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The support vector machine (SVM) is a state-of-the-art method in supervised classification. In this paper
the Cluster Support Vector Machine (CLSVM) methodology is proposed with the aim to increase the
sparsity of the SVM classifier in the presence of categorical features, leading to a gain in interpretability.
The CLSVM methodology clusters categories and builds the SVM classifier in the clustered feature space.
Four strategies for building the CLSVM classifier are presented based on solving: the SVM formulation in
the original feature space, a quadratically constrained quadratic programming formulation, and a mixed
integer quadratic programming formulation as well as its continuous relaxation. The computational
study illustrates the performance of the CLSVM classifier using two clusters. In the tested datasets our
methodology achieves comparable accuracy to that of the SVM in the original feature space, with a
dramatic increase in sparsity.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In supervised classification [2,18,37], we are given a set of
objectsΩ partitioned, in its simplest setting, into two classes, and
the aim is to classify new objects. Given an object iAΩ, it is
represented by a vector ðxi; x0i; yiÞ. The feature vector xi is asso-
ciated with J categorical features, that can be binarized by split-
ting each feature into a series of 0-1 dummy features, one for

each category, and takes values on a set XDf0;1g
PJ

j ¼ 1
Kj , where Kj

is the number of categories of feature j. Thus, xi ¼ ðxi;j;kÞ, where
xi;j;k is equal to 1 if the value of categorical feature j in object i is
equal to category k and 0 otherwise. The feature vector x0i is
associated with J0 continuous features and takes values on a set
X0DRJ0 . Finally, yiAf�1; þ1g is the class membership of object i.
Information about objects is only available in the so-called
training sample, with n objects.

In many applications of supervised classification datasets are
composed by a large number of features and/or objects [26],
r Snyder.
cts MTM2012-36163 of Min-
-7603 and FQM-329 of Junta

z),

or was at Departamento de
atemáticas, Universidad de
making it hard to both build the classifier and interpret the results.
In this case, it is desirable to obtain a sparser classifier, which may
make classification easier to handle and interpret, less prone to
overfitting and computationally cheaper when classifying new
objects. The most popular strategy proposed in the literature to
achieve this goal is feature selection [14,15,17,35], which aims at
selecting the subset of most relevant features for classification
while maintaining or improving accuracy and preventing the risk
of overfitting. Feature selection reduces the number of features by
means of an all-or-nothing procedure. For categorical features,
binarized as explained above, it simply ignores some categories of
some features, and does not give valuable insight on the rela-
tionship between feature categories. These issues may imply a
significant loss of information.

A state-of-the-art method in supervised classification is the
support vector machine (SVM). The SVM aims at separating both
classes by means of a classifier, ðωÞ> xþðω0Þ> x0 þb¼ 0, ðω;ω0Þ
being the so-called score vector, where ω is associated with the
categorical features and ω0 is associated with the continuous fea-
tures. Given an object i, it is classified in the positive or the
negative class, according to the sign of the score function,
signððωÞ> xiþðω0Þ> x0iþbÞ, while for the case ðωÞ> xi þðω0Þ> x0iþ
b¼ 0, the object is classified randomly. See [5,11,17,24,29] for
successful applications of the SVM and [10] for a recent review on
Mathematical Optimization and the SVM.

In this paper, a methodology to increase the sparsity of the
support vector machine (SVM) classifier for datasets composed by
categorical features, sometimes containing many categories,
and eventually continuous features, is proposed. This is done by
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clustering the different categories of each categorical feature into a
given number of clusters, and then obtaining an SVM-type clas-
sifier in the clustered feature space. We call this the Cluster Sup-
port Vector Machine (CLSVM) methodology and we will refer to
the CLSVM classifier. Note that we apply a clustering methodology
to the feature space, while other papers in the literature such as
[16] apply clustering to the set of records.

Sparsity is used as a surrogate of interpretability, since in sparse
classifiers only the most valuable information is retained. As an
illustration, let us consider the well-known German credit dataset,
german, which is one of the datasets from the UCI repository, [4],
used in our computational tests. This is a credit scoring dataset,
with good customers defining the positive class (y¼ þ1) and bad
customers defining the negative class (y¼ �1), and has been used
in the context of supervised classification, such as in [3]. In this
dataset each object is composed by 20 features: 11 categorical
features, binarized into 52 dummies, and 9 continuous features.
For this dataset, the SVM formulation in the original feature space,
hereafter denoted by SVMO, gives a classifier leading to a classifi-
cation accuracy of 76.67% and whose categorical score subvector ω
has 50 relevant features, i.e., cardðfωja0gÞ ¼ 50. However, using
the CLSVM methodology described in this paper, where the cate-
gories of each categorical feature are grouped just into two clus-
ters, the classification accuracy is increased to 80.00% while the
CLSVM classifier uses 2� 11¼ 22 relevant dummies. In other
words, the methodology proposed here allows one to obtain a
much simpler classifier without compromising accuracy (in this
case, accuracy is even higher than the original one). The clustering
of categories for german is shown in Fig. 6, where we can see each
categorical feature separated by a discontinuous line and each
category from each categorical feature represented by a circle. The
two clusters are distinguished by the coloring with dark grey and
light grey circles. For instance, the categorical feature “Property”
originally had four categories, namely, “real estate”, “building
society savings agreement/life insurance”, “car or other” and
“unknown/no property”. As we will see later, the three first cate-
gories, colored in dark grey, are those indicating good customers,
against the category indicating bad customers, namely “unknown/
no property”. This is a further gain in interpretability of the
methodology proposed here when categories are grouped into two
clusters, by detecting which clusters point towards the
positive class.

In this paper, four strategies to build the CLSVM classifier are
proposed using different mathematical optimization formulations.
The first strategy proposed solves the SVMO as initial step. Then,
categories are clustered using a partition of the SVMO scores and
the CLSVM classifier consists of building an SVM classifier in the
clustered feature space. For the second strategy a mixed integer
nonlinear programming (MINLP) formulation of the same type as
the SVM formulation is proposed, but in this case defining a score
for each cluster of each categorical feature. The second strategy is
based on solving the continuous relaxation of this MINLP for-
mulation, a quadratically constrained quadratic programming
(QCQP) formulation to find a clustering, and the CLSVM classifier
consists of building again an SVM classifier in the clustered feature
space. The third and fourth strategies are based on a mixed integer
quadratic programming (MIQP) formulation derived from the
MINLP formulation using the big M modeling trick to reformulate
the nonlinear terms in the feasible region. The third strategy
works similarly to the second one, but solves the continuous
relaxation of the MIQP. The fourth strategy solves the MIQP for-
mulation itself and obtains the clustering and the classifier at once.

In the computational results, the four strategies are compared
against the SVMO in twelve real-life datasets using two perfor-
mance criteria, namely accuracy and sparsity of the classifier for
the categorical features. We conclude from our experiments that
the CLSVM achieves a comparable or even better accuracy than the
SVMO in eleven of the twelve datasets tested. In addition, the
CLSVM methodology shows an outstanding performance in terms
of sparsity of the classifier for the categorical features, with SVMO

using many more dummy features than each of the strategies in
ten of the twelve datasets.

The remainder of this paper is organized as follows. In
Section 2, the CLSVM methodology is introduced together with
two mathematical optimization formulations. Two theoretical
results on relevance of features and interpretability are presented.
In Section 3, the four CLSVM strategies are presented. Section 4 is
devoted to the computational experience, where the CLSVM
classifier and the SVMO classifier are compared using twelve
datasets. Finally, Section 5 contains a brief summary, conclusions
and some lines for future research.
2. The CLSVM methodology

In this section the CLSVM methodology is introduced. An
MINLP formulation is presented for building the CLSVM classifier.
Then, an MIQP formulation is derived from the MINLP one, using
the big M modeling trick to reformulate the nonlinear terms in the
feasible region. Two theoretical results on relevance of features
and interpretability are shown for both formulations.

First, we present the standard SVM formulation [10,12,32,33].
The SVM aims at separating both classes by means of a hyper-
plane, found by minimizing the so-called hinge loss and the
squared l2-norm of the score vector [10]. The SVM classifier is
obtained by solving the following quadratic programming (QP)
formulation with linear constraints:

min
ω;ω0 ;b;ξ

XJ

j ¼ 1

XKj

k ¼ 1

ðωj;kÞ2
2

þ
XJ0

j0 ¼ 1

ðω0
j0 Þ2
2

þC
n

Xn

i ¼ 1

ξi ð1Þ

s:t: ðSVMÞ

yi
XJ

j ¼ 1

XKj

k ¼ 1

ωj;kxi;j;kþðω0Þ> x0iþb

0
@

1
AZ1�ξi 8 i¼ 1;…;n ð2Þ

ξiZ0 8 i¼ 1;…;n ð3Þ

ωAR

PJ

j ¼ 1
Kj ð4Þ

ω0ARJ0 ð5Þ

bAR; ð6Þ
where ðξiÞ denotes the vector of deviation variables and the
parameter denoted by C is a nonnegative regularization parameter
that calls for tuning [7,10]. We will say that category k from
categorical feature j is relevant to the classifier if ωj;ka0. Similarly,
if ω0

j0 a0, then we will say that continuous feature j0 is relevant to
the classifier. Let us focus now on categorical features. If a category
is relevant to the classifier, we will say that category k from feature
j points towards the positive class if the score associated to the
category is positive, i.e., if ωj;k40. Analogously, if ωj;ko0 we will
say that category k from feature j points towards the negative
class. The fact that a category points towards the positive (or
negative) class means that it contributes to classify objects in the
positive (or negative) class respectively, i.e., contributes to make
signððωÞ> xiþðω0Þ> x0iþbÞ equal to þ1 (�1).

The CLSVM methodology is based on the SVM formulation, but
takes into account the way categorical features are handled in the
SVM (and other linear classifiers): splitting each feature into a
series of 0-1 dummy features, the classifier assigns one score to



Fig. 1. Pseudocode for the CLSVM methodology.
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each dummy feature, and thus to each value of the categorical
feature. Instead, the CLSVM methodology clusters dummies and
builds an SVM classifier in the clustered feature space, which may
reduce the number of relevant features. The pseudocode of the
CLSVM methodology can be found in Fig. 1. We denote by Lj the
number of clusters in which the Kj dummies of categorical feature j
are clustered, and ω j;ℓ the score for the ℓ-th cluster of categorical
feature j. In the first step, the CLSVM finds a clustering for each
categorical feature, defined by an assignment vector zn, where znj;k;ℓ
is equal to 1 if category k from feature j is assigned to the ℓ-th
cluster and 0 otherwise, for j¼ 1;…; J; k¼ 1;…;Kj; ℓ¼ 1;…; Lj. In
the second step, for iAΩ, and using zn, xi is transformed into xi. In
the third step, an SVM-type classifier, ðωÞ> xþðω0Þ> x0 þb¼ 0, is
constructed in the clustered feature space. To avoid symmetry
between clustering solutions, the first category of each categorical
feature is always assigned to its first cluster.

Note that in this paper we illustrate the CLSVM methodology
with the standard SVM, but that ours is applicable to other SVM-
type formulations, with loss functions others than the hinge loss
(such as the ramp loss [5,8]) and regularization terms others than
the l2-norm (such as the l1-norm [21,23]).

2.1. Formulations for the CLSVM

In this section two different mathematical optimization for-
mulations are proposed for the CLSVM methodology, an MINLP
formulation and an MIQP one. The MIQP formulation is derived
from the MINLP formulation using the big M modeling trick to
reformulate the nonlinear terms in the feasible region.

First, we introduce the Cluster (CL) formulation, an MINLP
formulation with nonlinear constraints and 0–1 decision variables.
This formulation aims at finding a classifier, but at the same time
clustering categorical feature j into Lj clusters, for each j¼ 1;…; J.
The CL is formulated as follows:

min
ω ;ω0 ;b;ξ;z

XJ

j ¼ 1

XLj

ℓ ¼ 1

ðωj;ℓÞ2
2

þ
XJ0

j0 ¼ 1

ðω0
j0 Þ2
2

þC
n

Xn

i ¼ 1

ξi ð7Þ

s:t: ðCLÞ

yi
XJ

j ¼ 1

XLj

ℓ ¼ 1

ωj;ℓ

XKj

k ¼ 1

zj;k;ℓxi;j;kþðω0Þ> x0iþb

0
@

1
AZ1�ξi 8 i¼ 1;…;n

ð8Þ

XLj

ℓ ¼ 1

zj;k;ℓ ¼ 1 8 j¼ 1;…; J; 8k¼ 1;…;Kj ð9Þ
ξiZ0 8 i¼ 1;…;n ð10Þ

zAf0;1g
PJ

j ¼ 1
LjKj ð11Þ

ωAR

PJ

j ¼ 1
Lj ð12Þ

ω0ARJ0 ð13Þ

bAR: ð14Þ
This formulation resembles the SVM formulation (1)–(6), and we
will discuss their main differences. Here we have a score asso-
ciated with each categorical feature and each cluster, ω j;ℓ, as
opposed to a score for each category, ωj;k. With respect to the
decision variables, we have

PJ
j ¼ 1 LjKj new 0–1 variables, the

number of components of the assignment vector z, but the num-
ber of continuous features associated with the score vector
decreases from

PJ
j ¼ 1 Kj to

PJ
j ¼ 1 Lj. Constraint (8) corresponds to

constraint (2). Constraint (9) ensures that, given a categorical
feature, each category is assigned to a unique cluster, which means
that there are

PJ
j ¼ 1 Kj additional constraints to those in the SVM

formulation.
The effective use of the clusters by the CL formulation is stated

in the following theoretical results.

Proposition 2.1. For any optimal solution of CL, given a categorical
feature jn, if there exists ℓn such that zjn ;k;ℓn ¼ 1 8k¼ 1;…;Kjn , then
ωjn ;ℓ ¼ 0 8ℓ¼ 1;…; Ljn .

Proof. The proposition will be proved by contradiction. Let ðω;ω0; b;
ξ; zÞ be an optimal solution of CL for which the desired property does
not hold. For the case ℓ¼ ℓn, if ω jn ;ℓn a0, then ðωn;ω0n; bn; ξn; znÞ
obtained by setting ωn

jn ;ℓn ¼ 0 and bn ¼ bþωjn ;ℓn is a feasible solution
for (7)–(14) and has a smaller objective value, which contradicts the
fact that the solution ðω;ω0; b; ξ; zÞ is optimal.

Now we analyze the case ℓaℓn. If ω jn ;ℓa0, then ðωn;ω0n; bn;

ξn; znÞ obtained by setting ωn

jn ;ℓ ¼ 0 is a feasible solution for
(7)–(14) and has a smaller objective value, which contradicts the
fact that the solution ðω;ω0; b; ξ; zÞ is optimal. □

From this proposition, we obtain:

Corollary 2.1. Given a categorical feature, if all its categories belong
to the same cluster, then the feature is irrelevant to the CLSVM
classifier.

The clustering given in the CL formulation for a categorical
feature j with Lj¼2, groups the categories into two clusters. It is
easy to see that either the feature is irrelevant or one of the
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clusters of the feature points towards the positive class while the
other points towards the negative one.

Proposition 2.2. If Lj¼2, for a given j, for any optimal solution of CL,
it holds that:

ω j;1 �ω j;2r0: ð15Þ
Proof. The proposition will be proved by contradiction. Let ðω;ω0; b
; ξ; zÞ be an optimal solution of CL for which the desired property
does not hold, i.e.,ωj;1 �ω j;240. Then ðωn;ω0n; bn; ξn; znÞ obtained by

setting ωn

j;1 ¼
ω j;1 �ω j;2

2 , ωn

j;2 ¼
ω j;2 �ω j;1

2 and bn ¼ bþω j;1 þω j;2
2 satisfies

(15), is a feasible solution for (7)–(14) and has a smaller objective
value, which contradicts the fact that the solution ðω;ω0; b; ξ; zÞ is
optimal. □

Fig. 6 of dataset german, mentioned in Section 1, illustrates the
applicability of Proposition 2.2. We have assigned a dark gray
coloring to clusters in which ωj;ℓ40 in the CLSVM classifier, and
therefore, those clusters point towards good customers; similarly, a
light gray coloring is assigned to clusters in which ωj;ℓo0 in the
CLSVM classifier, and therefore, those clusters point towards bad
customers. For example, for the four categories of feature “Prop-
erty”, the two clusters are given by {“real estate”, “building society
savings agreement/life insurance”, “car or other”} and {“unknown/
no property”}. The categories of the first cluster point towards the
positive class, i.e., they are likely to be associated with good cus-
tomers, while the category “unknown/no property” points
towards the negative class, i.e., bad customers.

Nonconvex nonlinear constraints such as (8) are known to be
computationally difficult to deal with, e.g. [31]. Therefore, one may
want to reformulate constraint (8) from the MINLP formulation in
order to obtain an MIQP formulation where the nonlinear term of the
product of variables ωj;ℓ

PKj

k ¼ 1 zj;k;ℓxi;j;k in constraint (8) is reformu-
lated by introducing new big M constraints. This implies adding

PJ
j ¼ 1

LjKj continuous variables, ~ωj;k;ℓ; j¼ 1;…; J; k¼ 1;…;Kj;ℓ¼ 1;…; Lj,
yielding

min
ω ; ~ω ;ω0 ;b;ξ;z

XJ

j ¼ 1

XLj

ℓ ¼ 1

ðω j;ℓÞ2
2

þ
XJ0

j0 ¼ 1

ðω0
j0 Þ2
2

þC
n

Xn

i ¼ 1

ξi ð16Þ

s:t: ðCL � bigMÞ

yi
XJ

j ¼ 1

XLj

ℓ ¼ 1

~ω j;kðiÞ;ℓþðω0Þ> x0iþb

0
@

1
AZ1�ξi 8 i¼ 1;…;n ð17Þ

XLj

ℓ ¼ 1

zj;k;ℓ ¼ 1 8k¼ 1;…;Kj; 8 j¼ 1;…; J ð18Þ

~ω j;k;ℓrωj;ℓþMð1�zj;k;ℓÞ 8k¼ 1;…;Kj;

8ℓ¼ 1;…; Lj; 8 j¼ 1;…; J ð19Þ

~ω j;k;ℓZωj;ℓ�Mð1�zj;k;ℓÞ 8k¼ 1;…;Kj; 8ℓ¼ 1;…; Lj; 8 j¼ 1;…; J

ð20Þ

~ω j;k;ℓrMzj;k;ℓ 8k¼ 1;…;Kj; 8ℓ¼ 1;…; Lj; 8 j¼ 1;…; J ð21Þ

~ω j;k;ℓZ�Mzj;k;ℓ 8k¼ 1;…;Kj; 8ℓ¼ 1;…; Lj; 8 j¼ 1;…; J ð22Þ

ξiZ0 8 i¼ 1;…;n ð23Þ

zAf0;1g
PJ

j ¼ 1
LjKj ð24Þ

ωAR

PJ

j ¼ 1
Lj ð25Þ

ω0ARJ0 ð26Þ
~ωAR

PJ

j ¼ 1
Lj Kj ð27Þ

bAR: ð28Þ
We now compare the CL-bigM and the CL formulations. Both

objective functions are exactly the same. The difference between
the two formulations comes from the constraints, and the addition
of

PJ
j ¼ 1 LjKj new continuous variables. Constraint (17) is as con-

straint (8). Here, the nonlinear term is replaced with the variable
~ωj;kðiÞ;ℓ, where k(i) identifies the category in which object i falls for
categorical feature j. In order to reformulate constraint (8) as a
collection of linear constraints, it is a very well-known modeling
trick to use a 0–1 variable to control if constraint (8) is active or
not, see [36]. Then, constraint (8) is reformulated as linear con-
straint (17), and 4 �PJ

j ¼ 1 LjKj additional constraints are needed for
the reformulation, (19)–(22), the so-called big M constraints.

Note that Propositions 2.1 and 2.2 and Corollary 2.1 also hold
for the CL-bigM formulation, as it is a valid reformulation of the CL
formulation.
3. Strategies for the CLSVM

In this section four different strategies are proposed to obtain
the CLSVM classifier. The first, and natural, way to define a CLSVM
classifier is by clustering the categories using the scores of the
SVM in the original feature space, the SVMO. This is a cheap
strategy but underperforming in some cases in terms of accuracy,
as we will see in the computational section. Three alternative
strategies are proposed based on the two mathematical optimi-
zation formulations introduced in Section 2, the CL and the
CL-bigM.

In the remainder of this section, when describing the strategies,
we will explain how to obtain the partial solution ðω;ω0; bÞ, which
determines the CLSVM classifier, and the assignment vector zn,
defining the clustering for the categorical features and thus the
clustered feature space, as shown in Fig. 1.

The first strategy, the centroid SVM (SVMC) Strategy, is based on
the SVMO scores. The strategy is as follows. The SVMO classifier is
built, the categories of feature j are clustered into Lj clusters
finding a partition of the SVMO scores, for each j, and the SVM
classifier built in the clustered feature space is returned as the
CLSVM classifier. The pseudocode of this strategy can be found in
Fig. 2. There, the partition of the SVMO scores is found by solving
the minimum sum of squares clustering (MSSC) problem, [19],
which is polynomially solvable for one-dimensional data when the
number of clusters is fixed [1,20,30]. Given a categorical feature j,
the MSSC problem clusters all the categories into Lj clusters such
that the sum of the squared distance of the score of a category
from the centroid of the cluster is minimized. The SVMC Strategy
can be implemented using other partitions of the SVMO scores
instead of the one given by MSSC. For instance, one can use natural
values to partition the scores, such as 0, placing the negative
scores in the first cluster, the zero ones in the second cluster, and
the remaining ones in the third cluster. Other natural values are
the median score, yielding a partition into two clusters, or, more
generally, percentiles of the scores.

The second strategy, the CL randomized rounding (CLRR) Strat-
egy, performs a randomized rounding [27], to the fractional
assignment vector returned by the continuous relaxation of the CL
formulation. This is a QCQP formulation, where constraint (11) is

relaxed to zA ½0;1�
PJ

j ¼ 1
LjKj . The pseudocode of this reduction

strategy can be found in Fig. 3, where rand(p) is a subroutine of
random numbers generation, returning the value 1 with prob-
ability p and 0 otherwise.



Fig. 2. Pseudocode for the SVMC Strategy.

Fig. 3. Pseudocode for the CLRR Strategy.
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The third strategy, the CL-bigM randomized rounding (CLMRR)
Strategy is based on the randomized rounding of the partial
solution of the continuous relaxation of the CL-bigM formulation.
It is similar to the CLRR Strategy, but with the difference that it
solves the continuous relaxation of the CL-bigM formulation,

where constraint (23) is relaxed to zA ½0;1�
PJ

j ¼ 1
LjKj . The pseudo-

code of this strategy can be found in Fig. 4.
The last strategy, the CLM Strategy, is based on the CL-bigM

formulation. Instead of solving the continuous relaxation, this
strategy solves the CL-bigM formulation. In this case we obtain the
clustering and the classifier at once. The pseudocode of this
strategy can be found in Fig. 5. This is the most computationally
expensive strategy, as it involves solving an MIQP formulation
with big M constraints. However, the cost of the strategy is
balanced with the computational results, as shown in Section 4.

Other strategies are possible and natural, and some were tes-
ted. For instance, we tried two strategies based on solving the CL
formulation. We tested the strategy for which the solution gave
the clustering and the classifier at once. We also tested another
one for which the assignment vector zn of the solution was used to
cluster the dataset and an SVM was solved to find the classifier.
These strategies are however computationally expensive as they
involve solving MINLP formulations. The performance of these
strategies is not reported in Section 4 since they were system-
atically outperformed by the strategies above.
4. Computational results

In this section we illustrate the performance of the CLSVM
methodology compared to the benchmark procedure, the SVMO, in
terms of classification accuracy and sparsity of the classifier for the
categorical features. We have chosen Lj¼2, for all j¼1,…, J, and
therefore the dimension of the clustered categorical feature space
is equal to

PJ
j ¼ 1 Lj ¼ 2J.

The classification accuracy of a classifier on a given dataset is
defined as the percentage of objects correctly classified by the
classifier on such dataset. The second criterion is sparsity with
respect to the original categorical feature space. The sparsity of the
SVMO classifier is given by

cardðfωj;k ¼ 0gÞPJ
j ¼ 1 Kj

� 100%;

which quantifies (in percentage) the fraction of irrelevant dum-
mies of the score vector associated with the categorical features.
The sparsity of the CLSVM classifier relative to the original



Fig. 4. Pseudocode for the CLMRR Strategy.

Fig. 5. Pseudocode for the CLM Strategy.
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categorical feature space is the summation of two terms. First, we
have the theoretical sparsity, i.e., the one gained by clustering Kj

categories into Lj ones. Second, we have the sparsity gained by the
zero scores in the clustered feature space. Thus, the sparsity of the
CLSVM classifier can be written as

1�
PJ

j ¼ 1 LjPJ
j ¼ 1 Kj

0
@

1
A � 100%þcardðfωj;ℓ ¼ 0gÞPJ

j ¼ 1 Kj

� 100%: ð29Þ

We will show that the CLSVM classifier is competitive against the
SVMO classifier in terms of classification accuracy and outperforms
the SVMO classifier in terms of sparsity.

Our experiments have been conducted on a PC with an Intel
s

Core ™ i7 processor with 16 Gb of RAM for all strategies except for
the CLRR Strategy, where the Neos Server is used, [13]. We use the
optimization engine CPLEX, [22], for solving the SVM formulation,
the CL-bigM formulation and its continuous relaxation, and Ipopt,
[34,13], for the continuous relaxation of CL. We have fixed
M¼1000 on the CL-bigM formulation. Although most optimiza-
tion problems are solved to optimality in a few seconds, for the
CL-bigM formulation the time limit is set to 300 s, and thus the
incumbent solution after such time limit is used instead.

As customary in supervised classification, building the SVM and
the CLSVM classifiers calls for tuning the tradeoff parameter C, see
Figs. 2–5. As usually done in the literature, the tuning procedure
works as follows, e.g. [7,10]. The dataset is split into three sets, the
so-called training, testing and validation sets. For each value of C,
the optimization problem is solved on the training set. The
different classifiers built in this way are compared according to
their classification accuracy on the testing set. The parameter C
with the highest classification accuracy on the testing set is cho-
sen, and its classification accuracy on the validation set is reported.
Following the usual approach, the parameter C is tuned by

inspecting a grid of the form C
nA 10�6;…;106

n o
, see [10].

To obtain sharp estimates for the classification accuracy and the
sparsity, repeated random subsampling is used, where ten
instances are run for each dataset. The ten instances differ in the
seed used to reshuffle the dataset in order to obtain different
training, testing and validation sets.

The remainder of this section is structured as follows. The
datasets used to compare the CLSVM classifier are described in
Section 4.1, and the computational results are presented in
Section 4.2.
4.1. Datasets

The performance in terms of classification accuracy and spar-
sity of the CLSVM methodology is illustrated using twelve real-life
datasets from the UCI repository [4]. Regression datasets are
transformed into 2-class classification datasets using the median
(abalone), and multi-class datasets are transformed into 2-class
ones, treating the largest class as the positive class and the
remaining ones as the negative class (nursery, covertype,
molecular, careval, solar-c). Recall that categorical features



Table 1
Datasets.

Name jΩj n Class split J J0 Kj
PJ

j ¼ 1 Kj
Theoretical sparsity

census income 95 130 5000 94/6 31 9 9,52,47,17,3,7,24,15,5,10,3,6,8,6,6,50,38,8,9,8,9,3,3,5,42,42,42,5,3,3,3 491 83.37
adult 30 956 5000 24/76 11 3 5,8,5,16,5,7,14,6,5,5,41 117 81.20
nursery 12 960 5000 67/33 8 0 3,5,4,4,3,2,3,3 27 40.74
covertype 11 340 5000 57/43 2 10 4, 40 44 90.91
mushrooms 8124 5000 48/52 17 4 6,4,10,9,4,3,12,4,4,9,9,4,3,8,9,6,7 111 69.37
coil 2000 5822 3900 94/6 5 80 41,6,10,10,10 77 87.01
abalone 4177 2800 50/50 1 7 3 3 33.33
molecular 3190 2200 52/48 60 0 8,8,8,… 480 75.00
careval 1728 1200 30/70 6 0 4,4,4,3,3,3 21 42.86
solar-c 1066 800 83/17 5 5 7,6,4,3,3 23 56.52
german 1000 700 30/70 11 9 4,5,11,5,5,5,3,4,3,3,4 52 57.69
australian 690 500 56/44 4 10 3,14,9,3 29 72.41
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have been transformed by splitting the categories into
0–1 dummy features.

A description of these datasets can be found in Table 1, whose
first two columns report the dataset name and total size of the
dataset (jΩj ). The size of the training set (n) is set as the closest
102 multiple to 2

3jΩj setting 5000 as the maximum in order to
have running times below reasonable values, see third column of
Table 1. The remaining records in the dataset are equally split
between the testing and validation sets. The fourth column reports
the class split in the training set. The next three columns show the
number of categorical and continuous features, respectively, and
the number of categories per feature. Finally, the last two columns
report the total number of categories, i.e., the size of the original
feature space related to the categorical variables,

PJ
j ¼ 1 Kj, and the

theoretical sparsity of the CLSVM classifier, the first term in (29).

4.2. Results

In this section we compare the performance of the four stra-
tegies proposed to build the CLSVM classifier against that of the
SVMO classifier in terms of classification accuracy and sparsity of
the classifier. When, for a given criterion, the difference in per-
formance of two classifiers is below 1 percentage point (p.p.), we
will say that both classifiers are comparable under such criterion.

Tables 2 and 3 report the results for the benchmark procedure,
SVMO, and for the strategies proposed in this paper. Table 2 reports
the mean accuracy in the validation set as well as the standard
deviation across the ten reshuffles, and similar information is
reported in Table 3 for the sparsity. For each dataset and each
criterion, we underline the best results across all the strategies and
the benchmark procedure. The following conclusions can be
drawn from our computational results for the mean values.

We start with the accuracy, see Fig. 7. For nine of the twelve
benchmark datasets (census income, nursery, covertype,
mushrooms, coil 2000, abalone, molecular, solar-c, ger-
man), at least one of the strategies is comparable to the SVMO. For
two datasets the SVMO is outperformed, by two strategies in
adult and by one strategy in australian. In adult, the SVMC

Strategy and the CLMRR Strategy outperform the SVMO by 3.65 p.p.
and 4.18 p.p. respectively. This improvement suggests that SVMO,
i.e., the SVM in the original feature space, is overfitting. In aus-

tralian, the CLM Strategy outperforms the SVMO in 1.26 p.p. For
one dataset, careval, the SVMO achieves the best accuracy, where
the difference with the CLSVM classifier is between 2.57 p.p., with
the CLM Strategy, and 13.94 p.p., with the SVMC Strategy.

We now focus on the second criterion, namely, sparsity of the
classifier with respect to the categorical features, see Fig. 8. The
strategies show an outstanding performance in terms of sparsity.
All the strategies and the SVMO achieve the same sparsity for the
coil 2000 dataset, namely, 98.70%. All except for the SVMC
Strategy outperform the SVMO for the nursery dataset. All except
for the SVMC Strategy outperform the SVMO for the covertype

dataset in 65 p.p., while the SVMC Strategy outperforms the SVMO

in 15 p.p. For the remaining nine datasets, all the strategies out-
perform the SVMO by at least 30 p.p.

In summary, the four strategies proposed for the CLSVM
methodology are competitive against the SVMO in terms of
accuracy, and clearly dominate in terms of sparsity of the clas-
sifier. The SVMC and CLMRR strategies have a computational cost
comparable to that of the benchmark procedure, SVMO, as they
only involve solving QP formulations. Solving QCQP formulations,
thus, incurring a small increase in the computational cost, one
can obtain the CLRR Strategy. Although the CLM Strategy is the
most computationally expensive strategy, as it involves solving
difficult MIQP formulations with big M constraints, its cost is
balanced with the computational results, as it is the strategy
performing best accuracy results in six datasets (nursery,
mushrooms, coil 2000, careval, german, australian) and
best sparsity results in seven datasets (census income, adult,
nursery, mushrooms, coil 2000, abalone, molecular).

As shown in Table 2, the performance of the CLM Strategy
suggests it could be improved for datasets with a large number of
categories, such as molecular. Recall that to obtain running times
below reasonable values, the time limit for this strategy is set to
300 s. Increasing the time limit to 3600 s for molecular, changes
the mean accuracy from 51.92% to 93.70%, which makes the CLM
comparable to the SVMO in terms of accuracy for molecular.
Therefore, increasing the running time may be an alternative for
the CLM Strategy when dealing with a large number of features.
5. Conclusions

In this paper the CLSVM methodology is proposed, based on
the SVM with the linear kernel and performing a clustering for
categorical features and building an SVM classifier in the clustered
feature space. Four strategies are presented to build the CLSVM
classifier by means of QCQP, MIQP and QP formulations. When
using two clusters, the CLSVM classifier has a comparable classi-
fication accuracy to the SVMO classifier, in nine of the twelve
benchmark datasets. In the remaining three datasets, the CLSVM
classifier outperforms the SVMO classifier in two datasets, and is
outperformed in the other one. In terms of sparsity of the classifier
with respect to the categorical features, the CLSVM methodology
shows a dramatic improvement over the SVMO.

Knowledge domain [9,25] can easily be incorporated into the
methodology by adding new constraints to the formulations. For
instance, must link constraints [19], i.e., constraints implying that
two categories must belong to the same cluster, or fixing the



Table 2
Accuracy for the original SVM (SVMO) and the CLSVM strategies.

Name SVMO SVMC CLRR CLMRR CLM

Mean Std Mean Std Mean Std Mean Std Mean Std

census income 94:90 0.00 94.85 0.00 94.84 0.04 94.40 0.04 94.37 0.00
adult 84.57 0.22 88.22 2.44 83.44 0.37 88:75 2.96 85.35 3.16
nursery 100:00 0.00 67.98 4.56 96.67 10.00 100:00 0.00 100:00 0.00
covertype 74.42 0.74 73.53 0.99 72.79 1.17 74:48 0.74 74.47 0.74
mushrooms 100:00 0.00 100:00 0.00 100:00 0.00 98.58 0.77 100:00 0.00
coil 2000 100:00 0.00 100:00 0.00 100:00 0.00 100:00 0.00 100:00 0.00
abalone 79.87 1.18 79:90 1.05 79.86 1.02 79.87 0.96 79.65 1.25
molecular 94:22 0.80 93.94 0.73 93.40 1.28 88.04 1.68 51.92 0.00
careval 96:74 1.34 82.80 5.15 92.23 1.28 83.94 4.91 94.17 2.84
solar-c 83.53 1.23 83.61 1.38 83:83 1.08 83.76 1.02 83.61 1.38
german 74.60 2.71 74.80 2.36 74.60 3.12 72.53 3.77 75:60 3.01
australian 84.11 3.17 84.42 3.32 84.53 3.12 84.53 3.05 85:37 3.28

Fig. 6. The CLSVM methodology for one instance of the german dataset.
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Fig. 7. Visualizing the accuracy in the validation set for the original SVM (SVMO)
and the CLSVM strategies.

Fig. 8. Visualizing the sparsity in the validation set for the original SVM (SVMO)
and the CLSVM strategies.

Table 3
Sparsity for the original SVM (SVMO) and the CLSVM strategies.

Name SVMO SVMC CLRR CLMRR CLM

Mean Std Mean Std Mean Std Mean Std Mean Std

census income 36.86 0.00 89.82 0.00 91.69 0.33 91.45 1.62 100:00 0.00
adult 16.07 3.26 86.24 2.21 83.42 1.34 89.83 4.36 90:77 3.64
nursery 88.89 0.00 43.12 18.21 91.85 2.22 92:59 0.00 92:59 0.00
covertype 24.81 1.48 43.57 34.17 91:82 1.82 90.91 0.00 90.91 0.00
mushrooms 28.83 0.00 76.58 0.00 80.72 4.56 78.29 5.87 85:23 1.57
coil 2000 98:70 0.00 98:70 0.00 98:70 0.00 98:70 0.00 98:70 0.00
abalone 0.00 0.00 33:33 0.00 33:33 0.00 33:33 0.00 33:33 0.00
molecular 42.96 3.12 100:00 0.00 75.13 0.19 77.29 0.90 100:00 0.00
careval 0.95 2.86 55.24 8.57 58.10 12.20 70:48 10.82 50.48 3.81
solar-c 47.83 34.51 87.83 10.43 94.78 11.14 99:13 2.61 88.69 7.83
german 5.38 1.88 57.69 0.00 61.73 4.59 63:08 4.28 57.69 0.00
australian 13.10 4.83 80.69 9.66 84.83 11.03 94:48 2.76 76.55 5.52
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maximum (or minimum) number of categories that compose a
cluster, can be easily added. The former may be desirable, e.g., if
categories represent countries, where one may want to impose
that some countries are in the same cluster based on their geo-
graphic location. The latter may be desirable to balance the size of
the clusters.

There are several interesting directions to extend the CLSVM
methodology.

First, a sequential methodology could be designed to handle
datasets containing a large number of categorical features. This can
be done by running a CLSVM model for each feature, fixing a
clustering for the feature, and then iteratively repeating the pro-
cess for the remaining features. Different ways of choosing the
order of features for the iterative process require extra analysis; for
instance, one can choose the feature for which the CLSVM classi-
fier has the best classification accuracy.

Second, the simplified feature space, with fewer categories,
generated by our CLSVM methodology can be seen used as input
for other classifiers, such as the SVM with nonlinear kernels or
classification trees. Alternatively, one can directly model the pro-
blem of clustering categories with general kernels, yielding,
however, very difficult nonconvex mixed integer optimization
problems. Strategies to build this nonlinear classifier deserves
further study.

Third, the CLSVM methodology can be extended to handle
continuous features as well. As the CLSVM aims at increasing the
sparsity of the classifier in the presence of categorical features, we
have focused on benchmark datasets composed by categorical
features and eventually continuous features. However, for any
dataset, a combined methodology could be performed in order to
transform continuous features into categorical ones, by applying
the techniques from [6,28], either binarizing or discretizing con-
tinuous features and then applying the CLSVM methodology. This
extension deserves further study and testing.

Fourth, our CLSVM methodology can be combined with the
strategy in [16] to deal not only with categorical features, but also
with datasets with a large number of records, in order to reduce
the computational burden of building the CLSVM classifier. Indeed,
the goal in [16] is to reduce the computational effort when
building SVM classifiers without harming classification accuracy.
The records are clustered and an SVM classifier is built for each
cluster, where the number of records in each cluster is much
smaller than in the original dataset, yielding the desired compu-
tational savings, finally the different classifiers are combined into a
single one. Merging the two methodologies (feature clustering and
record clustering) in a sequential manner or developing a joint
approach deserves a thorough testing, which is out of the scope of
this paper.
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