as a directed
Hamiltonian cycle φ¼ ð0;π1; :::;πn;0Þ in the digraph G, which
begins from the dummy city 0, goes to city π1 and finally returns
from city πn to the dummy city 0. The ðnþ1Þ-city ATSP is solved by
finding a minimal length dðφÞ of the directed Hamiltonian cycle
φ¼ ð0;π1; :::;πn;0Þ of all the cities; this process is equivalent to
finding an optimal sequence π ¼ ðπ1; :::;πnÞ with a minimal
makespan CmaxðπÞ as the solution to the Fm jnwt jCmax problem,
and dðφÞ ¼ CmaxðπÞ.

The above ðnþ1Þ-city ATSP can be formulated as the following
BIP mathematical model, which is used in the third phase of the
Please cite this article as: Lin S-W, Ying K-C. Optimization of
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proposed matheuristics:

Minimize z¼
Xn
j ¼ 0

Xn
j' ¼ 0

cj;j'xjj' ð10Þ

subject to

Xn
j ¼ 0
ja j'

xjj' ¼ 1; j'¼ 0;1;…;n; ð11Þ

Xn
j' ¼ 0
j'a j

xjj' ¼ 1; j¼ 0;1;…;n; ð12Þ

X ¼ fxjj'gAS; ð13Þ

xjj'Af0;1g; 8 j; j'¼ 0;1;…;n; and ja j': ð14Þ

The objective function (10) is to find a minimal length dðφÞ of
the directed Hamiltonian cycle φ¼ ð0;π1; :::;πn;0Þ of all the cities.
Constraint set (11) ensures that only one city can be directly vis-
ited before city j'ðj'¼ 0;1;…;nÞ. Constraint set (12) ensures that
only one city can be directly visited after city jðj¼ 0;1;…;nÞ.
Constraint (13) prevents sub-tours. Constraint set (14) defines the
decision variable xjj' ð8 j; j'¼ 0;1;…;n; ja j'Þ as binary.
3. Proposed matheuristics

The proposed matheuristics consist of three phases. In the first
phase, two versions of the MNEH constructive heuristics are used
to obtain the initial seed sequences for solving the Fm jnwt jCmax

problem. Then, in the second phase, the Fm jnwt jCmax problem is
converted into an ATSP, and the LHK algorithm is then applied to
improve upon the initial solution and obtain a near-optimal
solution. Finally, in the third phase, the near-optimal solution
obtained by the LHK algorithm is set as the UB of the corre-
sponding BIP mathematical model of the transformed ATSP; the
BIP model is solved using the Gurobi optimizer, a state-of-the-art
mathematical programming solver, in order to obtain the optimal
solution. Since two constructive heuristics are used to generate the
initial seed sequence in the first phase, two versions of the
matheuristic exist, which are Matheuristic1 and Matheuristic2. The
three phases are described in detail below.

Phase I. : Using MNEH constructive heuristics to obtain initial
seed sequences

The procedures for implementing the two versions of the
MNEH constructive heuristics, which can rapidly generate an
initial seed sequence for solving the Fm jnwt jCmax problem, are
described as follows.

Step 1: Generate a job list π ¼ ðπ1; :::;πnÞ with respect to an
indicator value. In this work, two versions of constructive
heuristics, MNEH1 and MNEH2, are used to generate π. MNEH1

serves to sort n jobs in a non-increasing order of their total
processing times to yield a job list π. MNEH2 uses the nearest
neighbor (NN) algorithm [42] to yield a job list π. The procedure
for executing the NN algorithm is as follows.
Step 1.1: Start from a dummy job as the current vertex.
Step 1.2: Find the shortest edge that connects the current vertex
to an unvisited vertex V.
Step 1.3: Set the current vertex to V and mark V as visited.
Step 1.4: If all of the vertices in the domain are visited, then
terminate; otherwise, go back to Step 1.2.
makespan for no-wait flowshop scheduling problems using
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Phase III of the proposed matheuristics
Begin 

Input upper bound obtained in the Phase II;
Solve the relaxed model (BIP model without Constraint (13));
While the sub-tour exist
Begin 

Add the sub-tour as new constraint;
Solve relaxed model;

End
End

Fig. 2. An outline of Phase III of the proposed matheuristics.
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Step 2: Select the first two jobs from the job list π ¼ ðπ1; :::;πnÞ;
determine the best (minimum) makespan of the two sequences
by placing π1 in the first place and π2 in the second place, and
then by reversing that order. Do not change the relative posi-
tions of the two jobs with respect to each other in the remaining
steps of the MNEH1/MNEH2 constructive heuristic.
Step 3: Pick the job that is in the next position in π; find the best
sequence by placing this job in all possible positions in the
partial sequence as developed thus far.
Step 4: Repeat Step 3 until all jobs are placed in the initial seed
sequence.

Phase II. : Using the LKH heuristic to improve the initial seed
sequence.

After the initial seed sequence is obtained in Phase I, a dummy
job/city (denoted as zero) is added to the beginning of the initial
seed sequence. In the second phase, the Fm jnwt jCmax problem is
transformed into a special case of the ATSP, and is solved using the
LKH heuristic [40], which is a well-known and highly effective
algorithm. Eq. (9) gives the traffic cost cj;j' on the arc of the
transformed ATSP from job/city Jj to Jj' (8 j; j'Af0;1; :::ng). Fig. 1
presents a sketch of the LKH heuristic. First, the specification of the
problem to be solved is read. In order to create a candidate set of
tours, the algorithm generates a set of initial tours in some random
fashion, and then repeatedly performs the local optimization on
each initial tour to reduce its length until a tour is obtained for
which no exchange can yield an improvement. After the initial
length of the best tour is set to a large floating-point number
(denoted as DBL_MAX), the algorithm repeatedly improves the
candidate solutions for a specified number of runs. Owing to space
limitations, this work does not provide details of the LKH heuristic.
The reader is referred to the paper by Helsgaun [40] for a detailed
discussion of the use of the LKH heuristic for solving the traveling
salesman problem. Execution of the LKH heuristic yields an
improved feasible solution, which serves as a UB on the optimum.

Phase III. : Solving the corresponding BIP model to obtain an
optimal solution.

Fig. 2 presents an outline of Phase III. Firstly, the UB obtained in
Phase II is input into the BIP mathematical model. Then, as shown
in Fig. 2, a relaxed ATSP model is used repeatedly to obtain feasible
solutions of the BIP mathematical model that corresponds to the
transformed ATSP. Constraint (13), which prevents sub-tours of the
transformed ATSP, significantly affects the performance of the
proposed algorithm in solving the MIP model. The MIP model is
therefore relaxed by removing constraint (13), such that the
relaxed model is much more easily solved at the expense of gen-
erating sub-tours. When the optimal solution with sub-tours is
LKH heuristic

void main () {
ReadProblemData ();
CreateCandidateSet ();
BestCost DBL_MAX;
For (Run 1; Run <= Runs; Run++) {

double Cost FindTour ();
if (Cost < BestCost) {

RecordBestTour ();
BestCost Cost;

}
}

}

=
=

=

=

Fig. 1. A sketch of the LKH heuristic [33].
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obtained for the relaxed TSP model, these sub-tours are added to
the model as new constraints; the relaxed model is then solved
again. Finally, an optimal solution can be obtained using the
Gurobi optimizer (version 6.0).
4. Computational results

This section elucidates the computational experiments that are
performed to evaluate the performance of the proposed math-
euristics in solving the Fm jnwt jCmax problem. The following sub-
sections compare the computational results obtained by applying
the proposed matheuristics to the test problems with those
obtained using other state-of-the-art algorithms.

4.1. Test problems

Four sets of benchmark problem instances are used to verify
the effectiveness and efficiency of the proposed matheuristics, the
first being the set of benchmark problems from the OR-Library as
provided by Reeves [43]. This problem set comprises of 21 test
instances in seven combinations, ranging from 20 jobs with five
machines to 75 jobs with 20 machines. For each size of problem,
three instances are provided.

The second benchmark problem set is composed of the 120
benchmark instances of Taillard [44], for which the processing
time pj;i ðj¼ 1; :::;n; i¼ 1; :::;mÞ is an integer generated from the
uniform distribution [1, 99]. The number of jobs n¼ {20, 50, 100,
200, 500} and the number of machines m¼ {5, 10, 20} yield 12
combinations, each with 10 test instances. Therefore, 120 test
instances of the second problem set are used.

The third set of benchmark problem instances is the 480 new
hard benchmark instances of the permutation FSP as proposed by
Vallada et al. [45]. This benchmark problem set consists of 240
large instances and 240 small instances, with up to 800 jobs on 60
machines. Vallada et al. [45] generated thousands of instances and
selected the hardest ones. Small instances include 24 combina-
tions of n¼ {10, 20, 30, 40, 50, 60} jobs with m¼ {5, 10, 15, 20}
machines. Large instances refer to 24 combinations of n¼ {100,
200, 300, 400, 500, 600, 700, 800} jobs with m¼ {20, 40, 60}
machines. Ten instances of each combination yield a total of 480
instances.

In order to verify the capability of the proposed matheuristics
to yield the optimal solution in solving the Fm jnwt jCmax problem,
a new benchmark problem set is generated herein using the same
experiment design as Taillard [44], which consists of 30 very large-
scale test instances. The fourth benchmark problem set comprises
of three combinations of n¼ {1000, 1500, 2000} jobs with m¼ 20
machines. Ten test instances are generated for each size of pro-
blem, denoted as ta121 to ta130, ta131 to ta140, and ta141 to ta150
for n¼ {1000, 15000, 2000}, respectively.
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4.2. Results and discussion

The proposed matheuristics are implemented in Cþþ , com-
piled with the maximum execution speed option and run on a PC
with an Intel

s

Core(™) 2 Quad Q9400 processor that runs at
2.66 GHz with 20 GB of RAM.

In order to demonstrate the effectiveness of the MNEH1/
MNEH2 heuristics in the first phase of the matheuristic, compu-
tational experiments are conducted on the four benchmark pro-
blem sets. The heuristics are compared with the LC heuristic [21], a
state-of-the-art constructive heuristic for solving the Fm jnwt jCmax

problem. Table 2 lists the average computational times (CPU times
in seconds) required by the LC heuristic and the MNEH1/MNEH2

heuristics when applied to each benchmark problem set; the
numbers of instances for which the former yield better, equally
good, or worse solutions than the latter are shown. As seen in
Table 2, the MNEH1 and the MNEH2 heuristics both outperform
the LC heuristic, especially for large problems. The three con-
structive heuristics are run for approximately the same CPU time.
Specifically, the proposed MNEH1 heuristic finds better solutions
than the LC heuristic in 10 out of 21, 62 out of 120, 328 out of 480,
and 30 out of 30 test instances when applied to the first, second,
third and fourth benchmark problem sets, respectively, whereas
the proposed MNEH2 heuristic finds better solutions than the LC
heuristic in 11 out of 21, 61 out of 120, 340 out of 480, and 30 out
Table 3
Computational Results for Reeves's benchmark test instances.

Name n�m Opt. Matheuristic1 Matheuristic2 Matheuristic
w/o UB

UB IIGA

T (s) T (s) T (s) RER RER

Rec1 20�5 1526 0.02 0.02 0.07 0.00 0.00
Rec3 20�5 1361 0.04 0.04 0.04 0.00 0.00
Rec5 20�5 1511 0.06 0.05 0.05 0.00 0.01
Rec7 20�10 2042 0.21 0.27 0.28 0.00 0.00
Rec9 20�10 2042 0.05 0.05 0.04 0.00 0.00
Rec11 20�10 1881 0.02 0.02 0.02 0.00 0.00
Rec13 20�15 2545 0.09 0.09 0.16 0.00 0.00
Rec15 20�15 2529 0.08 0.08 0.10 0.00 0.00
Rec17 20�15 2587 0.08 0.08 0.13 0.00 0.00
Rec19 30�10 2850 0.07 0.08 0.06 0.00 0.00
Rec21 30�10 2821 0.13 0.13 0.16 0.00 0.18
Rec23 30�10 2700 0.07 0.07 0.07 0.00 0.00
Rec25 30�15 3593 0.15 0.14 0.15 0.00 0.01
Rec27 30�15 3431 0.10 0.10 0.13 0.00 0.01
Rec29 30�15 3291 0.06 0.07 0.07 0.00 0.01
Rec31 50�10 4307a 0.24 0.23 0.25 0.00 0.37
Rec33 50�10 4424 0.12 0.11 0.09 0.00 0.76
Rec35 50�10 4397 0.18 0.19 0.19 0.00 0.15
Rec37 75�20 8008 0.54 0.56 0.52 0.00 0.77
Rec39 75�20 8419 0.67 0.67 0.89 0.00 0.73
Rec41 75�20 8437 0.43 0.44 0.54 0.00 0.81
Average 0.16 0.17 0.19 0.00 0.18

a The bold values indicate the optimal solutions that have not been found before.

Table 2
Results of statistical tests (the MNEH1/MNEH2 heuristic vs. the LC heuristic).

Benchmark problem set MNEH1 vs. LC MNEH2 v

Better Tie Lossa Better

First 10 0 11 11
Second 62 2 54 61
Third 328 11 141 340
Forth 30 0 0 30

a CPU time in second.
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of 30 test instances when applied to the first, second, third and
fourth benchmark problem sets, respectively.

In order to verify the effectiveness and efficiency of the pro-
posed matheuristics, the results are compared with those found
using some state-of-the-art algorithms (DPSO [29], IIGA [31], HDE
[32], HGA [33], GA-VNS [34], TS-PSO [35] and TMIIG [37]). Reeves
[43] previously tested all seven of these algorithms on the 21
instances considered herein. Our study compares the proposed
matheuristics with those seven algorithms when applied to the
same benchmark problem set. Table 3 lists the computational
results obtained by using Matheuristic1, Matheuristic2, the math-
euristic without the UB, DPSO, IIGA, HDE, HGA, TS-PSO, HDE and
TMIIG algorithms for solving the 21 Reeves's test instances. Col-
umn 1 in Table 3 (Name) provides the name of each instance.
Column 2 (n�m) specifies the combination of the number of jobs
and the number of machines. Column 3 (Opt.) presents the opti-
mal solutions obtained using Matheuristic1 and Matheuristic2.
Columns 4–6 present the required execution times T(s) (CPU times
in seconds) of Matheuristic1, Matheuristic2 and the matheuristic
without the UB. The other columns specify the relative error rates
(RER) and the execution times of the UB and the seven compared
algorithms. The RER is given by: RER¼ ðCh�Opt:Þ=Opt:� 100%,
where Ch denotes the makespan obtained by algorithm h; Opt. is
the optimal solution obtained by the proposed matheuristics. As
shown in Table 3, both Matheuristic1 and Matheuristic2 obtain
DPSO GA-VNS HGA TS-PSO HDE TMIIG

T (s) RER T (s) RER T (s) RER T (s) RER T (s) RER T (s) RER T (s)

0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.34 0.00 3.10 0.00 0.20
0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.31 0.00 3.10 0.00 0.20
0.02 0.02 0.02 0.01 0.00 0.00 0.01 0.42 0.28 0.09 3.10 0.00 0.20
0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.20 0.38 0.00 3.90 0.00 0.20
0.02 0.00 0.00 0.02 0.02 0.00 0.01 0.00 0.40 0.00 3.80 0.00 0.20
0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.21 0.39 0.15 3.90 0.00 0.20
0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.11 0.42 0.00 5.10 0.00 0.20
0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.17 0.40 0.00 5.20 0.00 0.20
0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.04 0.44 0.00 5.20 0.00 0.20
0.04 0.19 0.02 0.11 0.00 0.00 0.03 0.72 0.51 0.06 10.40 0.00 0.45
0.04 0.11 0.04 0.09 0.02 0.28 0.03 0.17 0.49 0.18 10.20 0.07 0.45
0.04 0.05 0.05 0.07 0.05 0.00 0.03 0.07 0.53 0.12 10.40 0.00 0.45
0.04 0.05 0.03 0.00 0.02 0.00 0.03 0.52 0.55 0.03 15.00 0.00 0.45
0.05 0.25 0.06 0.08 0.07 0.00 0.03 0.18 0.58 0.18 14.80 0.01 0.45
0.06 0.09 0.02 0.13 0.06 0.00 0.03 0.29 0.61 0.20 14.90 0.03 0.45
0.11 0.42 0.33 0.51 0.34 0.63 0.27 1.10 1.29 0.64 3.80 0.22 1.25
0.10 0.62 0.34 0.71 0.36 0.77 0.25 1.07 1.91 0.96 3.70 0.39 1.25
0.10 0.29 0.34 0.40 0.30 0.62 0.23 0.63 1.85 0.74 3.70 0.19 1.25
0.18 0.85 1.16 0.90 0.35 1.41 1.45 1.29 3.42 0.89 14.70 0.41 2.81
0.18 0.82 0.99 0.76 0.98 1.02 1.28 1.43 3.51 0.82 14.60 0.57 2.81
0.18 0.71 0.88 0.68 1.12 0.81 1.07 1.58 3.50 0.79 14.70 0.50 2.81
0.06 0.21 0.21 0.21 0.18 0.26 0.23 0.49 1.05 0.28 7.89 0.11 0.79

s. LC MNEH1 MNEH2 LC

Tie Loss Time (s)a Time (s) Time (s)

0 10 o0.001 o0.001 o0.001
0 59 0.001 0.001 0.001
6 134 0.004 0.004 0.006
0 0 0.046 0.052 0.088
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Table 5
Optimal solutions for 120 Taillard's benchmark test instances.

Instance Opt. Instance Opt. Instance Opt. Instance Opt.

Ta01 1486 Ta31 3160 Ta61 6361a Ta91 15225
Ta02 1528 Ta32 3432 Ta62 6212 Ta92 14990
Ta03 1460 Ta33 3210 Ta63 6104 Ta93 15257
Ta04 1588 Ta34 3338 Ta64 5999 Ta94 15103
Ta05 1449 Ta35 3356 Ta65 6179 Ta95 15088
Ta06 1481 Ta36 3346 Ta66 6056 Ta96 14976
Ta07 1483 Ta37 3231 Ta67 6221 Ta97 15277
Ta08 1482 Ta38 3235 Ta68 6109 Ta98 15133
Ta09 1469 Ta39 3070 Ta69 6355 Ta99 14985
Ta10 1377 Ta40 3317 Ta70 6365 Ta100 15213
Ta11 2044 Ta41 4274 Ta71 8055 Ta101 19531
Ta12 2166 Ta42 4177 Ta72 7853 Ta102 19942
Ta13 1940 Ta43 4099 Ta73 8016 Ta103 19759
Ta14 1811 Ta44 4399 Ta74 8328 Ta104 19759
Ta15 1933 Ta45 4322 Ta75 7936 Ta105 19697
Ta16 1892 Ta46 4289 Ta76 7773 Ta106 19826
Ta17 1963 Ta47 4420 Ta77 7846 Ta107 19946
Ta18 2057 Ta48 4318 Ta78 7880 Ta108 19872
Ta19 1973 Ta49 4155 Ta79 8131 Ta109 19784
Ta20 2051 Ta50 4283 Ta80 8092 Ta110 19768
Ta21 2973 Ta51 6129 Ta81 10675 Ta111 46121
Ta22 2852 Ta52 5725 Ta82 10562 Ta112 46627
Ta23 3013 Ta53 5862 Ta83 10587 Ta113 46013
Ta24 3001 Ta54 5788 Ta84 10588 Ta114 46396
Ta25 3003 Ta55 5886 Ta85 10506 Ta115 46251
Ta26 2998 Ta56 5863 Ta86 10623 Ta116 46490
Ta27 3052 Ta57 5962 Ta87 10793 Ta117 46043
Ta28 2839 Ta58 5926 Ta88 10801 Ta118 46368
Ta29 3009 Ta59 5876 Ta89 10703 Ta119 46240
Ta30 2979 Ta60 5957 Ta90 10747 Ta120 46292

a The bold values indicate the optimal solutions that have not been found
before.
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optimal solutions for all test instances in less computational time
than all the other algorithms, except for IIGA. The matheuristic
without the UB algorithm can also find optimal solutions in all test
instances, but requires more computational time than that of
Matheuristic1 and Matheuristic2. For Reeves's benchmark test
instances, applying the UB reduces the total average times
required for Matheuristic1 and Matheuristic2 by 15.79% and
21.05%, respectively. The RERs of the UB in all test instances are
zero, proving that the UB is very tight in the 21 instances of Reeves
[43]. Notably, none of the seven state-of-the-art algorithms yields
the optimal solutions in test instances Rec31, Rec33, Rec37, Rec39
and Rec41. The optimal solutions that have not been found before
are presented in bold.

To the best of the authors' knowledge, only the GA-VNS and
TMIIG algorithms have been tested on the Taillard benchmark
problem set. Jarboui et al. [34] used only the GA-VNS to solve 110
out of 120 test instances, and did not execute it for the ten 500-job
with 20-machine instances. The GA-VNS was coded in Cþþ pro-
gramming language and ran in Windows XP on a desktop PC with
an Intel Pentium IV, 3.2 GHz processor with 512 MB of memory.
Jarboui et al. [34] implemented 20 replications for each of the 110
test instances, which output the best solutions as new UBs. The
TMIIG was coded using Cþþ , with the computational experiment
executed on a personal computer (PC) with an Intel Core (TM) CPU
running at 3.20 GHz in a Windows 7 Operating System environ-
ment. Ding et al. [37] utilized the TMIIG algorithm to solve all 120
Taillard problem instances, providing 43 new best solutions. The
termination condition of the maximum running time was set as
Tmax¼n2/2 ms for both GA-VNS and TMIIG.

Tables 4 and 5 present the computational results of
Matheuristic1, Matheuristic2, the matheuristic without the UB, GA-
VNS and TMIIG for the Taillard benchmark problem set. Table 4
lists the relative error rates (RER) and the average computational
times, respectively, when Matheuristic1, Matheuristic2, the math-
euristic without the UB, GA-VNS and TMIIG are applied to pro-
blems of various sizes. In Table 4, Column 1 (n�m) presents the
combination of the number of jobs and the number of machines;
Column 2 presents the average optimal solutions over 10 instances
of each combination; Columns 3–5 list the average computational
times T(s) (CPU times in seconds) required to execute
Matheuristic1, Matheuristic2 and the matheuristic without the UB,
respectively; Column 6 presents the average RERs of the UB; Col-
umns 7 and 8 present the average RERs obtained and the com-
putational times required using GA-VNS; and Columns 9 and 10
present the average RERs obtained and the computational times
required using TMIIG. Table 4 reveals that both Matheuristic1 and
Matheuristic2 yield optimal solutions in less computational time
than the two other algorithms. The matheuristic without the UB
Table 4
Average execution times and RERs for Taillard's benchmark test instances.

n�m Opt. (average) Matheuristic1 Matheuristic2 Math

T(s) T(s) T(s)

20�5 1480.3 0.05 0.05 0.0
20�10 1983.0 0.11 0.11 0.1
20�20 2971.9 0.29 0.34 0.3
50�5 3269.5 0.16 0.16 0.2
50�10 4273.6 0.28 0.28 0.3
50�20 5897.4 1.25 1.23 1.3

100�5 6196.1 0.41 0.40 0.7
100�10 7991.0 1.31 1.28 1.6
100�20 10658.5 1.75 1.73 2.2
200�10 15124.7 3.17 3.16 4.4
200�20 19788.4 5.85 5.79 6.7
500�20 46284.1 54.58 54.23 101.3
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also yields optimal solutions in all test instances, but requires
more computational time than that of Matheuristic1 or
Matheuristic2. The total average times saved by adding the UB are
46.12% and 46.47% for Matheuristic1 and Matheuristic2, respec-
tively. The maximum RER among all test instances is 0.037%, thus
verifying that the UB is very strict. Notably, neither GA-VNS nor
TMIIG yields optimal solutions when the number of jobs is equal
to, or larger than, 100. Table 5 lists the optimal solutions obtained
using the proposed matheuristics in the 120 Taillard benchmark
test instances; the bold values indicate the optimal solutions that
have not been found before.

Matheuristics can typically be used in (at least) two ways. First,
they can be used as heuristics, if the matheuristic is terminated
after some time (possibly after some iterations), to yield an
approximate solution. Second, they can also be used as exact
euristic w/o UB UB GA-VNS TMIIG

RER RER T (s) RER T (s)

5 0.007 0.00 0.20 0.00 0.20
7 0.003 0.00 0.20 0.00 0.20
5 0.009 0.00 0.20 0.00 0.20
5 0.007 0.02 1.25 0.02 1.25
5 0.000 0.00 1.25 0.00 1.25
0 0.000 0.00 1.25 0.00 1.25
1 0.000 0.44 5.00 0.35 5.00
4 0.000 0.33 5.00 0.30 5.00
9 0.000 0.32 5.00 0.32 5.00
9 0.037 0.91 20.00 0.74 20.00
6 0.012 0.86 20.00 0.78 20.00
0 0.000 NA NA 1.13 125.00
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methods if the matheuristic must be run until an optimal solution
is found. With respect to the first usage, the computational results
in Tables 3–5 show the proposed Matheuristic1 and Matheuristic2
to be more effective than all compared heuristics except for the
IIGA, with not only approximate solutions but also optimal solu-
tions being found in all test instances in less computational time
than that required by the compared heuristics. With respect to the
second usage, the proposed MIP model is solved herein using
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Fig. 3. The CPU times need to get the optimal solution by using the Matheuristic1,
Matheuristic2 and MIP model.

Table 6
Optimal solutions for 240 small instances of Vallada et al. benchmark problem set.

Instance Opt. Instance Opt. Instance Opt.

10_5_1 760 20_5_1 1414 30_5_1 2072
10_5_2 759 20_5_2 1481 30_5_2 1960
10_5_3 823 20_5_3 1588 30_5_3 2029
10_5_4 776 20_5_4 1355 30_5_4 2111
10_5_5 798 20_5_5 1520 30_5_5 1967
10_5_6 849 20_5_6 1333 30_5_6 2127
10_5_7 843 20_5_7 1388 30_5_7 2036
10_5_8 768 20_5_8 1340 30_5_8 2051
10_5_9 841 20_5_9 1499 30_5_9 2046
10_5_10 719 20_5_10 1546 30_5_10 1546
10_10_1 1253 20_10_1 2017 30_10_1 2653
10_10_2 1278 20_10_2 1998 30_10_2 2861
10_10_3 1171 20_10_3 2036 30_10_3 2796
10_10_4 1181 20_10_4 1932 30_10_4 2762
10_10_5 1294 20_10_5 2032 30_10_5 2773
10_10_6 1198 20_10_6 2059 30_10_6 2808
10_10_7 1256 20_10_7 2051 30_10_7 2683
10_10_8 1220 20_10_8 2018 30_10_8 2532
10_10_9 1243 20_10_9 1979 30_10_9 2693
10_10_10 1317 20_10_10 1963 30_10_10 2647
10_15_1 1516 20_15_1 2663 30_15_1 3347
10_15_2 1596 20_15_2 2523 30_15_2 3243
10_15_3 1611 20_15_3 2392 30_15_3 3301
10_15_4 1649 20_15_4 2392 30_15_4 3406
10_15_5 1602 20_15_5 2502 30_15_5 3463
10_15_6 1529 20_15_6 2634 30_15_6 3478
10_15_7 1702 20_15_7 2580 30_15_7 3416
10_15_8 1720 20_15_8 2521 30_15_8 3444
10_15_9 1683 20_15_9 2511 30_15_9 3314
10_15_10 1687 20_15_10 2519 30_15_10 3390
10_20_1 1913 20_20_1 3082 30_20_1 3894
10_20_2 1973 20_20_2 2872 30_20_2 4017
10_20_3 1989 20_20_3 2935 30_20_3 4022
10_20_4 1971 20_20_4 2828 30_20_4 3786
10_20_5 1979 20_20_5 3078 30_20_5 3781
10_20_6 2152 20_20_6 3172 30_20_6 3971
10_20_7 1893 20_20_7 2999 30_20_7 3999
10_20_8 1933 20_20_8 2837 30_20_8 4016
10_20_9 1941 20_20_9 3094 30_20_9 4019
10_20_10 1876 20_20_10 2884 30_20_10 4113
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Gurobi (Version 6.0), a state-of-the-art mathematical program-
ming solver. The CPU times required to yield the optimal solutions
in 16 very small instances with m¼ 3 and n¼ {8, …, 23} using
Matheuristic1, Matheuristic2 and the MIP model are measured.
Fig. 3 presents the computational results, which reveal that the
CPU time required to obtain the optimal solution using the MIP
model increases rapidly with the size of the test instance; in
instances with n¼ 23, the CPU time required to obtain the optimal
solution using the MIP model exceeds 24 h. In contrast, the CPU
times required by Matheuristic1 and Matheuristic2 are only 0.02
and 0.02 s, respectively.

Tables 6 and 7 list the optimal solutions obtained using the
proposed matheuristics when applied to small and large test
instances in the third benchmark problem set, respectively.
Notably, all 480 benchmark instances can be optimally solved
using the proposed matheuristics, and the maximum required
computational time is 1441 s. These results confirm that the pro-
posed matheuristics are highly effective and efficient in solving the
Fm jnwt jCmax problem.

Table 8 shows the computational results obtained using the UB,
Matheuristic1 and Matheuristic2 for solving 30 newly generated
very large test instances in the fourth benchmark problem set. In
Table 8, Columns 1–4 show the name, number of jobs, number of
machines and optimal solution in each instance, respectively;
Column 5 provides the average RER obtained using the UB; Col-
umns 6 and 7 present the solutions obtained using MNEH1 with
the computational times required; Columns 8 and 9 present the
Instance Opt. Instance Opt. Instance Opt.

40_5_1 2842 50_5_1 3577 60_5_1 3906
40_5_2 2875 50_5_2 3303 60_5_2 3779
40_5_3 2592 50_5_3 3289 60_5_3 3858
40_5_4 2637 50_5_4 3391 60_5_4 3899
40_5_5 2738 50_5_5 3405 60_5_5 3941
40_5_6 2598 50_5_6 3302 60_5_6 3758
40_5_7 2649 50_5_7 3088 60_5_7 4001
40_5_8 2829 50_5_8 3238 60_5_8 4138
40_5_9 2753 50_5_9 3117 60_5_9 3784
40_5_10 2797 50_5_10 3372 60_5_10 3980
40_10_1 3550 50_10_1 4121 60_10_1 5067
40_10_2 3416 50_10_2 4261 60_10_2 5185
40_10_3 3408 50_10_3 4227 60_10_3 4953
40_10_4 3622 50_10_4 4320 60_10_4 5006
40_10_5 3488 50_10_5 4356 60_10_5 5140
40_10_6 3565 50_10_6 4205 60_10_6 5146
40_10_7 3496 50_10_7 4096 60_10_7 5130
40_10_8 3427 50_10_8 4322 60_10_8 4976
40_10_9 3501 50_10_9 4289 60_10_9 5001
40_10_10 3447 50_10_10 4268 60_10_10 5040
40_15_1 4370 50_15_1 4972 60_15_1 5972
40_15_2 4214 50_15_2 5079 60_15_2 5965
40_15_3 4251 50_15_3 5136 60_15_3 6070
40_15_4 4249 50_15_4 5248 60_15_4 5974
40_15_5 4353 50_15_5 5092 60_15_5 6004
40_15_6 4120 50_15_6 5194 60_15_6 6149
40_15_7 4299 50_15_7 5297 60_15_7 6059
40_15_8 4279 50_15_8 5174 60_15_8 5974
40_15_9 4116 50_15_9 5096 60_15_9 5760
40_15_10 4301 50_15_10 5173 60_15_10 6092
40_20_1 4935 50_20_1 5854 60_20_1 6925
40_20_2 4854 50_20_2 5825 60_20_2 6928
40_20_3 5103 50_20_3 5952 60_20_3 7151
40_20_4 4837 50_20_4 5960 60_20_4 7077
40_20_5 4712 50_20_5 5893 60_20_5 6699
40_20_6 4936 50_20_6 6042 60_20_6 6781
40_20_7 5092 50_20_7 5984 60_20_7 6909
40_20_8 4999 50_20_8 5906 60_20_8 6871
40_20_9 5041 50_20_9 5977 60_20_9 6833
40_20_10 4726 50_20_10 5926 60_20_10 6724
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Table 7
Optimal solutions for 240 large instances of Vallada et al. benchmark problem set.

Instance Opt. Instance Opt. Instance Opt. Instance Opt. Instance Opt. Instance Opt.

100_20_1 10441 200_40_1 26652 300_60_1 45767 500_20_1 46305 600_40_1 72374 700_60_1 99706
100_20_2 10617 200_40_2 26434 300_60_2 45455 500_20_2 46646 600_40_2 72497 700_60_2 99288
100_20_3 10693 200_40_3 26320 300_60_3 45622 500_20_3 46489 600_40_3 72353 700_60_3 98604
100_20_4 10622 200_40_4 26576 300_60_4 46023 500_20_4 46187 600_40_4 72648 700_60_4 99206
100_20_5 10762 200_40_5 27038 300_60_5 45763 500_20_5 46517 600_40_5 72471 700_60_5 99327
100_20_6 10544 200_40_6 26586 300_60_6 45936 500_20_6 46171 600_40_6 72535 700_60_6 99394
100_20_7 10875 200_40_7 26555 300_60_7 46563 500_20_7 46503 600_40_7 72533 700_60_7 98785
100_20_8 10640 200_40_8 26844 300_60_8 45932 500_20_8 46377 600_40_8 72426 700_60_8 99317
100_20_9 10549 200_40_9 26487 300_60_9 46112 500_20_9 46323 600_40_9 73289 700_60_9 99617
100_20_10 10495 200_40_10 26723 300_60_10 46245 500_20_10 45754 600_40_10 72324 700_60_10 100481
100_40_1 14968 200_60_1 32175 400_20_1 37222 500_40_1 60765 600_60_1 86234 800_20_1 72360
100_40_2 14761 200_60_2 32140 400_20_2 37693 500_40_2 61655 600_60_2 86026 800_20_2 72008
100_40_3 14599 200_60_3 32091 400_20_3 37482 500_40_3 61557 600_60_3 86187 800_20_3 72097
100_40_4 14651 200_60_4 31886 400_20_4 37329 500_40_4 61180 600_60_4 86477 800_20_4 71910
100_40_5 14737 200_60_5 32242 400_20_5 37520 500_40_5 61746 600_60_5 86109 800_20_5 72427
100_40_6 14470 200_60_6 31902 400_20_6 37433 500_40_6 61060 600_60_6 86122 800_20_6 72344
100_40_7 14894 200_60_7 31793 400_20_7 37748 500_40_7 60982 600_60_7 85911 800_20_7 71870
100_40_8 14807 200_60_8 31745 400_20_8 37657 500_40_8 61772 600_60_8 85978 800_20_8 71986
100_40_9 14778 200_60_9 32162 400_20_9 37452 500_40_9 61725 600_60_9 87162 800_20_9 71761
100_40_10 14490 200_60_10 32134 400_20_10 37735 500_40_10 61274 600_60_10 86200 800_20_10 71859
100_60_1 17851 300_20_1 28476 400_40_1 49529 500_60_1 73039 700_20_1 63478 800_40_1 94679
100_60_2 17887 300_20_2 28583 400_40_2 49565 500_60_2 72660 700_20_2 63252 800_40_2 94360
100_60_3 17786 300_20_3 28623 400_40_3 49555 500_60_3 73038 700_20_3 63354 800_40_3 94358
100_60_4 18030 300_20_4 28742 400_40_4 50155 500_60_4 73211 700_20_4 63390 800_40_4 94936
100_60_5 18123 300_20_5 28749 400_40_5 49884 500_60_5 72498 700_20_5 63484 800_40_5 95372
100_60_6 18167 300_20_6 28811 400_40_6 49759 500_60_6 73448 700_20_6 63589 800_40_6 94806
100_60_7 17984 300_20_7 28574 400_40_7 49989 500_60_7 72735 700_20_7 63751 800_40_7 94295
100_60_8 18191 300_20_8 28734 400_40_8 49747 500_60_8 73479 700_20_8 63685 800_40_8 94883
100_60_9 17810 300_20_9 28591 400_40_9 49875 500_60_9 72443 700_20_9 63459 800_40_9 95475
100_60_10 17831 300_20_10 29154 400_40_10 49789 500_60_10 72458 700_20_10 63166 800_40_10 94725
200_20_1 19731 300_40_1 38247 400_60_1 59650 600_20_1 55209 700_40_1 83864 800_60_1 112634
200_20_2 19768 300_40_2 38450 400_60_2 59530 600_20_2 54776 700_40_2 83773 800_60_2 112306
200_20_3 19895 300_40_3 38028 400_60_3 59583 600_20_3 55247 700_40_3 83657 800_60_3 111782
200_20_4 19624 300_40_4 38270 400_60_4 60001 600_20_4 54825 700_40_4 84147 800_60_4 112154
200_20_5 19500 300_40_5 38511 400_60_5 58865 600_20_5 54911 700_40_5 83641 800_60_5 112351
200_20_6 19878 300_40_6 38477 400_60_6 59605 600_20_6 55181 700_40_6 83650 800_60_6 112377
200_20_7 19619 300_40_7 38274 400_60_7 59235 600_20_7 54747 700_40_7 83580 800_60_7 112640
200_20_8 19850 300_40_8 38196 400_60_8 59245 600_20_8 54868 700_40_8 84074 800_60_8 112589
200_20_9 19551 300_40_9 38026 400_60_9 59784 600_20_9 55177 700_40_9 84266 800_60_9 112950
200_20_10 19798 300_40_10 38250 400_60_10 59537 600_20_10 54530 700_40_10 83550 800_60_10 111427
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solutions obtained using MNEH1þLKH with the computational
times required; Columns 10 and 11 present the numbers of
iterations (Iter.) of Matheuristic1 with the computational times
required; and Columns 12 to 17 present equivalent information
concerning MNEH2, MNEH2þLKH and Matheuristic2. Table 8
reveals that MNEH2 outperforms MNEH1. However, MNEH1þLKH
and MNEH2þLKH have similar performance, as do Matheuristic1
and Matheuristic2. LKH significantly improves the quality of the
solutions obtained using MNEH1 and MNEH2. However, LKH can-
not provide the optimal solution to the test instances in the fourth
benchmark problem set. The maximum RER among all test
instances is 0.142%, verifying that the UB is very strict. Notably,
optimal solutions can be found using either Matheuristic1 or
Matheuristic2, even though the number of jobs is 2000, with the
longest computation time at approximately 9300 s (155 min).

We analyzed the percentage of the searching nodes that could
be eliminated when the UB is applied to Phase III of each of the
proposed matheuristics; in doing so, the total number of nodes
searched by the BIP model in Phase III is compared with those
searched without the UB. The analytical results in Table 9 reveal
that a very large percentage of the nodes searched is eliminated by
applying the UB obtained in Phase II. With respect to Phase III of
Matheuristic1, the total average reduction rates (%) of nodes
searched in the first, second, third and fourth benchmark problem
sets are 18.66%, 46.74%, 22.58% and 21.31%, respectively. In Phase
III of Matheuristic2, the total average reduction rates (%) of nodes
searched in the first, second, third and fourth benchmark problem
Please cite this article as: Lin S-W, Ying K-C. Optimization of
efficient matheuristics. Omega (2015), http://dx.doi.org/10.1016/j.om
sets are 18.66%, 46.74%, 22.58% and 21.31%, respectively. This
improvement is significant, ensuring that the optimal solution of
the Fm jnwt jCmax problem can be obtained more efficiently by
using the proposed matheuristics than by using the BIP model.
5. Conclusions and recommendations for future studies

The Fm jnwt jCmax problem that is studied herein arises often in
many industries. Finding an optimal solution to the Fm jnwt jCmax

problem has long been a challenging task, in spite of the fact that
the problem is so extensively studied. This study proposes two
matheuristics to solve this problem effectively and efficiently.
Experiments on four benchmark problem sets reveal that the
proposed matheuristics yield optimal solutions for very large test
instances in an acceptable computational time. This fact demon-
strates the main contribution provided by the proposed math-
euristics, especially since the problem is NP-hard in the strong
sense. The optimality of the solution and the modest computa-
tional requirement make the proposed matheuristics highly
valuable for use in practical manufacturing systems, thus bridging
the gap between research and practice.

Some important directions for further research are as follows.
First, the proposed matheuristics can be applied to minimize the
makespan in the single machine scheduling problem with
sequence-dependent setup times. Second, the proposed math-
euristics can be easily modified to minimize the makespan in
makespan for no-wait flowshop scheduling problems using
ega.2015.12.002i
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Table 8
Optimal solutions for the test instances of the fourth benchmark problem set.

Inst. n m Opt. UB MNEH1 MNEH1þLKH Matheuristic1 MNEH2 MNEH2þLKH Matheuristic2

RER Sol. T (s) Sol. T (s) Iter. T (s) Sol. T (s) Sol. T (s) Iter. T (s)

Ta121 1000 20 88,855 0.001 95,932 0.01 88,856 31.59 12 498.80 88,810 0.016 88,856 31.27 12 498.52
Ta122 1000 20 89,165 0.002 96,240 0.02 89,167 30.79 12 628.74 89,119 0.018 89,167 28.74 12 625.19
Ta123 1000 20 88,986 0.000 96,604 0.02 88,986 31.25 4 156.29 88,961 0.018 88,986 28.36 4 153.32
Ta124 1000 20 88,494 0.001 95,561 0.02 88,495 33.59 26 1092.94 88,458 0.018 88,495 30.94 26 1089.60
Ta125 1000 20 89,210 0.001 96,335 0.02 89,211 32.59 20 975.33 89,123 0.018 89,211 30.32 20 972.56
Ta126 1000 20 88,789 0.001 95,764 0.02 88,790 31.62 10 350.65 88,730 0.018 88,790 29.62 10 348.51
Ta127 1000 20 89,052 0.002 96,205 0.02 89,054 28.44 12 614.42 89,010 0.016 89,054 28.52 12 615.47
Ta128 1000 20 89,120 0.000 96,454 0.02 89,120 31.72 3 125.38 89,099 0.016 89,120 31.25 3 124.87
Ta129 1000 20 89,226 0.001 95,979 0.02 89,227 31.16 11 448.36 89,175 0.016 89,227 30.46 11 447.40
Ta130 1000 20 88,807 0.002 95,673 0.02 88,809 31.07 7 266.10 88,772 0.018 88,809 30.41 7 264.92
Ta131 1500 20 131,191 0.008 141,941 0.04 131,202 87.74 15 1848.84 129,811 0.078 131,202 86.45 15 1841.73
Ta132 1500 20 131,085 0.007 142,227 0.04 131,094 86.48 3 349.30 129,934 0.078 131,094 88.38 3 351.16
Ta133 1500 20 130,561 0.018 141,266 0.04 130,585 91.55 7 797.50 128,821 0.094 130,585 93.29 7 776.34
Ta134 1500 20 130,505 0.016 141,046 0.04 130,526 87.83 7 720.29 128,780 0.078 130,526 89.54 7 722.19
Ta135 1500 20 131,037 0.011 141,618 0.04 131,051 87.05 16 1979.60 129,794 0.093 131,051 86.90 16 1980.63
Ta136 1500 20 131,300 0.015 141,890 0.04 131,320 92.21 10 1121.68 130,141 0.078 131,320 92.71 10 1122.52
Ta137 1500 20 130,483 0.005 141,489 0.04 130,489 83.00 13 1342.32 129,445 0.094 130,489 82.83 13 1341.39
Ta138 1500 20 131,124 0.007 141,989 0.04 131,133 78.29 12 1190.34 130,247 0.094 131,133 80.77 12 1192.78
Ta139 1500 20 130,734 0.009 141,567 0.04 130,746 76.63 4 445.12 129,925 0.094 130,746 80.39 4 449.01
Ta130 1500 20 130,719 0.005 141,630 0.04 130,726 79.36 13 1376.18 129,862 0.078 130,726 79.59 13 1377.51
Ta141 2000 20 172,205 0.131 187,500 0.07 172,431 270.55 28 5577.38 160,641 0.219 172,431 285.82 28 5591.84
Ta142 2000 20 172,652 0.119 187,104 0.07 172,857 281.45 33 9225.61 161,133 0.218 172,857 272.56 33 9202.63
Ta143 2000 20 171,937 0.001 186,780 0.07 171,939 236.08 15 2905.49 171,900 0.219 171,939 230.64 15 2901.51
Ta144 2000 20 170,972 0.003 185,784 0.07 170,977 248.25 11 2644.79 170,934 0.234 170,977 236.31 11 2632.91
Ta145 2000 20 172,295 0.001 186,778 0.07 172,297 243.78 30 7857.97 172,262 0.219 172,297 237.12 30 7856.53
Ta146 2000 20 172,086 0.002 186,947 0.07 172,090 239.27 12 2854.90 172,042 0.234 172,090 242.19 12 2856.63
Ta147 2000 20 171,993 0.002 186,879 0.07 171,996 236.64 26 4943.32 171,953 0.218 171,996 240.45 26 4943.22
Ta148 2000 20 172,375 0.000 186,322 0.08 172,375 232.91 10 2530.51 172,328 0.218 172,375 238.91 10 2535.92
Ta149 2000 20 172,745 0.003 187,364 0.08 172,750 228.91 21 6046.95 172,693 0.218 172,750 244.07 21 6048.95
Ta150 2000 20 171,858 0.142 186,736 0.07 172,102 252.01 9 2152.50 158,884 0.218 172,102 278.82 9 2177.20

Table 9
The total average reduction rates (%) of nodes searched when the UB is imposed to
the proposed matheuristics.

Benchmark problem set Phase III of Matheuristic1 Phase III of Matheuristic2

First 18.66 18.66
Second 46.74 46.74
Third 22.58 22.58
Forth 21.31 21.31
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NWFSPs, with the additional consideration of sequence-
dependent setup times. We hope to report on the same in the
near future. Third, the generalization of the proposed matheur-
istics to no-wait jobshop scheduling problems with makespan as
the objective function, for which few exact methods have been
developed, is of practical interest. Finally, the application of the
same matheuristic technique to NWFSPs with different objective
functions is worth further research.
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