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This paper considers problem contexts in which decision makers are unable or unwilling to assess trade-
off information precisely. A simulation experiment is used to assess (a) how closely a rank order of
alternatives based on partial information and stochastic multicriteria acceptability analysis (SMAA) can
approximate results obtained using full-information multi-attribute utility theory (MAUT) with multi-
plicative utility, and (b) which characteristics of the decision problem influence the accuracy of this
approximation. We find that fairly good accuracy can be achieved with limited preference information,
and is highest if either quantiles and probability distributions are used to represent uncertainty.
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1. Introduction

When facilitating decisions it sometimes happens that some
inputs to the preference model either cannot be assessed at all or
can only be assessed within relatively large bounds of uncertainty
(e.g. [1,12,13]). This can happen for a number of reasons: a lack of
time, a politically sensitive problem context, or a lack of decision
maker (DM) involvement, for example. Whatever the reason, in
these cases the DM is unable or unwilling to express him or herself
with the degree of precision required by conventional decision
aids. We call decision problems which must be addressed under
such conditions “low-involvement” decisions. The question is
what, if any, decision support can be provided in such situations.

Stochastic multicriteria acceptability analysis (SMAA [25,19]) is
a family of decision models that can be used with arbitrarily
precise preference information. It addresses low-involvement
decision-making by providing information about the types of
preferences (if any) that would lead to the selection of each
alternative.

In this paper we use a simulation experiment to evaluate the
ability of SMAA to approximate results obtained using multi-
attribute utility theory (MAUT) where preferences are repre-
sented by a multiplicative utility function. In particular, we ask
how closely results computed from a key output from SMAA (the
acceptability index) can approximate those obtained using MAUT.
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In doing so we hope to provide a broad indication of the losses
that are possible if facilitators choose to use a low-involvement
decision aid such as SMAA rather than compelling DMs to be more
precise in their assessment of certain types of preference infor-
mation - for example, using more detailed problem structuring.
We also wish to test the robustness of the SMAA approach to
various aspects of the decision process: the size of the decision
problem, the way attribute evaluations are distributed, the
underlying preference functions, the accuracy of assessed infor-
mation, the amount of preference information gathered, and the
way in which the acceptability index is constructed.

In addition to the conventional SMAA model, which uses
probability distributions to represent uncertainty in the attribute
evaluations, we also introduce and evaluate a number of ‘simpli-
fied’ models which make use of summarised measures of uncer-
tainty instead of a full probability distribution [G]. By assessing the
accuracy of both conventional and simplified uncertainty models
under a range of different conditions we hope to provide moti-
vation for the use of simplified models in appropriate circum-
stances. A similar approach has been used in Durbach and Stewart
[9] to assess the effect of using simplified uncertainty formats in
general decision-making, and we employ a similar simulation
structure in the current paper.

Our view is that in nearly all cases it is preferable to resolve
preferential uncertainty through discussion and problem structur-
ing rather than by employing more ‘lenient’ decision aids, because
of the additional insight and opportunities for learning. We focus on
those circumstances in which the DM is unable or unwilling to
participate fully in this process. In using a simulation experiment,
we acknowledge that we can only evaluate the extent to which
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using SMAA rather than MAUT might impact results. We cannot
evaluate critical issues like whether the reduced time spent on
problem structuring in SMAA is “worth” the reduction in decision
quality, or the degree to which the problem structuring process,
through the insight it generates for the DM, is useful as an end in
itself. Simulation results are unable to provide general conclusions
on the viability of different methods, but provide inputs to such
discussion by identifying the potential trade-offs in accuracy that
are implied when using a simplified model. Ultimately accuracy
must be weighed against other factors to determine which decision
model may be most appropriate for a problem.

The remainder of the paper is structured as follows. Section 2
provides a review of the relevant background literature and
notation. Section 3 describes the structure of our simulation
experiment. Section 4 presents the results in a direct fashion,
delaying a more detailed discussion of these until Section 5, which
also provides theoretical justification for some key findings using
results from applied probability theory. Section 6 discusses
implications of the simulation results for the use of SMAA as a
prescriptive decision aid, and concludes.

2. Notation and background

Consider a decision problem consisting of [ alternatives
{aj,ay ..., aj} evaluated on j attributes {cy,c,...,¢}. Let Z; be a
random variable denoting the attribute evaluation of g; on ¢;, and U be
a multi-attribute utility function mapping the attribute evaluations of
alternative a; (denoted Z;) to a real value using a weight vector w. A
joint density function fy(Z) governs the generation of the Z; in the
space X < R™/, and a second joint density function g(w) governs the
generation of imprecise or unknown weights in the weight space W.
Total lack of knowledge is usually represented by a uniform dis-
tribution in W. If restrictions have been placed on W we denote the
feasible weight space by W'.

The original SMAA method [20] analysed the combinations of
attribute weights that result in each of a set of alternatives being
selected when using an additive utility function. Subsequently, a
number of SMAA variants have been developed. These differ in
terms of the preference model used and thus the type of pre-
ference information that is imprecisely known, but are all based
upon Monte Carlo simulation from distributions which govern
unknown preference parameters (and attribute evaluations). For
example, SMAA variants are available for value function [20,17],
outranking [10], reference point [21,5], prospect theory [18],
Choquet integral [2], and AHP [7] methods. Comprehensive
reviews are given by Tervonen and Figueira [25] and Lahdelma and
Salminen [19].

Given a particular weight vector w, the global utility of each
alternative can be computed and a rank ordering of alternatives
obtained. SMAA-2 [17] is based on simulating a large number of
random weight vectors from g(w) and observing the proportion
and distinguishing features of weight vectors which result in each
alternative obtaining a particular rank r (usually the “best” rank,
r=1), using an additive value function model. Let the set of weight
vectors that result in alternative a; obtaining rank r be denoted by
W{. SMAA is based on an analysis of these sets of weights using a
number of descriptive measures, the most important of which are:

Acceptability indices: The rank-r acceptability index b;” measures
the proportion of all simulation runs, i.e. weight vectors, that make
alternative g; obtain rank r. A cumulative form of the acceptability
index called the R-best ranks acceptability index is defined as
Bf = S°F__ bl and measures the proportion of all weight vectors
for which alternative a; appears anywhere in the best R ranks. In

the discussion in Section 5 we make use of ordered acceptability
indices, where we denote the alternative with the k-th largest
rank-r acceptability index by af;, and its acceptability index by b(’k).
Central weight vectors: The central weight vector wf is defined as
the expected center of gravity of the favourable weight space W;'.
It gives a concise description of the “typical” preferences sup-
porting the selection of a particular alternative a;, and in practice is
computed from the empirical (element-wise) averages of all
weight vectors supporting the selection of a; as the best
alternative.

The exact number of Monte Carlo iterations that are required to
achieve a given accuracy is discussed in Tervonen and Lahdelma
[26]. To estimate the acceptability index within & of the true value
with 95% confidence, one requires 1.96° /452 iterations - so that
10 000 iterations will usually be sufficient to achieve error
bounds of 1%.

Uncertain attribute evaluations are conventionally treated in
SMAA using probability distributions, with each simulation run
drawing values at random from these distributions. Adapting
SMAA to use other uncertainty formats, however, is generally
straightforward, as described in Durbach and Davis [6]. Each
uncertain attribute is simply replaced by a number of lower-level
attributes which capture the uncertainty in the evaluations on that
attribute, using one of many possible simplified uncertainty for-
mats. In this paper, we test the effect of using three different for-
mats: expected values; variances; and quantiles. This transforms
the decision problem into one having the same appearance as a
deterministic decision problem, which can be treated by any of the
existing SMAA models with some minor modifications. We
sometimes refer to these collectively as “SMAA models” although
it should be clear that these are approximations of external
uncertainty built on top of the same SMAA approach. The models
are described in more detail in Section 3. Table 1 provides a
summary of notation used in the paper.

3. Description of the simulation study

The general structure of the simulation’ is summarised in Fig. 1
and implements the following basic steps:

1. Form a hypothetical problem context, generating the relevant
attribute evaluations.
2. Apply a multiplicative MAUT model to derive idealised or ‘true’
utilities and thus find the ‘true’ rank ordering of alternatives.
3. Calculate summarised measures of uncertainty based on the
generated data and incorporating observational errors.

4. Run different models using SMAA and the inputs from step 3,
and then compare the model results against the ‘true’ utilities
and rank order obtained from step 2.

3.1. Generating attribute evaluations

We consider a decision problem involving I alternatives evaluated
over ] attributes. External uncertainty about attribute performance is
captured by simulating attribute evaluations for alternative a; on
attribute ¢; from a gamma distribution with mean gy standard
deviation oy, and skewness &;. We denote this distribution f;;(Z;). Each
mean p;; is drawn randomly from a uniform distribution between
0.2 and 0.8 for all alternatives on all attributes. Means are then stan-
dardised across all the attributes to lie on the unit hypersphere i.e.

1 All codes used to run the simulations described in this section are openly
available from http://dx.doi.org/10.5281/zenodo0.30523.
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Table 1
Summary of all parameters used.

Problem context

a; Alternative i

G Attribute j

Ciky Attribute with k-th largest importance weight
Zj Performance of a; on ¢;

fx@) Joint probability distribution over all Z;

fiZy) or f Marginal probability distribution for Z;
Attribute weights

w Total weight space

w’ Currently feasible weight space

w;! Favourable weight space for a;

w;j Weight for ¢;

W) k-th largest attribute importance weight

SMAA

b/ Rank-r acceptability index

b(rk) k-th largest rank-r acceptability index

[N Alternative with k-th largest rank-r acceptability index
B(]k) Random variable which when realised gives b(lk,
BR Cumulative R-best ranks acceptability index

Simulation: problem context

I Number of alternatives

J Number of attributes

K Number of simulated realisations of Z;;

Zijk Realisation k of Z;;

Hij Mean of attribute evaluations for a; on ¢;

oij Standard deviation of attribute evaluations for a; on ¢;
&ij Skewness of attribute evaluations for g; on ¢;
Simulation: DM preferences

v; Marginal value function for ¢;

7 Reference level for v;

A Value of v; at reference level

Vi Global value of g;

U; Global utility of a;

¢ Risk preferences defined over value

® ‘True’ attribute weights

Simulation: uncertainty modelling

p Proportion of importance ranks provided by DM
€ Size of assessment errors

zj; Sampled value from z; used by ‘TDist’ model

ZU Sampled value from fj; used by ‘EDist’ model
E[Z;), E1z;] Expected value of Z; before and after application of ¢

VAR[Z;], VAR[ZU] Variance of Z; before and after application of ¢

Q,1Zjl Q.(Zy) 5%, 50% and 95% quantiles of Z; for r=1,2,3 before and
after application of ¢

3 Weight of VAR[Z;] relative to E[Zj]

Z; 1 /45 =1, vi. This creates a set of non-dominated alternatives, at
least in this ‘average’ sense. The standard deviations and skewnesses
of the attribute evaluations are varied as parameters of the simulation
(see Section 3.6 for details of chosen parameters values). A set of
K=15000 realisations is generated to represent the uncertain
attribute evaluation of each alternative on each attribute. These
evaluations, denoted z, are then standardised within each attribute
(across all alternatives and realisations), to have a minimum of 0 and a
maximum of 1.

3.2. Generating preference structures

We employ a multiplicative MAUT model to simulate the ‘true’
underlying preference structure of a DM, with U; denoting the
overall utility of alternative a;. For simplicity we assume that our
simulated DM has a utility function that exhibits constant risk
preferences over the scalar value attribute V;. Specifically, this
requires that the DM's preferences over the attribute space are
compatible with an additive value function, that at least one
attribute is utility independent of its complement, and that ] >3

[15, Theorem 6.11]. These conditions allow us to rewrite the global
utility of alternative q; as a function of its global value V;, and more
precisely as a function of its value as derived from an additive
value model:

J
e ti=exp| -{) wviZy
j=1

J
Ui=1{ Vi= > _wv(Zy)
=

¢=0 1

J
—6’4‘/" = —exp —CZW]VJ(ZU) €> 0
ji=1

where w; denotes the relative importance weight of attribute ¢, v;
is the marginal value function for c;, and { determines whether the
DM is constant risk averse ({ > 0), risk neutral ({ = 0) or constant
risk prone ({ < 0) with respect to value. The precise form of the
marginal value function v; is discussed in Section 3.2.1. To calculate
the ‘true’ utility of an alternative a; expectations are taken over
the full set of K realisations. That is, we (a) compute, for each k, the
value V;, and hence utility U of alternative a; using attribute
evaluations z;y, ..., Zy; (b) average these utilities over k. This gives

K J
Ele=<Vi1=(1/K)> exp | —{> wivizi) ¢<0
k=1 j=1
K_J
oA _ ) V= (17K S0 S vz ¢=0

k=1j=1

K J
—Efe=Vi]=(1/K)>_ —exp|—-{> wyviz)| (>0
F A

=1 j=1

@)

This ‘true’ measure of utility is based on perfect and complete
information and, for the purposes of this simulation study, pro-
vides a set of idealised results to which results from the different
SMAA models can be compared.

3.2.1. Marginal value functions

Marginal value functions are assumed to be piecewise linear
between the points (0,0), (zj,4;), and (1,1). Convex, linear, and
concave value functions can be generated by imposing 7; > 4;,
7; = Aj, and 7;j < J; respectively, allowing a wide range of preference
to be simulated parsimoniously. Note that this is a simplified
version of the approach used in Durbach and Stewart [9], where
additional parameters were used to control the degree of curva-
ture in the preference functions either side of z;. Marginal values
are given by:

A% for0<x <7
vo={ " . 3
Aj+=—2x—1) forrj<x<1
17‘[']'

3.2.2. Inter-attribute weights

‘True’ attribute weights @ are simulated to be uniformly dis-
tributed and sum to one, using the approach in Butler et al. [4].
This involves sorting ] —1 randomly generated Un[0, 1] variates in
ascending order, appending 0 and 1 to the extremes of this
sequence, and extracting the differences between adjacent values.

3.3. Simulating the application of SMAA

The ‘true’ attribute weights @ provide a rank ordering of
attributes from most important to least important. Let ¢, denote

http://dx.doi.org/10.1016/j.omega.2015.10.015
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Generate ‘true’ preference information

Generate attribute realizations, given problem context parameters I, J, var, skew

Generate utility function | | Generate means

| Generate standard deviations ‘ l Generate skewness

|

! !

Generate marginal value
functions v;

Unstandardized means
pij ~ Unf0.2,0.8] Vi, j

If var = “low” If skew = ‘zero’
oij ~ Un[0.02,0.04] VYi,j i =0 Vij

Concave: 7; ~ Un[0.2,0.4],

|

} :

Aj ~ Unl0.6,0.8] .
Convex: 7; ~ Unl[0.6,0.8], For non-dom. alt’s

Z}']:l ph =1 Vi

Linear: 7; = A; = 0.5
(see eq. 3)

Hig

If var = “high” If skew = ‘positive’
oi; ~ Un[0.08,0.1] Vi, j & ~Unl0.5,1] Vi, j

i &ij

+| Ce {202 |

For each (i, j), generate K = 15000 attribute realizations
from gamma distribution with mean j;;, variance U,?j & skewness &;;

Generate ‘true’ attribute weights

|

| I
| I
| I
| ]
| I
| ]
| I
| I

I
! .

I
| Aj ~ Un[0.2,0.4] |
| I
| I
| I
| I
| I
| I
| ]
| I
| ]
| I
| I
| I

Standardise realizations within each attribute ¢; to lie between 0 and 1 (over all alternatives)

|

|

|

I

|

I

|

|

|

|

|

|

|

I .
|

|

|

|

I

|

|

|

|

|

|

Denote zjji |
|

Modeled Utility
(limited information)

Calculate summary statistics
for standardized attribute values

Derive parameters of gamma p.d.f. f;;
from iz, 0ij, i

‘True’ Utility

e

¥

(perfect information) |

Multiply

Use actual

PSS
[ [ valzyl | [0 (z) | |?ijf§il/JQm%Nz»|
~ 1 .~

parameters

Sample from

attribute values

Multiply summary statistics by error
~ Un[l —€,1+ € for each i, j

by error and
sample from

Zijk

Zijk, k=
1,... K} {

.

| Bzl || velzg) | [@0m@g | [ @@ | [e0ma@n | | 4 [ A ]
Use ‘true’ weights Use hit-and-run sampling to generate SMAA attribute weights
w w = {w1,...,w;} covering a proportion p = 0.5 of the total weight space,
with the center of gravity w (see Section 3.3)

MAUT| model Simplified SMAA

\ SMAA-2
--------------- I

U1(MAL'T) U7(EV>

(see eq. 2)

(see eq. 7) (s

(TDist)

(see eq. 5) (see eq. 4)

Fig. 1. Outline of a simulation run.

the k-th most important attribute. To emulate the inclusion of
partial preference information in the SMAA models, we simulate a
DM who provides the importance ranks of a proportion p of the
full set of attributes (less one, since the rank of the final attribute is
given by the others), in either decreasing (starting from cg)) or
increasing (starting from cg;,) order of importance. Total uncer-
tainty regarding weights corresponds to p = 0 while for a complete
rank ordering p = 1.

Efficient “hit-and-run” sampling procedures using Markov
Chain Monte Carlo (MCMC) methods to simulate uniformly dis-
tributed weights on a simplex with arbitrary constraints have been
described in Tervonen et al. [27] and van Valkenhoef et al. [28].
Importance ranks provide ordinal information that is easily
implemented in this framework as linear constraints on the
weight space e.g. w(1) > W, Vk # 1. The hit-and-run procedure is
implemented in R using the ‘hitandrun’ package [30]. The com-
putational costs of the simulation are already fairly high, so that p
is not included as one of the final simulation parameters but is
rather the subject of an initial investigation before being set at a
fixed value of 0.5 (see Section 4.1 for details).

Finally, our SMAA models assume that marginal value functions
are known and assessed without error, but that the parameter {

governing risk preferences defined over value is unknown.
Although in principle it is straightforward to simulate possible
values of £, or parameters of marginal value functions, as part of
each SMAA model, assuming known value functions but unknown
weights is, perhaps regrettably, a common feature of SMAA, which
we follow here to prevent the simulations from becoming overly
complex. We thus assume that low-involvement models like
SMAA may well assume { =0, approximating the multiplicative
utility function with an additive value function and ranking
alternatives according to their global values as returned by the
respective SMAA models described below.

3.3.1. Model using a full probability distribution

We implement two SMAA models employing full probability
distributions. The first random sample, at each SMAA iteration,
values from the empirical distribution of the standardised attri-
bute values, and thus directly samples from z;;.. The resulting “true
distribution” model is given by

. J
UgTDlSt) — Z WJV](Z;]) (4)
j=1
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where z; is the sampled value from z;. Note that this model
captures uncertainty in the attribute evaluations exactly, by con-
struction, but is not easily amenable to modelling assessment
errors. We therefore also use a second distributional model that
randomly draws attribute evaluations from the f;(Z;) at each
SMAA iteration. Assessment errors can be modelled in a straight-
forward way by imposing errors on the parameters of f; The
“estimated distribution” model is given by

J
ED "
UEPRY = 3 " wyvj(z) (5)
=1
where z;; refers to the sampled attribute evaluations, now under-

stood to be drawn from f;(Z;) rather than the empirical
distributions.

3.3.2. Model using expected values
The model using only expected values ignores any uncertainty
in the attributes and is defined as:

J
UgEV) — Z w;vi(E[Z;]) (6)
j=1

Expected value models effectively reverse the order of expectation
and utility operations. Of course if expectations can only be esti-
mated from the full distributions then (6) is of little use, but it may
be the case that the DM is able to assess an average fairly easily,
without reference to the full distribution. In these cases (6) may be
thought of as a “simplified” approach. The model is investigated in
Kirkwood [16], Stewart [24], and Durbach and Stewart [8].

3.3.3. Model using expected values and variances
This model uses variances in addition to expected values and is
referred to here as a “risk” model. It is defined as:

J J
USRS = N wiviEiZgD — ¢ > wVAR(Z;] 7
j=1 j=1
where ¢ is a multiplier indicating the contribution of the risk
component relative to the expected value component. Here we set
¢ =0.25, which is smaller than the values used in [9] but follows
results in that paper reporting poor performance with larger
values of ¢.

3.3.4. Model using quantiles

The quantile model makes use of the “extended Pearson-
Tukey” approximation [14], a widely applicable three-point
approximation for continuous probability distributions typical of
those elicited via judgmental assessments:

J 3

U™ = 3 wy Y xevi(QilZ) ®)
ji=1 r=1

with x; =x3=0.185 and x, =0.63 and where Q;, Q,, and Q3 are

the 5%, 50% and 95% quantiles respectively.

3.4. Generating errors in the assessment of uncertainty information

In order to allow for assessment errors, all model inputs
relating to uncertainty are multiplied by randomly generated
realisations from Un[1—¢,1+¢]. The error factor € is a parameter
of the simulation - we use 0%, 10% and 20% errors. The error
adjusted parameter values are then denoted using the ‘hat’ symbol
i.e. assessed probability distributions f (Zy), expected values E‘[Z,»j],
variances VAR[Z;], and quantile values Q,(Z). Errors are not
applied to the “true distribution” model sampling directly from z.
In the case of the “estimated distribution” model errors are
applied to both shape and scale parameters of the assumed

gamma distributions governing attribute evaluations before
renormalising attribute evaluations to lie between zero and one.

3.5. Output measures

For each SMAA model, alternatives are ranked by their R-best
ranks' acceptability indices, where Re {1, 3,5} is varied as a para-
meter of the simulation. To evaluate the quality of the alternatives
selected by each SMAA model we use three outcomes: the prob-
ability that the alternative selected by MAUT appears in the top
one, three, or five positions of the SMAA rank order. The first of
these tests the ability of SMAA with respect to the choice pro-
blematique, the others with respect to the shortlisting of promis-
ing alternatives.

In previous simulations (e.g. [8,9]) we have primarily used
‘utility loss’ UL = (U —Uga) /(U — U, ) to measure model accuracy,
where Uy, U;,, and U are respectively the utilities of the best,
worst and chosen (by SMAA) alternatives according to the simu-
lated ‘true’ rank order. In the current paper, we have elected to use
rank-based measures as the analytical results reported in Section 5
are much easier to obtain with these than with utility losses,
which depend both on what rank an alternative obtains and the
distribution of utilities over alternatives. In Section 4.1 we report
utility loss for preliminary simulations and show that it is strongly
correlated to the probability that MAUT and SMAA select the same
alternative.

3.6. Parameter values used

In simulation studies such as this it is usually necessary to
include only a small number of possible values for each simulation
parameter. This keeps the total computation time and model
complexity within reasonable limits, and should not be inter-
preted as indicating that these are the only plausible values or
even capture the full range of possible variation.

The effect of problem size is investigated using I=9 or 19
alternatives and /=6 or 12 attributes. The four combinations allow
for an independent investigation of alternatives and attributes in
decision environments located between ‘fairly small’ and ‘moder-
ate’ in size. Similar values have been used in Barron and Barrett 3]
and Salo and Himadldinen [23].

Parameter values for the variance and skewness parameters
(o and & respectively) were chosen on the basis of trial-and-
error experimentation. The variance parameter takes on either
“low” (oj; ~Un[0.02,0.04]) or “high” (o~ Un[0.08,0.1]) values.
For the symmetric case and prior to standardisation, a 66 range
will cover approximately 25% and 45% of the full range of possible
attribute evaluations in the ‘low’ and ‘high’ variability conditions
respectively. After standardisation these ranges are somewhat
larger; pre-simulations indicated coverage of 40-50% and 65-70%
respectively. This means that even in the ‘low’ variability condi-
tion there is still a considerable amount of uncertainty in the
attribute evaluations. The skewness of the attribute evaluations is
considered to be either zero (in which case the gamma dis-
tribution is equivalent to a Gaussian distribution), or a moderate
positive value randomly drawn from a uniform distribution
&;j~Un[0.5,1] Vi,j. The assessment error parameter € is key and
so takes on one of three values: 0%, 10%, and 20%.

Parameter values for z; and 4; are combined to give preferences
that are convex (7;=0.8,4;=0.2), concave (7;=0.2,4;=0.8), or
linear (zj = 4;). Note that 7; and J; are not varied independently. A
single parameter { controls preferences for risk in the utility
function defined over scalar value, and thus maps global values
into utilities using Eq. (1): we use { =2 (constant risk aversion
with respect to value), { =0 (risk neutral), and { = —2 (constant
risk proneness).
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SMAA models are based upon the best R= {1, 3,5} ranks. The
effect of including partial preference information about the
weights into the SMAA process is investigated as part of an initial
set of simulations using =19 alternatives, =12 attributes, and
pe{0,1/11,3/11,5/11,8/11, 1}, with 500 runs for each value of p.
We also simulated an additional ‘full-information’ case where the
cardinal values of weights are known precisely. Other variables
were held constant at high ¢ and &;;, ¢ =0, mostly convex utility
(low 7, high 4;), and { = 0. On the basis of these results, reported
in Section 4.1, an “intermediate” value of p = 0.5 was selected for
use in the full simulation study.

We used a full factorial design — with 16 parameter combina-
tions for problem context, 3 for assessment error, and 6 for shape
of utility function there are a total of 288 simulation parameter
combinations. We perform 100 simulation runs for each combi-
nation of parameters, and each simulation run uses 10 000 ran-
dom weight vectors to generate the SMAA results. Simulations
were run using R version 3.1.3 [22] and used packages hitandrun
version 0.5 and smaa version 0.2-3 [29].

4. Results
4.1. Weight restrictions

Fig. 2 illustrates the relationship between the amount of weight
information provided and various measures of model accuracy. In
this and other plots, error bars indicate 95% confidence intervals
around the mean values. If uncertainty about attribute evaluations
is fully specified but no weight information is provided at all, the
probability that a SMAA model selects the same alternative as
MAUT is 0.15, and the probability of that alternative appearing in
the top three and five ranks (out of 19) of the SMAA rank order is
0.33 and 0.50 respectively. If ordinal weight information is fully
specified in decreasing order of importance these probabilities
increase to 0.77, 0.97, and 0.99.

Marginal improvements in model accuracy diminish with the
importance of the attribute for which ordinal information is spe-
cified. The greatest improvement in model accuracy comes from
providing ordinal information about a few of the most important

attributes. In this case, information about attributes in the lower
half of the importance rank order produces very little additional
improvement in model accuracy. Marginal returns diminish, but
more slowly, if information is provided on the least important
attributes first.

Fig. 2 also shows that the way in which uncertainty about
attribute evaluations is specified has a strong effect on model
accuracy, particularly on the probability of the SMAA and MAUT
models selecting the same alternative as best, and particularly
when some ordinal information about attribute importance is
provided.

Finally, Fig. 2 shows that our four outcome measures are
strongly correlated, responding in much the same way to how the
uncertainty about attribute evaluations is represented, and to the
provision of ordinal weight information. Correlations range
between 0.41 (between the probability of selecting the preferred
MAUT alternative in the top 1 and top 5 positions of the SMAA
rank order) and —0.58 (between utility loss and the probability
that the SMAA model selects the same alternative as MAUT).

On the basis of this preliminary investigation, we fix p at an
intermediate value of 0.5 and in the remainder of this section
explore the effect that other parameters have in more detail. Fig. 3
reports mean model accuracy for different uncertainty models
using R-best-ranks in the computation of the acceptability index,
under various error conditions and values of R. Results have been
averaged over the remaining simulation parameters.

We report three results here. Firstly, errors in the assessment of
uncertainty can seriously compromise model accuracy. The
greatest deterioration, as a result of assessment errors, occurs in
the probability that the SMAA model selects the same alternative
as MAUT (relative to the probability of shortlisting this alter-
native), and in SMAA models representing uncertainty with
probability distributions. Some caution is needed in interpreting
this latter result, since assessment errors are not directly
comparable across uncertainty types. It is not clear, for example,
whether it is cognitively “easier” to make a 10% error when
assessing parameters of probability distributions or when
assessing expected values.

Secondly, models using simplified representations of uncer-
tainty, particularly quantiles, can return very similar results to
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Fig. 2. Mean model accuracy as a function of the degree of imprecision in the weight space. Note ‘1+’ refers to the full-information case where the cardinal values of

weights are known precisely.
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models using the full probability distribution. Models using explicit
risk measures, however, performed poorly on average. The same
finding was reported in the context of utility/value function
approaches with known weights in Durbach and Stewart [9]; the
current result extends this to the SMAA context.

Finally, in the absence of assessment error model accuracy is
almost always highest when only the first rank is used to construct
the SMAA acceptability index. The sole exception is the risk-based
model - the probability of the preferred MAUT alternative
appearing in a shortlist is increased if the acceptability index is
composed of the same number of ranks as the shortlist. However,
when assessment errors are present, the same effect — the prob-
ability of the preferred MAUT alternative appearing in a shortlist is
increased if the acceptability index is composed of the same
number of ranks as the shortlist - is observed in other models too.

Fig. 4 shows two results related to the size of the decision pro-
blem considered. Model accuracy deteriorates as the number of
alternatives increases, but improves as the number of attribute
increases. This occurs for all of the simulated models, which to
rough approximation experience the same magnitude of improve-
ments and deteriorations.

Fig. 5 shows that in general skewness and variability in attri-
bute evaluations lead to lower model accuracy. Models using
simplified representations of uncertainty (those using quantiles,
expected values, or variances) suffer far more from increases in
variability or skewness of attribute evaluations than do SMAA
models using full probability distributions. In fact, increasing
attribute variability does not significantly change the accuracy of
the SMAA models using full probability distributions. The net
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effect is that quantile models become less attractive as distribu-
tions become more variable and skew.

Fig. 6 shows mean utility losses for different types of marginal
value functions i.e. combinations of (z,4), and risk preference
parameter {. Model accuracy is highest for all models when
marginal value functions are convex, deteriorating as these
become linear and then concave. The effect of multi-attribute risk
aversion ( is substantially less than that of the shape of the mar-
ginal value functions, and contrasts are for the most part non-
significant. The effect of risk preferences over value is only sig-
nificant when marginal value functions are convex, shown in the
right-hand plot in Fig. 6, in which case accuracy is highest when
decision makers are multivariate risk neutral.

5. Discussion

Since SMAA always selects the alternative with the largest
acceptability index, the probability that the SMAA model selects
the same alternative as MAUT is equivalent to computing the
probability that the decision maker's true preferences lie inside
the largest favourable weight space. This is precisely what is
computed by the largest rank-1 acceptability index. We therefore
examine distributional properties of the random variable B:k)
denoting the k-th largest rank-1 acceptability index, and in parti-
cular the expected value of the largest rank-1 acceptability index
E[B(]])]. Unfortunately deriving general analytical results for B(]k) is
difficult, so that we first consider an artificially simple case where

LN. Durbach, J.M. Calder / Omega ¥ (NNEEN) HEE-NEN

exact results can be obtained, and then extrapolate from these
using heuristic arguments.

5.1. Model accuracy deteriorates as the number of alternatives
increases

Suppose we have two attributes and I non-dominated alter-
natives, with known attribute evaluations and linear value func-
tions. The weight space in this case consists of the line segment
[0,1], i.e. the 1-simplex, from which w; and w, are obtained
directly. The allocation of parts of the weight space to different
alternatives, and hence the computation of acceptability indices, is
analogous to the problem of breaking this line segment at random
into I pieces, and randomly allocating each piece to an alternative.
An alternative g; is then selected with probability proportional to
the length of the line segment allocated to it.

The distribution of the length of the k-th largest piece of the
broken line segment is a well-studied problem in applied prob-
ability (where the line segment is often thought of as a “stick” of
unit length) and is given by e.g. [11]

1 ISVARLRS nfI—m -1
PBL <= 3 (m> -1 (n )(1f(m+n)x>+ ©)
m=0 n=0

where x, = max(x, 0). Under the assumptions of the broken stick
model,? this then is also the distribution of k-th largest rank-1
acceptability index, from which one obtains the expected k-th
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Mean model accuracy as a function of the variance and skewness of distributions governing attribute evaluations.
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largest rank-1 acceptability index as
I—k

EBj=1/1 Y 1/d-m) (10)
m=0

The largest rank-1 acceptability index, and hence the probability
that the SMAA model selects the same alternative as MAUT, thus
has expected value E[BZ])] =1/ Zin;]o 1/(—-1) ~log(I)/I, which
decreases with the number of alternatives I.

5.2. Model accuracy improves as the number of attributes increases

With J=2 attributes the pieces of the broken stick directly give
the probability of selecting alternative a;. Extending this to | > 2
attributes requires J—1 sticks, each of which is broken at random
into I pieces, with pieces allocated at random to alternatives.
Alternative g; is then selected with probability proportional to the
size of the hypervolume formed by the pieces allocated to it,
computed as the product of the lengths of its J—1 pieces. This
construction effectively assumes that the length of piece i of stick j
represents the marginal likelihood of selecting alternative a; after
integrating over all dimensions of the weight space other than the
one representing attribute c;. Obtaining distributional properties of
order statistics over these product terms is difficult, but a heuristic
argument can be used to show that the expected value of the
largest acceptability index increases in the number of
attributes used.

Since each line segment is assumed independent and identically
distributed, the expected product of the k-th longest piece of each line
segment is given by [T/} 1/151, % o 1/0—m) ~ (log (I—k+1)/1Y ="
This expected product decreases as the number of attributes J
increases, but decreases much faster for larger k i.e. for products of
small pieces than for products of large pieces. Thus, when renorma-
lising the hypervolumes, the net effect is that the expected value of the
largest acceptability index increases with J. A simple numerical
experiment was used to confirm that this remains true when products
are formed from arbitrary pieces of broken line segments, as described
above. With two alternatives and two (ten, thirty) attributes E[BZ1 )=
0.75 (0.83, 0.89).

The preceding argument is based upon a problem context in
which weights are entirely unknown. In our simulations ordinal
rank information was provided on half the attribute weights, and
thus an alternate explanation for the increase in J is that we are
providing absolutely more weight information. This explanation
was ruled out by observing the same effect in additional simula-
tions run with no weight information (p = 0).

5.3. Model accuracy and ordinal weight importance information

In the absence of any weight importance information the
probability the decision maker's true preferences lie inside the
largest favourable weight space is simply the proportion of the
total feasible weight space occupied by the largest favourable
weight space. Restricting the weight space increases this prob-
ability whenever it is done in such a way that the total feasible
weight space W’ shrinks by a greater proportion than the largest
favourable weight space, provided that the feasible weight space
still contains the decision maker's true preferences.’ In a

2 The assumptions of the broken stick model - uniformly and independently
distributed breakpoints — may be less likely to hold in SMAA where there may be
interactions between the regions of optimality for different alternatives linked to,
for example, correlations in their performance.

3 Once restrictions to the weight space are applied we must take into account
the possibility that the restrictions incorrectly exclude the decision makers true
preferences. In this case the probability that the SMAA and MAUT models select the
same alternative is E[B(ll)]P((U e W’) where w is the decision maker's true weights.

uniformly distributed weight space, each ordinal constraint of the
form w; > w; eliminates half of the remaining weight space from
consideration. Thus the first constraint eliminates half the weight
space, the second a quarter, and so on. Knowing the importance
ranking of one attribute introduces J—1 ordinal constraints and
thus eliminates 100(1—0.5~1)% of the feasible weight space.
Knowing the importance ranking of a second attribute introduces
J—2 ordinal constraints and thus eliminates a fraction 1—0.5/~2 of
the remaining feasible weight space. For example, for /=5 knowing
the importance rank of one attribute eliminates 15/16 of the
weight space, while knowing the rank of a second attribute
eliminates 7/8 of the remaining 1/16, that is just 7/128 of the
original weight space. Thus it is unsurprising that marginal
improvements in accuracy diminish as more attribute importance
rankings become known, as less and less of the weight space is
removed at each step. In fact, given the argument above it is
interesting that marginal improvements diminish as slowly as they
do. The reason for this must lie in each weight restriction elim-
inating only slightly less of the largest favourable weight space, as
a proportion of its original volume, than is true of the total feasible
weight space.

To the extent that weight restrictions increase b(ll), they do this
by reducing the rank-1 acceptability indices of other alternatives.
Since weights express trade-offs, alternatives that do well on an
unimportant attribute must, other things being equal, do much
better on this attribute to have any chance of being selected.
Information which sorts between relatively unimportant attri-
butes therefore, on average, eliminates relatively fewer alter-
natives - or equivalently, reduces the acceptability indices of other
alternatives less - than information sorting between more
important attributes.

5.4. Model accuracy and value functions

Model accuracy is highest when marginal value functions are
convex and multivariate risk attitude is neutral. As the SMAA
models all make the simplifying assumption that the DM is mul-
tivariate risk neutral, the latter result is to be expected and can be
interpreted as an artifact of the simulation structure. More notable
is the relative insensitivity of results to multivariate risk aversion,
although it may be reasonably argued that this is because we
varied the risk aversion parameter { e [—2, 2] too narrowly.

A convincing explanation for the effect of the shape of the
marginal value functions is more elusive. We can only conjecture
here that convex marginal value functions help differentiate
between good alternatives. For convex functions v;(x)—vj(x—d) >
Vi(¥)—vj(y—d) iff x>y, so that equal size differences in perfor-
mances on the attribute scale translate into larger value difference
the better the performance levels are. Thus, the difference
between the largest and second-largest acceptability indices,
bty — by, is likely to be larger when marginal value functions are
convex.

5.5. Shortlists are more robust to assessment errors than choices

Errors in the assessment of the uncertainty of attribute eva-
luations introduce errors in the estimation of acceptability indices.
If these estimation errors are sufficiently large the alternative with
the largest (true) rank-1 acceptability index b(ll) may not appear
first in the SMAA rank order. If this occurs it is clear that it is more
likely that alternative a;, appears, for example, in the second rank
than in the worst rank, or more generally in rank k than in rank
m > k. Thus, assessment errors affect the probability of including
the preferred MAUT alternative in a shortlist less than the prob-
ability of selecting this alternative as best.
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It may be possible to derive analytical results on the necessary
errors from the expression for P(B}k) <Xx) in (9) by assuming, for
example, that a rank reversal occurs when Bgl) —B(lz) <8, where d is
arandom error in the estimation of acceptability indices. Given the
difficulty of deriving P(B(lk)) for more complex decision problems,
and of deriving real-world recommendations from the error term
6, we do not pursue this further here.

6. Conclusion

Our simulation evaluates the ability of acceptability indices
derived from SMAA models to approximate MAUT, and in parti-
cular SMAA models that use simplified formats for representing
uncertainty in the attribute evaluations. The previous section
elaborated on possible reasons for some of the more important of
the simulation results.

In this section we summarize the contribution of the paper and
conclude with some tentative recommendations for practice, includ-
ing when different SMAA models might be more or less useful. These
recommendations should be interpreted with caution though, since
they require a judgment about what level of performance (e.g. in
terms of the probability of selecting the same alternative as MAUT) is
acceptable, which is necessarily problem dependent. Furthermore, any
recommendations regarding responses to changes in a problem input
(e.g. more attributes) that are derived from simulation results are
heavily dependent on what values are assumed for other variables,
and others may reasonably disagree with ours. Thus, our recom-
mendations only hold with these two caveats in mind.

Our main conclusions regarding the implementation of SMAA
to support low-involvement decision making are as follows:

1. Acceptability indices obtained from SMAA models can be expected
to return reasonable approximations to the full MAUT model in
certain contexts and for certain problematiques (see below).

2. The accuracy of SMAA models improves as more ordinal weight
importance information is provided, but

(a) marginal improvements diminish rather quickly with the
number of the attributes for which importance rankings are
specified, and

(b) the rate at which marginal returns diminish is greatest when
the most important attributes are specified first, and

(c) if no weight information is provided at all, the average
accuracy of all SMAA models is poor.

3. It is not essential that the SMAA model uses probability dis-
tributions to represent attribute uncertainty. Good results can
also be obtained using simplified uncertainty formats, particu-
larly quantiles.

4. Errors in the assessment of the uncertainty of attribute eva-
luations affect the probability of including the preferred MAUT
alternative in a shortlist less than the probability of selecting
this alternative as best.

5. The accuracy of the SMAA models deteriorates as attribute
evaluations become more skew and, for those models using
simplified representations of uncertainty, more variable. Quan-
tile models thus become less attractive in highly variable pro-
blem contexts.

6. The accuracy of all SMAA models deteriorates as the number of
alternatives increases, but improves as the number of attributes
increases.

Taken together, our results suggest some role for SMAA in low-
involvement decision making. It seems that, with limited preference
information and summarised representations of uncertain attribute
evaluations, the SMAA acceptability index can be used to rank order

alternatives and select one or a small number which, on average,
perform relatively well. However under the wrong kinds of conditions
performance can be poor and thus avoiding these conditions, or
responding adequately to them, is an important part of providing
good decision support. To this end our recommendations for practice
are:

1. Deciding between alternatives based on SMAA acceptability
indices without some restriction of the weight space cannot be
recommended. There is at most a 50% chance that the preferred
MAUT alternative appears in the top five out of 19 alternatives,
even when no assessment errors are made.

2. The SMAA acceptability index can be justifiably used for
deciding between alternatives if either the weight space is
restricted or indices are used to shortlist rather than choose
between alternatives. Conservatively, the most important 25% of
the attribute set should be identified and ordered, and a
shortlist of 15% or more of the alternatives set extracted.

3. The acceptability index should always use the same number of
ranks as the size of the constructed shortlist. These are more
robust to assessment errors and offer only slightly worse per-
formance in error-free environments.

4. Uncertainty about attribute evaluations should be assessed
using either the full probability distributions, or quantiles.
Expected values and variance measures are more sensitive to
assessment errors and worse on average than other models,
even if correctly assessed. These are thus not recommended.

5. Errors in the assessment of uncertain attribute evaluations
cause substantial deteriorations in model quality. If assessment
errors are expected e.g. because of limited time or experience,
the size of the constructed shortlist should be extended (spec-
ulatively, on the basis of simulation results, perhaps doubled).

6. The approach outlined above is suitable for large attribute sets
and in fact will return higher-quality shortlists as the number of
attributes increases. Alternatively, the DM may be able to
specify importance information for a slightly smaller proportion
of the attribute set or use a smaller shortlist of alternatives.

In a simulation study such as this we are unable to assess a
number of practical issues. For example: whether the reduced accu-
racy is “acceptable” for DMs; whether the trade-off between accuracy
and the time saved on weight elicitation is felt to be worthwhile; or
whether the limited weight information that must be assessed for the
SMAA models is felt to still be too onerous a task. More broadly, while
efficient sampling procedures are now available for a wide range of
weight constraints in MCDA, the practical assessment of these
constraints remains unresolved. For example, are DMs able to reliably
restrict the weight space, in the sense of offering constraints that do
not exclude their true preferences? What types of constraints are DMs
more comfortable providing information on? What are the best
procedures for aiding this process? Investigating these important
practical issues offers a clear path for future research.
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