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In this paper, we introduce the resource-constrained minimum cost path problem with relays (RMCPR),

which deals with multiple-resource constraint on the path with relays. The RMCPR consists of finding a

path from a source to a destination, and locating relays on some nodes of the path, such that the total cost

of setting arcs and relays is minimized, and for each resource, the total consumption between the source and

the first relay, any two consecutive relays, and the last relay and the destination do not exceed a predefined

upper bound of resource consumption. The RMCPR is a single-commodity resource-constrained network

design problem with relays.

We present a pattern-chain formulation and develop a column generation based exact approach for the

RMCPR. We design a Lagrangian relaxation based method to efficiently price out columns to enter the

basis. We present computational results on three sets of 560 randomly generated instances with different

properties. Computational results demonstrate that our proposed algorithm is an efficient exact method for

solving the RMCPR.

Key words : network design; relay location; multiple resource constraint; Lagrangian relaxation; column

generation

1. Introduction

In this paper, we study the resource-constrained minimum cost path problem with relays

(RMCPR), which can be used to model many network design problems. For example in

freight transport systems, it becomes impractical for both truck drivers and the whole

transportation process to cover very long-haul distance in one trip (Willoughby and Uyeno

2001). In the truckload industry, the long-distance travel leads to a serious and chronic
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problem of high turnover rate, e.g., typically more than 100% (Üster and Kewcharoenwong

2011). This requires setting relay points along the paths for exchange of drivers, trucks and

trailers. These relay points can be used for various purposes, e.g., driver rest and gasoline

station. In addition, the RMCPR can also be used to model the network design problems in

telecommunication systems, where the relay points may be used to boost signal quality over

long distance (Cabral et al. 2007). More importantly, long-distance travel will inevitably

lead to consumption of varieties of resources, typically including fuels of vehicle, time,

distance, capacity, money, workload, and reliability requirements (Zhu and Wilhelm 2007).

All these introduce issues of multi-resource constraints in the network design problems.

We now formally define the RMCPR over a directed network G= (N,A,K) with node

set N = {1,2, . . . , n}, arc set A (|A| = m), and resource set K = {1,2, . . . , r}. Each arc

(i, j) has an installation cost of ci,j and an r -dimensional resource consumption vector

wi,j = (w1
i,j,w

2
i,j, . . . ,w

r
i,j), where wk

i,j represents the consumption of resource k along arc

(i, j). A fixed cost gi occurs when a relay is located at node i. The RMCPR consists of

selecting network arcs, finding a path from the source s to the destination t, and locating

relays on some nodes of the path, such that the total cost of setting arcs and relays is

minimized, and in the meantime for each resource k, the total resource consumption along

the subpath between the source and the first relay, any two consecutive relays, and the last

relay and the destination do not exceed a predefined maximum resource consumption W k.

The RMCPR essentially can be viewed as a single-commodity multi-resource-constrained

network design problem with relays.

To illustrate, we give an example of the RMCPR with three resources (e.g., K = {1,2,3})

in Figure 1. In this example, we need to determine a path from source s to destination t.

The predefined maximum resource consumption W k is 5 for each resource. A feasible path

is given by the full line with relays located at nodes b, k, h and e. As one may observe, the

source consumption along each subpath all does not exceed 5. For example, three resource

consumptions between b and k are 5, 3 and 3, respectively. Whereas for subpath between

h and e, these values are 5, 4 and 2, respectively.

When single resource constraint is considered (r= 1), the RMCPR reduces to the mini-

mum cost path problem with relays (MCPPR) in the literature. Cabral (2005) first intro-

duced the MCPPR in the context of a telecommunication network design problem, where

relay points are necessary. Both RMCPR and MCPPR can be used to model many network
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Figure 1 Example of the RMCPR with Three Resources

design problems in transportation and telecommunication systems (Cabral et al. 2008).

Cabral et al. (2005) proposed three methods for the MCPPR, in which the most effi-

cient has a complexity of O(Wnm log(W )) (W is the upper bound on weights for locating

relays). Laporte and Pascoal (2011) first modelled the MCPPR as a particular bicriteria

path problem involving an aggregated function of the path and relay costs, as well as a

weight function, and developed a more efficient labeling algorithm (LA) with a time com-

plexity of O(Wm+Wn log(max{W,n})). The LA is based on a labeling algorithm aided

by an auxiliary matrix that stores labels with different weights. All the methods above for

the MCPPR are pseudo-polynomial algorithms, which are strongly relying on instances in

consideration. Note that the efficiency of the LA is closely related to the assumption that

arc weights wi,j are integers. When arc weights are real, the number of possible labels will

become extremely high, and thus incur a high computational cost. Additionally, one may

argue that the LA can be directly applied to the RMCPR. We believe that it is impracti-

cal and inefficient because the number of possible labels will also become extremely high

when there are several resources in consideration. Furthermore, the existence of multiple

resources makes it very hard to verify the pruning criterion in the LA. We therefore need

to develop a new and more efficient solution approach for the RMCPR.

Removal of relay setting requirement from the RMCPR results in the constrained short-

est path problem (CSP) in the literature. The CSP consists of finding a path from a source
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to a destination such that the total cost is minimized, subject to resource constraints

(Lozano and Medaglia 2013). Solution methods for the CSP can be classified into three

main categories: (1) dynamic programming (Dumitrescu and Boland 2003, Zhu and Wil-

helm 2007, 2012), (2) path ranking methods (Handler and Zang 1980, Santos et al. 2007),

and (3) Lagrangian relaxation (Carlyle et al. 2008, Formaneck and Cozzarin 2013). Meth-

ods based on dynamic programming are also known as label-setting or label-correcting

algorithms. Zhu and Wilhelm (2007, 2012) developed a three-stage approach specialized

for column generation subproblems that transforms the CSP into a shortest path problem

and solves it using a labeling method. Handler and Zang (1980) solved the CSP by using a

k-th shortest path algorithm; that is, they identify k paths, sort them by length, and eval-

uate them successively until they find the first path that satisfies the resource consumption

constraint. Carlyle et al. (2008) proposed a method (CRW), which takes the general struc-

ture of the Lagrangian relaxation and enumeration approach with some subtle differences.

Formaneck and Cozzarin (2013) proposed a modified Lagrangian relaxation method, which

uses subgradient optimization instead of bisection search as in the CRW method. Aside

from its straightforward application (i.e., shortest path subject to a time limit), the CSP

and its variants naturally appears as a subproblem when more difficult problems are solved

via column-generation approaches. The CSP is used as a column generation scheme for

air cargo planning and routing (Derigs et al. 2009), crew pairing (Muter et al. 2013), tail

assignment problem in aircraft scheduling (Gronkvist 2006), day-to-day crew operation

(Stojkovic et al. 1998), and crew rostering problems (Gamache et al. 1999).

The RMCPR is also related to some network design problems with relays, such as the

network design problem with relays (NDR) (Cabral et al. 2007), the directed network

design problem with relays (DNDR) (Li et al. 2012), and the two-edge connected network

design problem with relays (2ECON-NDPR)(Konak et al. 2009). In both NDR and DNDR,

we need to construct routes for multiple commodities, and there is only one resource con-

sumption (r = 1). Konak (2012) proposed a genetic algorithm based on special crossover

and mutation for the NDR. For the DNDR, Li et al. (2012) gave node-arc and arc-path

formulations, and developed a branch-and-price approach. The 2ECON-NDPR is an exten-

sion of the NDR by incorporating network survivability. Konak (2014) proposed a hybrid

approach of a genetic algorithm and a Lagrangian heuristic for the 2ECON-NDPR. In

the literature, researchers also studied combinatorial optimization problem with resource
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constraints, e.g., the black and white traveling salesman problem (BWTSP) (Ghiani et al.

2006). The BWTSP is to design a shortest Hamiltonian cycle on a graph with black or

white vertex, subject to upper bound constraints on the number of white vertices and

on the length of the path between two consecutive black vertices (here number of white

vertices and length can be viewed as two kinds of resources). Muter (2015) developed a

column generation approach for the BWTSP.

Table 1 Characteristics of Typical Network Design Problems Related to the RMCPR

Problem
Features

relay requirement ]resources ]commodities network survivability requirement

CSP no multiple single directed no
MCPPR yes single single directed no

NDR yes single multiple undirected no
DNDR yes single multiple directed no

2ECON-NDPR yes single multiple undirected yes
RMCPR yes multiple single directed no

Table 1 summarizes characteristics of network design problems related to the RMCPR.

As earlier mentioned, methods for problems in Table 1 cannot be directly applied to the

RMCPR. We need to develop a more efficient solution approach.

Although the RMCPR is important in practice, it seems to have been largely ignored by

the academic literature on network design. This paper aims to fill this gap. In this paper, we

introduce and address the resource-constrained minimum cost path problem with relays. It

is essentially a single-commodity multi-resource-constrained network design problem with

relays. We present a pattern-chain formulation for the RMCPR. The pattern-chain formu-

lation is a column generation formulation. We first introduce a concept of pattern, which

is defined as a directed subpath linking two nodes such that only the ending point is relay

point, and resource consumption constraints along this subpath are satisfied. We then

transform the RMCPR into finding a chain of patterns (pattern chain), which links the

source and destination, and present an integer column generation formulation to find the

best pattern chain. We further prove that the relaxation of this integer column generation

formulation can produce equivalently optimal solutions with variables being integers. As a

result, we develop a column generation approach using the relaxed pattern-chain formula-

tion, which is an exact algorithm for solving the RMCPR. At each iteration of this column

generation approach, the pricing subproblem corresponding to a constrained shortest path
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problem is solved to price out desirable columns (patterns) to enter the basis. The effi-

ciency of our column generation approach depends on the effectiveness of the underlying

pricing subproblem. To efficiently solve the pricing subproblem, we propose a Lagrangian

relaxation based method. For the pricing subproblem associated with each node pair, this

approach relaxes the resource consumption constraints, optimizes the resulting Lagrangian

dual problem, and provides high-quality lower bounds on the reduced cost. The Lagrangian

dual problem is solved by using subgradient optimization. Intermediate lower bounds may

be used with different purposes: (1) terminate earlier solution of one pricing subproblem;

(2) update the global lower bound on the reduced cost; or (3) reduce the size of set of node

pairs considered in the pricing subproblem (refer to Section 3 for detailed implementa-

tion). If subgradient optimization cannot ensure no existence of desirable columns, then we

need to further exactly solve the pricing subproblem with an mixed integer programming

(MIP) formulation, using CPLEX. We evaluate our approach over 160 MCPPR instances

(a special case of the RMCPR) with up to 1000 nodes and 200000 arcs, and 400 RMCPR

instances with up to 1000 nodes, 300000 arcs and 30 resources. Using MCPPR instances,

we first compare our approach with the best labeling algorithm, proposed by Laporte and

Pascoal (2011). To demonstrate the performance of our approach on the RMCPR instances,

we compare it with results returned by CPLEX with a node-arc formulation after one-hour

implementation. Over MCPPR and RMCPR instances, computational results both show

that our proposed approach is a computationally efficient exact method.

The remainder of this paper is organized as follows. In Section 2, we present a pattern-

chain column generation formulation for the RMCPR. In Section 3, we present a column

generation approach to exactly solve the RMCPR. In Section 4, we report computational

experiments to evaluate our approach. We conclude this paper in Section 5.

2. Mathematical Formulation

In this section, we mainly present a pattern-chain formulation for the RMCPR, which

is an integer column generation formulation. With this formulation, we will present an

exact approach in Section 3. We first introduce a node-arc formulation for the RMCPR in

the next subsection. Although it is not the main contribution in this paper, the node-arc

formulation is used as a comparison benchmark to evaluate our exact approach proposed

in Section 3. That is, the node-arc formulation is solved by MIP solver CPLEX to obtain

upper bound of each instance in the computational experiments.
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2.1. Node-arc Formulation

We first introduce a node-arc formulation, of which the underlying idea is similar to that

for the DNDR in Li et al. (2012). Some binary variables and parameters are defined as

follows:

• xi,j: it equals 1 if arc (i, j) appears in the solution, and 0, otherwise;

• yi: it equals 1 if node i is used as a relay node, and 0, otherwise;

• vi,k: the total consumption of resource k after node i without visiting a relay. If node

i is used as a relay in the path, vi,k=0 for each k;

• bi: it is equal to 1 if node i is the origin, -1 if node i is the destination, and 0, otherwise.

We present the node-arc formulation for the RMCPR as

minf =
∑

(i,j)∈A

ci,jxi,j +
∑
i∈N

giyi (1)

subject to
∑

(i,j)∈A

xi,j −
∑

(j,i)∈A

xj,i = bi ∀i∈N, (2)

vi,k +wk
i,jxi,j −W k(1−xi,j + yj)≤ vj,k ∀(i, j)∈A,∀k ∈K, (3)

vi,k +wk
i,jxi,j ≤W k ∀(i, j)∈A,∀k ∈K, (4)

0≤ vi,k ≤W k(1− yi) ∀i∈N,∀k ∈K, (5)

vs,k = 0 ∀k ∈K, (6)

yi ∈ {0,1} ∀i∈N, (7)

xi,j ∈ {0,1} ∀(i, j)∈A. (8)

The objective function (1) minimizes the total network cost for setting arcs and relays.

Constraints (2) are the mass balance constraints. Along each valid path, logical constraints

for resource consumption are given in (3)-(5), and are justified as follows. If xi,j = 0, then

the set of constraints (3) become vi,k ≤W k(1 + yj) + vj,k. They are redundant because any

vi,k ≤W k and vj,k ≥ 0. If xi,j = 1, then constraints (3) become vi,k + wk
i,j −W kyj ≤ vj,k.

Now if yj = 0, then constraints (3) are valid. If yj = 1, then constraints (3) are implied by

constraints (4), which state that if arc (i, j) appears in the path, all the upper bound (W k)

cannot be violated. If node i is a relay node, then constraints (5) force vi,k = 0. Constraints

(6) state that for source node, vs,k should be zero with any resource k.
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2.2. Pattern-chain Formulation

As one of our main contributions, we next present the pattern-chain formulation for the

RMCPR. Before presenting the pattern-chain formulation, we first introduce concepts of

pattern and pattern chain, respectively. A directed subpath from nodes i to j is referred

to as a pattern, pi,j, if the following two conditions are satisfied:

(1) For each resource k, the total resource consumption along this subpath does not

exceed the given upper bound W k, and

(2) Only the starting and ending nodes i and j are relay nodes.

We further assume that two relays are respectively located at source s and destination t,

and they do not produce any cost, i.e., gs = gt = 0. Then, a feasible solution to the RMCPR

can be viewed as a chain of patterns (pattern chain). For example, in Figure 1, one feasible

solution corresponds to path (s, a, b, f, k, g, h, d, e, t) with nodes b, k, h, and e being relays.

Obviously, we have patterns ps,b, pb,k, pk,h, ph,e, and pe,t. These patterns form a chain of

patterns (pattern chain).

We refer to a node pair < i, j > as “directly connected node pair (DCNP)”, if there

exists at least one pattern from i to j in network G. Let U be the set of all DCNPs. Given

one DCNP < i, j >, there may exist different patterns between nodes i and j. For example,

consider DCNP < k,h > in Figure 1. Associated with this DCNP, there are two patterns:

(k,h) with relay h, and (k, g,h) with relay h. Let Pi,j be the set of all patterns associated

with DCNP < i, j >. Let Ap be the set of arcs included in pattern p. Since the ending point

of one pattern may be the starting point of another one, we exclude from calculation of

the pattern cost the relay cost of the starting point. For each pattern p∈ Pi,j, define δpi,j as

pattern cost, which is calculated as

δpi,j =
∑

(u,v)∈Ap

cu,v + gj.

Following the above definition, the pattern cost consists of two parts: arc cost and

relay cost. A pattern p with cost of min{δp
′

i,j : p′ ∈ Pi,j} is called the minimal-cost pattern

associated with DCNP < i, j >.

We refer σ to as a pattern chain if it defines a feasible solution to the RMCPR. Let δ(p)

denote the cost of one pattern p, which is included in pattern chain σ (e.g., p ∈ σ). We

further define the cost δ(σ) of pattern chain σ as

δ(σ) =
∑
p∈σ

δ(p).
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We now restate the RMCPR as follows:

Definition 1. Given graph G and pattern set Pi,j for each DCNP < i, j >∈ U , find a

pattern chain σ linking source s and destination t such that the cost of pattern chain, δ(σ)

is minimized.

Further define binary variable zpi,j: it equals 1 if pattern p associated with node pair <

i, j > appears in the solution, and 0 otherwise. We next present a pattern-chain formulation

(PC1) for the RMCPR:

(PC1) minf =
∑

<i,j>∈U

∑
p∈Pi,j

δpi,jz
p
i,j (9)

subject to
∑

<i,j>∈U

∑
p∈Pi,j

zpi,j −
∑

<j,i>∈U

∑
p∈Pj,i

zpj,i = bi ∀i∈N, (10)

zpi,j ∈ {0,1} ∀p∈ Pi,j,∀< i, j >∈U, (11)

where objective function (9) minimizes the total cost of patterns. Constraints (10) are the

flow balance constraints at each node. Note that PC1 is a formulation that results from

Dantzig-Wolfe decomposition to the node-arc formulation (Dantzig and Wolfe 1960).

By relaxing variables zpi,j to be linear, we next give formulation (PC2), and prove that

this formulation must have an optimal solution with all integral zpi,j.

(PC2) minf =
∑

<i,j>∈U

∑
p∈Pi,j

δpi,jz
p
i,j (12)

subject to
∑

<i,j>∈U

∑
p∈Pi,j

zpi,j −
∑

<j,i>∈U

∑
p∈Pj,i

zpj,i = bi ∀i∈N, (13)

0≤ zpi,j ≤ 1,∀p∈ Pi,j,∀< i, j >∈U. (14)

Lemma 1. There exists one optimal solution to formulation (PC2) with all zpi,j as inte-

gers.

Proof. We prove this result using property for integer programming with totally uni-

modular matrix (Wolsey 1998). The constraint matrix is of the form

Γ

I

 where Γ comes

from constraints (13), and I is from the upper bound constraints. Following sufficient con-

ditions for total unimodularity, it suffices to show that Γ is totally unimodular. Since bi is 0

or ±1 in (13), therefore formulation (PC2) has an optimal integral solution. This completes

our proof. �



10

a f hg

s
3

1
4

3

24

3
5

2

(4|3,4,1)

(3|2,2,4)

b c d

e

tk

(1|2,3,4) (8|1,2,2)

(3|2,1,2)

(3|2,1,2)
(5|3,4,4)

(3|2,2,1)

(4|3,2,1)

(3|3,3,4)

(1|2,2,1)

(5|3,2,1)

(4|2,3,2)

s

8

5

a

b c d

e

t

h

k

gf

4 13

7
5

6

9

5

5

6
6

12
12

10

149

10

(a)  Graph G (c)  Transformed graph G'

8

i j1 2 3
, , , ,( | , , )i j i j i j i jc w w w

5,   1, 2,3kW k 

ig jg
i j

,i j
ig jg

(b)  Pattern list

5 2

No. Node pair Node sequence Pattern cost
1 <s, a> (s, a) 8
2 <s, b> (s, a, b) 9
3 <a, b> (a, b) 6
4 <a, f> ( a, b, f) 10
5 <b, c> (b, c) 4
6 <b, f> (b, f) 6
7 <b, k> ( b, f, k) 12
8 <c, d> (c, d) 13
9 <c, e> ( c, d, e) 14
10 <d, e> (d, e) 6
11 < e, t> (e, t) 5
12 <f, g> (f, g) 8
13 <f, k> (f, k) 7
14 <g, h> (g, h) 5
15 <h, d> (h, d) 9
16 <h, e> ( h, d, e) 10
17 <k, d> ( k, h, d) 12
18 <k, g> (k, g) 5
19 <k, h> (k, h) 5

Figure 2 Example of Network Transformation of the RMCPR

Lemma 2. Each pattern included in one optimal solution is the minimal-cost pattern.

Proof. The proof is straightforward from the definitions of pattern and pattern chain.

�

Lemma 2 shows that the RMCPR reduces to a shortest path problem if we can efficiently

find a minimum cost pattern for each DCNP. To illustrate this, consider a network trans-

formation shown in Figure 2. Figure 2(a) shows the original network with three resources.

Figure 2(b) lists all minimum-cost patterns subject to resource consumption constraints.

Figure 2(c) gives the transformed graph G′, in which each arc represents one pattern, and

arc weight is equal to pattern costs listed in Figure 2(b). In Figure 2(c), the shortest path

from nodes s to t is (s, b, c, e, t), which defines pattern chain (ps,b, pb,c, pc,e, pe,t) in Figure

2(a). That is, the optimal solution is path (s, a, b, c, d, e, t) with nodes b, c and e as relays.

Since finding the minimum cost pattern for a node pair corresponds to a CSP, the

RMCPR is equivalent to all-pairs CSP plus a shortest path problem. Unfortunately, since

the CSP is an NP-hard problem, even for the case of single resource (Garey and Johnson

1979), it will require expensive computational time to enumerate all-pairs minimum cost

patterns as the network scale tends to be large.

3. Column Generation Approach for the RMCPR

In this section, we propose a column generation approach (CG) using formulation (PC2).

Following Lemma 1, the proposed CG is an exact approach for the RMCPR. Formulation

(PC2) is a large formulation and has an enormous number of columns (variables) with one
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variable for each valid pattern. It is impractical to explicitly enumerate all variables and

then solve the formulation by MIP solvers. The underlying idea of the CG is not to explicitly

list all of the columns of formulation (PC2), but rather to generate them only as needed.

To be more precise, our CG starts with a “simple” formulation including a few columns,

and prices out potential columns to enter the basis by solving the pricing subproblem. We

design a Lagrangian relaxation based method to efficiently solve the pricing subproblem. If

no column can be further priced out, then the RMCPR is solved to optimality. For detailed

implementations of general column generation, readers may refer to Barnhart et al. (1994),

Vanderbeck and Wolsey (1996), and Desaulniers et al. (2005). In addition, a CG based

lower bound procedure for the NDR, and a branch-and-price approach for the DNDR, are

respectively presented by Cabral et al. (2007) and Li et al. (2012).

3.1. Restricted Master Problem

The master problem of the RMCPR is formulated as PC2. In fact, only a very small subset

of all columns will appear in an optimal solution, and other columns with non-negative

reduced cost can be ignored. We refer to a master problem with only a subset of columns as

the restricted master problem (RMP). In the context of the RMCPR, the RMP is defined

by subsets U ′ ⊆U and P ′i,j ⊆ Pi,j,∀< i, j >∈U ′ as follows:

(RMP) minf =
∑

<i,j>∈U ′

∑
p∈P ′i,j

δpi,jz
p
i,j (15)

subject to
∑

<i,j>∈U ′

∑
p∈P ′i,j

zpi,j −
∑

<j,i>∈U ′

∑
p∈P ′j,i

zpj,i = bi,∀i∈N, (16)

0≤ zpi,j ≤ 1,∀p∈ P ′i,j,∀< i, j >∈U ′. (17)

After obtaining the LP solution to a RMP, we then check whether there exists some

column with negative reduced cost, which is not included in the RMP. If one or more such

columns do exist, we add all of them to the RMP and resolve the RMP. If none is found,

the RMP is optimally solved and the current LP solution also defines an optimal solution

to formulation (PC1).

3.2. Pricing Subproblem

For each RMP solution, the pricing subproblem is solved to identify whether there exists

one column with negative reduced cost. Let πi represent dual variable associated with each

constraint in (13). In the pattern-chain formulation of the RMCPR, each column defines
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a pattern for some node pair. From formulation (PC2), we can get the reduced cost C
p

i,j

of one column associated with node pair < i, j > as

C
p

i,j = δpi,j −πi +πj ∀p∈ Pi,j,∀< i, j >∈U. (18)

To price out one column, we can solve one CSP associated with each node pair. For any

node pair < i, j >∈U , let δ∗i,j be the cost of the minimum-cost pattern p. Then, the master

problem is optimally solved, if for each node pair < i, j >∈U , δ∗i,j−πi +πj ≥ 0. Otherwise,

desirable column is identified for node pair < i, j >, and the corresponding pattern p can

be added to the RMP.

In the following, we present a Lagrangian relaxation based method for efficiently solving

the pricing subproblem.

3.2.1. Formulation for the Pricing Subproblem

We first develop a mixed integer programming formulation for the pricing subproblem.

For each node pair < i, j >, the pricing subproblem corresponds to a CSP, which consists

of finding a minimum cost path from origin i to destination j, subject to the resource

consumption constraints. Associated with node pair < i, j >, the MIP formulation for the

pricing subproblem is as

(CSPi,j) δ∗i,j = min
∑

(u,v)∈A

cu,vxu,v + gj

subject to
∑

(u,v)∈A

xu,v−
∑

(v,u)∈A

xv,u =


1, if u= i,

−1, if u= j,

0, otherwise,

∀u∈N, (19)

∑
(u,v)∈A

xu,vw
k
u,v ≤W k,∀k ∈K, (20)

xu,v ∈ {0,1},∀(u, v)∈A. (21)

With this formulation, we may implement any MIP solver (e.g., CPLEX) to exactly

solve the pricing subproblem. This method is effective only for small RMCPR instances,

because the CSP is a well known NP-hard problem. For large RMCPR instances, the

number of node pairs will be very large, which thus requires expensive computational time

to solve the pricing subproblem. Alternatively, we next introduce a Lagrangian relaxation

based method, which is able to solve the pricing subproblem more efficiently.
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3.2.2. Lagrangian Relaxation based Method for the Pricing Subproblem

Lagrangian relaxation is one of the major solution approaches for the CSP (Carlyle et al.

2008, Formaneck and Cozzarin 2013). We here discuss a Lagrangian relaxation based

method to efficiently solve the pricing subproblem.

Given non-negative Lagrange multipliers λ= (λ1, λ2, · · ·, λr), we relax the resource con-

sumption constraints (20) by bringing them into the objective function, and have the

Lagrangian problem

δi,j(λ) = min
∑

(u,v)∈A

cu,vxu,v−
∑
k∈K

λk(W
k−

∑
(u,v)∈A

xu,vw
k
u,v) + gj

subject to (19) and (21).

It is well known that δ∗i,j ≥ δi,j(λ). The Lagrangian lower bound δi,j(λ) is then optimized

through solving the following Lagrangian dual problem (LDP):

(LDPi,j) δ∗i,j(λ) = max
λ≥0

δi,j(λ) = max
λ≥0

min
∑

(u,v)∈A

(cu,v +
∑
k∈K

λkw
k
u,v)xu,v−

∑
k∈K

λkW
k + gj

subject to (19) and (21).

For any fixed λ≥ 0, computing δi,j(λ) simply requires solution of a shortest path prob-

lem with Lagrangian-modified arc weights.

Associated with pattern p∈ Pi,j, the reduced cost is non-negative, if δi,j(λ)−πi+πj ≥ 0,

for some λ. Therefore, a high-quality lower bound δi,j(λ) may terminate earlier solution of

the pricing subproblem associated with one node pair. This is verified by our computational

results.

In this paper, the LDP is solved by subgradient optimization (Ahuja et al. 1993). At

each iteration τ of subgradient optimization, the Lagrange multipliers, λ, are updated

according to

λ
(τ+1)
k = λ

(τ)
k +h(τ)ξ

(τ)
k , (22)

where ξ(τ) is the direction of a subgradient, which is obtained as

ξ
(τ)
k =

∑
(u,v)∈A

wk
u,vx

(τ)
u,v−W k,∀k ∈K, (23)
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where x
(τ)
u,v is the solution obtained by LDP at iteration τ . Step size h(τ) specifies how far

we move in the gradient direction. We heuristically select the step length as

h(τ) = γ(τ)
δi,j − δi,j(λ(τ))

‖ξ(τ)‖2
, (24)

where δi,j is the upper bound on the pattern cost, and δi,j ≥ δ∗i,j. We first set δi,j to a big

value and update it, if we find a better pattern, as the algorithm proceeds. γ(τ) was set to

0.6 in our implementation.

For each node pair < i, j >, we terminate the subgradient optimization, if one of the

following three conditions is satisfied:

(1) Intermediate δi,j(λ)− πi + πj is non-negative: impossible to identify one desirable

column.

(2) Iterations reach a certain maximum number τmax (e.g., 200 was used in our imple-

mentation).

(3) Intermediate δi,j is equal to δi,j: the Lagrangian dual optimally solves the pricing

subproblem.

Note that the above implementation of the sugradient procedure cannot guarantee con-

vergence. If the subgradient optimization reaches maximum iterations τmax and conditions

(1) and (3) are not satisfied, we then exactly solve the pricing subproblem, using MIP

solvers, and verify if there exist desirable columns.

3.3. Algorithm Implementation

We next summarize and detail the implementation of the proposed solution approach CG.

The overall structure of the CG is shown in Algorithm 1. Starting from a subset of columns

(patterns) that obtained from node pair set U , our approach initializes the RMP and

solved it optimally. At each iteration, using the method based on Lagrangian relaxation,

the pricing subproblem is solved to price out a new column, which is then used to update

the RMP, if it exists. The iteration continues until no new column can be identified. We

now detail the implementation of the CG as follows.

3.3.1. Initialization of Node Pairs

Function InitializeNodePair(Q) is to initialize the set of directly connected node pairs

(Algorithm 2). Let A(i) = {(i, j) ∈A : j ∈N}. Given arc weights di,j, Algorithm 3 returns
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Algorithm 1. CG for the RMCPR
input instance data Q
U=InitializeNodePair(Q) (see Algorithm 2)
InitializeRMP(Q, U) (see Algorithm 4)
set global add = true
while (global add = true) do

solve the RMP and get dual variables π
set global add = false
IdentifyDesirableColumns(Q, Ug, δ, π) (see Algorithm 5)

end while
output optimal solution

Algorithm 2. InitializeNodePair(Q)
set U = {< i, j > |i, j ∈N and i 6= j}
for each resource k ∈K do

for each < i, j >∈U do
p= ShortestPath(Q, i, j,wku,v) (see Algorithm 3)
if wk(p)>W k, then set U =U \ {< i, j >} end if.

end for
end for
return U

the shortest path from a source s0 to a destination t0. We here assume path p and pattern

p are exchangeable, unless otherwise specified.

We initialize set U to include all possible node pairs in the network. Given a path p

from nodes i to j in graph G, let wk(p) be the total consumption of resource k along arcs

included in this path. For each node pair < i, j > and each resource k, we then solve a

shortest path problem with arc weights being resource consumption wk
u,v. Cost wk(p) of the

returned path p defines the lower bound of the consumption of resource k. If for at least one

resource k, wk(p) exceeds the limit W k, we can exclude < i, j > from set U and thus prune

it from the pricing subproblem. By this procedure, we may eliminate many “non-connected

node pairs”, and thus speed up solution of the pricing subproblem. Note that although

InitializeNodePair(Q) cannot ensure the returned node pairs are all DCNPs, it can exclude

some non-connected node pairs and thus reduce the size of the pricing subproblem at each

iteration of the CG.

3.3.2. Initialization of the RMP

Function InitializeRMP(Q, U) is to determine a set of initial columns (patterns), which

are used to initialize the starting RMP. For each node pair < i, j >, we solve a shortest

path problem with arc weight being ci,j. Let C(p) be the corresponding path cost. Let δi,j

be the lower bound on the cost of patterns associated with node pair < i, j >, which is also
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Algorithm 3. ShortestPath(Q, s0, t0, di,j)

set S = ∅ and S =N
set µi =∞,∀i∈N
set µs0 = 0 and pred(s0) = 0
while t0 ∈ S do

select i∈ S with minimum µi
set S = S ∪{i} and S = S\{i}
for each arc (i, j)∈A(i) do

if µj >µi + di,j , then set µj = µi + di,j and pred(j) = i
end for

end while
retrieve and return shortest path p

Algorithm 4. InitializeRMP(Q, U)
set Ug =U
for each node pair < i, j >∈U do

set δi,j =∞, δi,j = 0
p= ShortestPath(Q, i, j, cu,v)
δi,j =C(p) + gj
for k= 1 to r do

if wk(p)>W k, then break end if
set k= k+ 1

end for
if k= r+ 1, then

set δi,j = δi,j , Ug =Ug \ {< i, j >}, and add pattern to the RMP
end if

end for
return RMP, δ and Ug

a lower bound on the objective value of CSPi,j. Note that we have δi,j = C(p) + gj. Two

cases may happen:

(1) If the returned path p defines a pattern, i.e, satisfying the resource constraints, then

this pattern should be minimal-cost pattern associated with node pair < i, j >, i.e, δi,j = δi,j

(e.g., this corresponds to LDPi,j with λ=0). We then add this pattern to the RMP. As a

result, we can exclude node pair < i, j > for the pricing subproblem.

(2) If path p does not define a pattern, we obviously obtain an initial lower bound δi,j

of CSPi,j.

Let δ = {δi,j :< i, j >∈ U, i, j ∈N}. Algorithm 4 also returns initial set Ug of node pairs

in the pricing subproblem. Note that both δ and Ug will be updated during subgradient

optimization (see Algorithm 5).

3.3.3. Solution of the Pricing Subproblem

We implement the proposed Lagrangian relaxation based method to identify desirable

columns (see Algorithm 5). Let M be a very big value (e.g., 10000 in our implementation).

For each node pair, the Lagrangian relaxation based method works as follows:
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Algorithm 5. IdentifyDesiraableColumns(Q, Ug, δ, π)
for each node pair < i, j >∈Ug

if δi,j −πi +πj < 0, then

set δi,j =M , τ = 0, h(0) = 0, and λ
(0)
k = 0,∀k ∈K

while τ < τmax do
compute Lr(τ)u,v,∀(u, v)∈A
p= ShortestPath(Q, i, j,Lr(τ)u,v)
compute δi,j(λ)
if δi,j < δi,j(λ), then set δi,j = δi,j(λ) end if
if wk(p)≤W k, ∀k ∈K, then
if δi,j >C(p) + gj , then

set δi,j =C(p) + gj
if δi,j − δi,j < ε, then
set Ug =Ug \ {< i, j >}
break

end if
end if

end if
if δi,j −πi +πj ≥ 0, then break end if

update λ
(τ)
k according to (22)-(24)

τ = τ + 1
end while
if τ = τmax, then

solve CSPi,j using CPLEX with a starting solution associated with δi,j
set δi,j = δ∗i,j , δi,j = δ∗i,j

end if
if δi,j −πi +πj < 0, then

set global add=true
add identified column to the RMP
set Ug =Ug \ {< i, j >}

end if
end if

end for

We first implement a speed-up strategy. That is, if δi,j−πi+πj ≥ 0, then for each pattern

p ∈ Pi,j, the associated reduced cost is non-negative. This node pair is excluded from the

pricing subproblem.

We then solve the Lagrangian dual problem LDPi,j. At each iteration τ of the subgradient

optimization, we solve one shortest path problem associated with each node pair < i, j >,

in which arc weight is calculated as

Lr(τ)u,v = cu,v +
∑
k∈K

λ
(τ)
k wk

u,v,∀(u, v)∈A.

Let the Lr(τ)(p) be the cost of the returned shortest path p. Thus the corresponding

current lower bound δi,j(λ) is calculated as

δi,j(λ) =Lr(τ)(p)−
∑
k∈K

λ
(τ)
k W k + gj,
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which is used to update the best lower bound δi,j.

At each iteration τ of subgradient optimization, one of the three cases may happen:

(1) δi,j − πi + πj ≥ 0: no column can be priced out for node pair < i, j > in subsequent

iterations, and thus it is able to terminate solution of LDPi,j earlier.

(2) The returned shortest path p defines a pattern (e.g., resource consumption constraints

are satisfied): the upper bound δi,j may be updated.

(3) δi,j − δi,j < ε (ε is a very small value, e.g., 0.0001): the CSPi,j is optimally solved. If

objective coefficients are integers, we can set ε to 1.

After solution of each LDP terminates, the best lower bound δi,j is used to check if

there exists desirable column associated with node pair < i, j >. We may need to fur-

ther solve CSPi,j using CPLEX with a starting feasible solution found in the subgradient

optimization, and identify possible column.

In our implementation, the CG approach is terminated when each instance is optimally

solved. That is, no column with negative reduced cost can be priced out.

4. Computational Evaluation

We next carry out a series of experiments to evaluate our proposed algorithm. The CG

was coded in C language and compiled on VC++ 2012. The RMP and CSP associated

with the pricing subproblem were solved by CPLEX 12.5. Experiments were conducted on

a 2.5GHz PC with 8Gb RAM. Computing times are reported in seconds. The purposes of

our experiments include:

• How well does the proposed approach perform on randomly generated MCPPR

instances, which are special cases of the RMCPR (experiment 1)?

• How well does the proposed approach perform on randomly generated RMCPR

instances (experiment 2)?

4.1. Test Instances

4.1.1. MCPPR Instances

As previously stated, the MCPPR is a special case of the RMCPR. Therefore, our CG

approach can be used to solve the MCPPR. Laporte and Pascoal (2011) tested their LA on

random MCPPR instances with up to 10000 nodes and 100000 arcs. We kindly appreciate

that Prof. Pascoal shared their code with us. Both LA and our method were tested on

our randomly generated instances (Set 1). The original implementation of LA assumes
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that each arc weight wi,j is integer. To make LA properly run on instances with rational

weights, we introduce a multiplier φ, which is used to amplify real weights w′i,j and W ′

to be integers. For example, instances with W ′ = 100 and three-decimal weight w′i,j are

equivalent to instances with W = 1000×W ′ = 100000 and wi,j = w′i,j × 1000, for a given

φ= 1000.

In total, we generated 16 groups of 160 MCPPR instances, with 10 instances in each

group. Each instance is characterized by three parameters: n (the number of nodes), χ ∈

[0,1] (the percentage of arcs emanating from a node), and φ. We generated instances as

follows. To ensure instance feasibility, we first randomly constructed a directed Hamiltonian

route including n nodes with starting and ending points being same, and initialized the

network. Given network density χ, we then randomly generated dχn(n− 1)−ne arcs and

added them to the network. Clearly, the larger n and χ are, the more arcs are in the

network. Arc cost ci,j is integer uniformly generated from interval [10,70]. Relay cost gi

is an integer randomly generated from interval [20,50]. We set different magnitudes of φ.

Instances with larger φ is closer to the case that weight value is real. W is set to φ×W ′

with W ′ = 100. wi,j are integers generated from interval [W
10
, W

2
]. We randomly chose origin

s and destination t in the network.

Table 2 summarizes characteristics of MCPPR instances in Set 1.

4.1.2. RMCPR instances

In experiment 2, we aim to evaluate the performance of the CG on RMCPR instances.

Each RMCPR instance is characterized by three parameters: n, χ ∈ [0,1] and r. To gen-

erate the network, we used a method which is similar to the one shown in Section 4.1.1.

We randomly chose origin s and destination t. Arc costs ci,j are integers uniformly gen-

erated from interval [10,50]. Relay costs gi are integers randomly generated from interval

[20,70]. For each resource k, the resource consumption limit W k is randomly chosen from

{60,80,100,120}, and weights wk
i,j are integers generated from interval [10,50].

Tables 3 and 4 respectively summarize characteristics of small RMCPR instances (Set 2)

and large RMCPR instances (Set 3). In total, we generated 40 groups of RMCPR instances,

with 10 instances in each group.
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Table 2 Characteristics of MCPPR Instances in Set 1

Instance group n χ φ m

1 500 0.1 100 25000
2 500 0.1 1000 25000
3 500 0.1 2000 25000
4 500 0.1 4000 25000
5 500 0.2 100 50000
6 500 0.2 1000 50000
7 500 0.2 2000 50000
8 500 0.2 4000 50000
9 1000 0.1 100 100000
10 1000 0.1 1000 100000
11 1000 0.1 2000 100000
12 1000 0.1 4000 100000
13 1000 0.2 100 200000
14 1000 0.2 1000 200000
15 1000 0.2 2000 200000
16 1000 0.2 4000 200000

Table 3 Characteristics of Small RMCPR Instances in Set 2

Instance group n χ r m

1 200 0.1 5 4000
2 200 0.1 10 4000
3 200 0.1 15 4000
4 200 0.1 20 4000
5 200 0.2 5 8000
6 200 0.2 10 8000
7 200 0.2 15 8000
8 200 0.2 20 8000
9 200 0.3 5 12000
10 200 0.3 10 12000
11 200 0.3 15 12000
12 200 0.3 20 12000
13 500 0.1 5 25000
14 500 0.1 10 25000
15 500 0.1 15 25000
16 500 0.1 20 25000
17 500 0.2 5 50000
18 500 0.2 10 50000
19 500 0.2 15 50000
20 500 0.2 20 50000
21 500 0.3 5 75000
22 500 0.3 10 75000

4.2. Test Methods

To demonstrate the performance of the proposed approach, we attempt to compare it with

other available methods for the MCPPR and RMCPR. The methods considered in our

comparison experiments are shown in Table 5.

In experiment 1, we compare our approach with the labeling algorithm on randomly

generated MCPPR instances in Set 1. Laporte and Pascoal (2011) developed four versions

of LA: two versions of a label correcting algorithm (e.g., LC and LCP), and two similar
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Table 4 Characteristics of Large RMCPR Instances in Set 3

Instance group n χ r m

23 500 0.3 15 75000
24 500 0.3 20 75000
25 1000 0.1 5 100000
26 1000 0.1 10 100000
27 1000 0.1 15 100000
28 1000 0.1 20 100000
29 1000 0.1 30 100000
30 1000 0.15 15 150000
31 1000 0.15 20 150000
32 1000 0.15 30 150000
33 1000 0.2 10 200000
34 1000 0.2 15 200000
35 1000 0.2 20 200000
36 1000 0.2 30 200000
37 1000 0.3 10 300000
38 1000 0.3 15 300000
39 1000 0.3 20 300000
40 1000 0.3 30 300000

Table 5 Methods in the Comparison Study

Experiment Instance set Methods in comparison

1 Set 1 CG, LCP
2 Sets 2 and 3 CG, CPLEX

variants of a label setting algorithm (e.g., LS and LSP). The latter two algorithms can be

interrupted when a label associated with t is selected. Experimental results in Laporte and

Pascoal (2011) show that the LCP is always the best one among four versions of LA. We

thus compare our approach with the LCP in this paper. We ran the code of LCP on our

computer and reported computational results.

In experiment 2, we want to demonstrate the ability of our approach in solving the

RMCPR instances. Since there is no algorithm available in the literature, we ran CPLEX to

solve each instance with a time limit of 3600 seconds. The integer solutions at termination

are reported as comparison benchmark.

4.3. Comparison Results on MCPPR Instances

We first compare the CG with the LCP, using 160 randomly generated MCPPR instances.

The computational results are reported in Table 6. Figure 3 displays the average running

time of two algorithms under different levels of W . For each instance group, we introduce

three performance measures:

• Obj: the average objective value of best solutions found by each algorithm;

• Avg.: the average CPU time required to solve instances in each group;

• #OPT: the number of instances optimally solved in each group.
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Table 6 Comparison Results for MCPPR Instances (Set 1)

Instance group
LCP CG

Obj Avg. #OPT Obj Avg. #OPT

1 81.3 0.56 10 81.3 2.8 10
2 82.8 5.5 10 82.8 3.3 10
3 71.3 16.0 10 71.3 2.9 10
4 79.3 27.7 10 79.3 2.9 10
5 66.9 0.8 10 66.9 3.0 10
6 67.7 7.7 10 67.7 3.0 10
7 64.8 15.6 10 64.8 2.8 10
8 55.8 26.8 10 55.8 2.9 10
9 75.0 1.9 10 75.0 13.4 10
10 71.8 18.9 10 71.8 13.6 10
11 73.8 46.5 10 73.8 13.5 10
12 - - 0 75.6 13.5 10
13 63.8 2.6 10 63.8 13.4 10
14 67.8 28.7 10 67.8 13.4 10
15 68.5 61.5 10 68.5 13.6 10
16 - - 0 68.3 13.3 10

“-” indicates that LCP terminated with error “out of memory”

Computational results in Table 6 show that the CG solved all 160 instances to optimality.

As one may observe, the LCP could not solve two groups of 20 instances with larger W .

This is due to that greater W implies a larger label matrix for the LCP and thus leads

to a higher number of labels, which makes the algorithm terminate with error “out of

memory”. Results in Figure 3 shows that for a fixed n and χ, the running time of the

LCP significantly grows with the value of W . This demonstrates that the computational

efficiency of LCP is significantly related to the upper bound W . However, the curve of

computational times for the CG is flat. That is, the performance of the CG did not depend

on the value of W .

4.4. Comparison Results on Small RMCPR Instances

We next implement the CG to solve 220 small RMCPR instances in Set 2. As a comparison

benchmark, CPLEX was also run to solve these instances with the node-arc formulation.

We set a time limit of 3600 seconds for two methods. Table 7 summarizes the computational

results. In Table 7, Max and Min respectively denote the maximum and minimum CPU

times required to solve instances in each group. Figure 4 shows the average computational

time over instance group.

Computational results in Table 7 show that both CG and CPLEX could solve these 220

instances to optimality. Although two methods could deal with these instances, the CG

significantly outperformed CPLEX in terms of average computing times required for solving

instances. For example, the CG solved each instance within about 4 seconds. Whereas,
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Table 7 Computational Results on Small RMCPR Instances (Set 2)

Instance group
CPLEX CG

Obj Avg. Max Min #OPT Obj Avg. Max Min #OPT

1 102.9 2.2 3.7 1.6 10 102.9 0.9 2.7 0.2 10
2 113.2 4.6 5.7 3.4 10 113.2 1.1 6.7 0.2 10
3 128.8 7.6 10.8 4.6 10 128.8 1.5 4.8 0.1 10
4 95.6 7.4 11.9 4.6 10 95.6 0.5 3.7 0.2 10
5 89.9 4.1 6.0 2.8 10 89.9 1.1 3.4 0.2 10
6 92.0 7.8 14.5 4.5 10 92.0 2.3 3.3 0.2 10
7 86.5 13.3 18.3 7.1 10 86.5 1.1 1.6 0.2 10
8 94.9 15.7 23.1 9.1 10 94.9 1.5 4.7 0.2 10
9 77.2 6.0 7.7 4.8 10 77.2 0.9 1.7 0.4 10
10 71.7 11.2 18.2 7.1 10 71.7 1.1 2.7 0.3 10
11 82.9 17.3 22.6 9.5 10 82.9 1.9 3.2 0.3 10
12 85.1 25.1 30.3 14.9 10 85.1 2.0 2.7 0.3 10
13 92.7 13.4 21.4 8.9 10 92.7 3.0 4.0 1.6 10
14 108.3 29.3 37.4 24.2 10 108.3 6.7 9.3 1.0 10
15 88.1 46.2 76.3 22.9 10 88.1 6.3 8.1 1.0 10
16 91.7 59.6 83.3 25.8 10 91.7 6.9 7.7 0.9 10
17 71.7 20.7 27.6 17.2 10 71.7 4.2 7.0 2.0 10
18 83.0 71.7 96.6 50.5 10 83.0 8.5 18.0 1.7 10
19 79.6 100.0 124.2 38.7 10 79.6 11.8 19.4 1.6 10
20 78.2 120.0 167.6 48.6 10 78.2 12.0 21.5 1.2 10
21 60.8 31.3 50.1 27.0 10 60.8 2.5 6.7 1.3 10
22 70.4 60.1 95.0 44.0 10 70.4 7.8 35.6 1.3 10

Average 30.7 3.9

CPLEX needed about 31 seconds for solving each instance. Results in Figure 4 show that

computational efficiency of the CG fluctuated weakly over instance groups, in comparison

with CPLEX.
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Figure 4 Average Computational Times Over Small RMCPR Instances (Set 2)

Table 8 Computational Results on Large RMCPR instances (Set 3)

Instance group
CPLEX CG

Obj Avg. Max Min #OPT Obj Avg. Max Min #OPT

23 85.5 326.1 413.9 285.0 10 85.5 23.4 38.3 1.9 10
24 79.1 356.7 405.9 296.1 10 79.1 24.3 42.9 1.9 10
25 78.8 49.3 66.1 40.0 10 78.8 16.1 34.7 6.4 10
26 90.8 199.5 241.5 164.4 10 90.8 29.7 43.2 5.3 10
27 103.8 301.0 365.7 135.9 10 103.8 55.4 135.4 6.0 10
28 98.7 405.3 1086.1 214.3 10 98.7 64.5 176.4 5.8 10
29 109.2 3313.4 3600 2750.2 4 99.4 41.3 92.5 6.0 10
30 82.6 2459.7 3600 1513.0 6 79.4 54.2 92.3 7.9 10
31 98.5 3600 3600 3600 0 92.2 84.5 101.7 68.3 10
32 - 3600 3600 3600 0 83.2 74.8 126.7 10.9 10
33 79.3 346.4 533.3 143.1 10 79.3 51.1 156.2 6.2 10
34 - 3600 3600 3600 0 71.7 61.4 191.3 5.8 10
35 - 3600 3600 3600 0 77.8 118.6 238.9 6.1 10
36 - 3600 3600 3600 0 83.8 239.2 389.1 149.7 10
37 - 3600 3600 3600 0 65.3 29.9 49.4 7.4 10
38 - 3600 3600 3600 0 76.2 146.9 675.7 7.3 10
39 - 3600 3600 3600 0 73.9 255.6 690.1 7.1 10
40 - 3600 3600 3600 0 72.4 510.9 949.5 78.2 10

Average 2231.0 4.4 104.5 10

Figure 5 Average Computational Times Over Large RMCPR Instances (Set 3)
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4.5. Comparison Results on Large RMCPR Instances

We finally evaluate the performance of our CG using 180 large RMCPR instances (Set 3).

Again CPLEX was also run to solve each instance with a time limit of 3600 seconds. The

computational results are summarized in Table 8. Entry “-” indicates that at termination,

CPLEX did not find a feasible solution to any instance in each group. Figure 5 shows the

average computational time over instance group.

As one may observe from the results in Table 8, instances in Set 3 are much harder

than those in Set 2. Among these 180 instances, CPLEX solved only 80 instances within

one hour. For eight groups of 80 instances, CPLEX even did not find any feasible solution

at termination. The computational results clearly show that the CG worked significantly

better than CPLEX. The CG solved all these 180 instances to optimality. For those 80

instances that CPLEX optimally solved, the CG found optimal solutions with significantly

less computational time. That is, CPLEX required average 519.7 seconds to solve each

instance, whereas the CG only needed 45 seconds.

In summary, our experimental results show that the CG is a computationally efficient

approach for the MCPPR and RMCPR.

5. Conclusions

In this paper, we introduced and addressed the resource-constrained minimum cost path

problem with relays, which arises in telecommunication and transportation systems. We

first presented a pattern-chain formulation and then developed a column generation

approach, which is able to optimally solve the RMCPR. In the column generation approach,

we proposed a Lagrangian relaxation based method to efficiently solve the pricing sub-

problem, which aims at finding a desirable pattern associated with each node pair. The

Lagrangian dual of each pricing subproblem was solved to check whether we can prune

one node pair from the pricing subproblem and reduce its size. A series of experiments

were carried out to evaluate our approach. With 160 MCPPR instances, we first compared

our approach with the best labeling algorithm, of which the efficiency is closely related to

the assumption that arc weights are integers. While finding solutions with same quality,

our approach has a good performance in terms of computing time. Over 400 RMCPR

instances, we finally compared our approach with CPLEX, which solved instances with

the node-arc formulation with a time limit of one hour. The computational results show
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that our approach outperformed CPLEX in terms of both solution quality and computing

time, especially for large instances.

In the future work, we may extend our results to the resource-constrained multicom-

modity network design problem with relays. We plan to report on these developments in

the near future.
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Üster, H., P. Kewcharoenwong. 2011. Strategic design and analysis of a relay network in truckload trans-

portation. Transportation Science 45 505–523.



28

Vanderbeck, F., L. A. Wolsey. 1996. An exact algorithm for ip column generation. Operations research letters

19 151–159.

Willoughby, K. A., D. H. Uyeno. 2001. Resolving splits in location/allocation modeling: a heuristic procedure

for transit center decisions. Transportation Research Part E-Logistics And Transportation Review 37

71–83.

Wolsey, L. A. 1998. Integer Programming . John Wiley and Sons, Inc., New York.

Zhu, X., W. E. Wilhelm. 2007. Three-stage approaches for optimizing some variations of the resource

constrained shortest-path sub-problem in a column generation context. European Journal of Operational

Research 183 564–577.

Zhu, X., W. E. Wilhelm. 2012. Implementation of a three-stage approach for the dynamic resource-

constrained shortest-path sub-problem in branch-and-price. Computers & Operations Research 40

385–394.




