
Author's Accepted Manuscript

Production and pricing Problems in make-to-
order supply chain with cap-and-trade reg-
ulation

Xiaoping Xu, Wei Zhang, Ping He, Xiaoyan Xu

PII: S0305-0483(15)00161-9
DOI: http://dx.doi.org/10.1016/j.omega.2015.08.006
Reference: OME1585

To appear in: Omega

Received date: 21 April 2014
Revised date: 6 August 2015
Accepted date: 6 August 2015

Cite this article as: Xiaoping Xu, Wei Zhang, Ping He, Xiaoyan Xu, Production
and pricing Problems in make-to-order supply chain with cap-and-trade
regulation, Omega, http://dx.doi.org/10.1016/j.omega.2015.08.006

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/omega

http://dx.doi.org/10.1016/j.omega.2015.08.006
http://dx.doi.org/10.1016/j.omega.2015.08.006
http://dx.doi.org/10.1016/j.omega.2015.08.006
http://dx.doi.org/10.1016/j.omega.2015.08.006
http://dx.doi.org/10.1016/j.omega.2015.08.006
http://dx.doi.org/10.1016/j.omega.2015.08.006


 

Production and Pricing Problems in Make-To-Order Supply 

Chain with Cap-and-Trade Regulation  

Xiaoping Xu
a
, Wei Zhang

b
, Ping He

b∗∗∗∗, Xiaoyan Xu
b
 

a 
School of Management, University of Science and Technology of China,  

96 Jinzhai Road, Hefei, Anhui 230026, PR China 

b 
School of Management, Zhejiang University,  

866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China 

Abstract 

This paper studies the production and pricing problems in MTO (make-to-order) 

supply chain containing an upstream manufacturer who produces two products based 

on MTO production and a downstream retailer. The manufacturer is regulated by 

cap-and-trade regulation and determines the wholesale prices of the two products. To 

comply with the regulation, the manufacturer can buy or sell emission permits 

through an outside market. The retailer determines its order quantities to meet the 

price-sensitive demands. We derive the optimal total emissions and production 

quantities of the two products, and based on them, we analyze the impact of emission 

trading price on the optimal production decisions and the two firms’ optimal profits. 

The emission trading decisions follow a two-threshold policy and the optimal total 

emissions are increasing in the cap. However, contrary to intuition, the optimal 

production quantities of the two products may be decreasing in the cap. The 

manufacturer’s optimal profit is decreasing (increasing) in the buying (selling) price 

of emission permits, and that the retailer’s optimal profit is decreasing in the buying 

(selling) price of emission permits. The optimal total emissions are decreasing in 

buying or selling price of emission permits, however, the optimal production 

quantities of the two products may be increasing (decreasing) in the buying (selling) 

price of emission permits. Numerical examples are conducted to illustrate our findings 

and some managerial insights are presented. 
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1.  Introduction 

It is a global consensus that carbon emissions are the main reasons contributing to 

global warming. To curb the carbon emissions, some legislations and mechanisms are 

proposed in many regions and countries. Emissions trading scheme (cap-and-trade 

regulation) is now generally accepted as one of the most effective market-based 

mechanisms (Hua et al., 2011). According to the report from European Commission 

(2013), the earliest and largest EU emissions trading scheme (EU-ETS) has covered 

31 countries with more than 11,000 firms and limited around 45% total EU emissions
1
. 

With cap-and-trade regulation, the manufacturers receive the cap from the 

government agencies and the emission permits can be traded through an outside 

market. Since carbon emissions incur in almost all stages of the production process, 

cap-and-trade regulation has significant effects on the manufacturers’ production 

decisions and it will indirectly affect the partners in their supply chains. 

Most manufacturing firms produce multiple products and sell these products 

through retailers. For example, HeBei (Cheng De) Iron&Steel Group produces 16 

kinds of products, such as hot rolled coil, wire products and so on. He produces these 

products based on MTO (make-to-order) production and these products are sold by 

sales agencies who order these products from HeBei (Cheng De) Iron&Steel Group
2
. 

Lots of carbon emissions are generated in producing each of these products. To reduce 

carbon emissions, China has established 7 carbon trading pilots and is planning to 

establish a national carbon trading platform before 2015 which contains many 

manufacturing industries, especially electricity, steel, petrochemical and cement
3
. 

HeBei Iron&Steel Group is the second largest steel companies in China. So, he needs 

to determine the products’ wholesale prices under cap-and-trade regulation and 

reasonably allocate emission permits to the products to maximize their profits, and the 

retailers determine their order quantities to meet market needs based on the 

manufacturer’s wholesale prices. Compared with a single product scenario, the 

investigation of two products will involve the allocation of the emission permits as 

well as the product portfolio selection and production. Due to the differences of 

production technologies or raw materials in the production process, these products 

have different production costs and carbon emissions intensity (i.e. carbon emission



 

 

generated by producing per-unit product). Thus with cap-and-trade regulation, how to 

make the emission trading decisions as well as the product portfolio selection and 

production is an urgent problem of firms today and in the future. 

In this paper, we investigate the production and pricing problems in MTO supply 

chain consisting of two risk-neutral firms, an upstream manufacturer who produces 

two products based on MTO production and a downstream retailer. The manufacturer 

determines its wholesale prices with cap-and-trade regulation and the retailer 

determines its order quantities. It is assumed that the two products can be substitutes 

or complements and the maximal potential profit per unit of emission permit of 

product 1 is no less than that of product 2. We find that the manufacturer buys (sells) 

emission permits from (to) the outside market when the cap is lower (higher) than a 

lower (higher) threshold and neither buy nor sell emission permits for intermediate 

levels of emission cap. The optimal total emissions and production quantities of 

product 2 are increasing in the cap while the optimal production quantities of product 

1 may be decreasing in the cap. The emission trading prices are exogenous variables 

to the supply chain and the selling price per unit of emission permit is not higher than 

the buying price of emission permits, which can be seen in many trading markets, 

such as ECX (European Climate Exchange). We find that the manufacturer’s optimal 

profit is decreasing (increasing) in the buying (selling) price of emission permits, and 

that the retailer’s optimal profit is decreasing in the buying (selling) price of emission 

permits. We also find that the optimal total emissions and production quantities of 

product 2 are decreasing in the buying (selling) prices of emission permits while the 

production quantities of product 1 may be increasing in the buying (selling) prices of 

emission permits. Numerical examples are conducted to illustrate our findings and 

some managerial insights are presented. 

 The remainder of this paper is organized as follows. The relative literature is 

reviewed in Section 2. The problem is modeled in Section 3. The main results are 

presented in Section 4. Numerical examples are given in Section 5. Section 6 

concludes the paper with a discussion of the possible future research direction. All 

proofs are presented in Appendix.  

2.  Literature review 



 

 

Much of the literature investigates the problem of operation decision with 

emissions trading scheme. Here we review the studies highly related to our paper and 

these studies can be classified into three categories: the first is to explore the 

production decisions of a single firm with cap-and-trade regulation; the second is to 

integrate environmental aspect into supply chain; the last is to consider the operations 

management and environment problems in the supply chain. 

Recently, several papers have investigated the problem of the production 

decisions of a single firm with cap-and-trade regulation. Benjaafar et al. (2013) 

introduce cap-and-trade regulation to the production problems and point out three 

simple models concerning inventory management. Based on the classic Arrow-Karlin 

model, Dobos (2005) analyzes the effect of emission trading system on a firm’s 

production and inventory. Song and Leng (2011) investigate the newsvendor problem 

under three carbon emissions policies and get the optimal production quantity and 

profit under each policy. Based on the EOQ model, Hua et al. (2011) investigate the 

problem of a firm’s inventory management that how to manage carbon footprints with 

carbon emission trading mechanism and they think that the pricing decisions should 

be considered in the future research. After that, Li and Gu (2012) investigate the 

impact of tradable emission permits on a firm’s production-inventory strategy and 

compare the optimal production-inventory strategies with those without emission 

permits. Chen et al. (2013) investigate the optimal order quantities under different 

environmental regulations and find that a firm can reduce carbon emissions without 

significantly increasing cost. Zhang and Xu (2013) discuss the optimal production 

quantities with multi-product by providing an efficient solution method. The above 

literature studies focus on a firm and do not involve in pricing decisions. Moreover, 

their studies except Zhang and Xu (2013) are based on only a single product. 

Although Zhang and Xu (2013) investigate the optimal production quantities of 

multi-product, they only provide an algorithm to solve their model and give some 

simple theoretical analysis. Two products which are substitutes or complements are 

discussed in our study and we can find some managerial insights presented in the 

paper. For one-product scenario, the optimal production decisions will be determined 

after knowing the emission trading decisions because all the emission permits 



 

 

obtaining from the government agencies and the outside market will be used to 

produce this product. However, the discussion of two products will involve not only 

the emission trading decisions but also the allocation of the emission permits which 

exist in many manufacturing firms. 

Some literature integrates environmental aspect into supply chain by proposing 

the green/sustainable supply chain network. Pati et al (2008) formulate a mixed 

integer goal programming model in the waste management of reverse logistics system 

and use the model to make decisions on the management of reverse distribution 

network for the reverse logistics system. Diabat and Simchi-Levi (2010) present a 

green supply chain management model with a method of mixed-integer program 

under a carbon emission constraint and demonstrate the model with a computational 

study. Sundarakani et al. (2010) examine the carbon footprints across the supply chain 

so that the firm can reasonably design the supply chain networks. Combined with life 

cycle assessment, Chaabane et al. (2012) introduce a mixed-integer linear 

programming to design the sustainable supply chains with emission trading scheme. 

Dekker et al (2012) review the contribution of Operations Research on green logistics 

under cap-and-trade regulation and give a sketch of green supply chain which 

involves the decisions of transportation, inventory and facility. Eskandarpour et al 

(2015) analyze the models of 87 papers containing both economic and environmental 

factors, and present some new avenues of research to consider sustainability into 

supply chain network design. Their work tells us that how to reasonably design supply 

chain to reduce carbon emissions. However, their studies do not involve the 

production and pricing decisions in the supply chain. In addition, the supply chain 

design may be a long time and costly investments (Zhang and Xu, 2013). 

Up to now, the literature containing both the operations management and 

environment problems in the supply chain is sparse. Cruz (2008) investigates the 

optimality conditions of manufacturers and retailers based on the supply chain 

networks by considering their profits, the carbon emissions and risk. Liu et al. (2012) 

study the optimal wholesale price and retail price in three supply chain network 

structures. Du et al. (2011) explore the optimal decisions of the emission permit 



 

 

supplier and the emission-dependent firm with cap-and-trade regulation. Du et al. 

(2013) further investigate the optimal production decisions with cap-and-trade system 

in a so-called emission-dependent supply chain. Some studies investigate the optimal 

operation decisions based on the supply chain networks (Cruz, 2008; Liu et al., 2010). 

However, their work is not based on cap-and-trade regulation. The others investigate 

the operation decisions with cap-and-trade regulation based on two-stage supply chain. 

Yet, their studies are based on a single product and do not consider the pricing 

decisions.  

3.  Problem Formulation 

We consider a make-to-order supply chain consisting of an upstream 

manufacturer who produces two products and a monopolistic downstream retailer 

who may be not actually monopolistic but is powerful (Liu et al., 2012) such as HeBei 

(Cheng De) Iron&Steel Group. We model the production and pricing problems as the 

manufacturer-Stackelberg game, to which the manufacturer is the game’s leader. That 

is, the manufacturer regulated by cap-and-trade regulation firstly determines its 

optimal wholesale prices, then the retailer determines its optimal order quantities 

based on the wholesale prices and finally the manufacturer produces the two products 

based on MTO production. It is assumed that the two firms in the supply chain have 

full and symmetric information and have no inventory. With cap-and-trade regulation, 

the manufacturer is initially allocated free permits C  ( 0C ≥ ) on its emissions, and 

is allowed to trade emission permits with other firms or government agencies through 

an outside market. Since the emission permits is the limited resources, the 

manufacturer may not buy enough emission permits to produce the two products and 

there may not be demand when the manufacturer wants to sell surplus emission 

permits (that is, the limited allowance availability), we assume that the maximal 

purchases of emission permits from the outside market are T  ( 0T ≥ ) and the 

maximal sales of emission permits to the outside market are V  ( 0V ≥ ). For ease of 

analysis, we do not consider the limited allowance availability in our model and only 

show the optimal total emissions and production quantities of the two products in 

Theorem 1 to 3 which have considered the limited allowance availability. The permits 

trading prices, that is, the buying and selling prices of emission permits, are b  and 



 

 

s  ( 0 s b< ≤ ), respectively (Gong and Zhou, 2013; Hong, Chu and Yu, 2012). 

Although we call them prices, they actually represent the cost and revenue of buying 

and selling unit of emission permits, respectively. The permits trading prices can be 

quite significant and have been studied both empirically and theoretically (Stavins, 

1995; Woerdman et al., 2001).  

Denote by 
ip  and 

id  the selling price and the deterministic demand of product 

i  ( 1,2i = ). Based on the study of Goyal and Netessine (2007), we assume that  

3
=

i i i i
p q qα λ −− −                                  (1) 

where 
i

α  ( 0
i

α > ) is the demand curve intercept and represents a measure of market 

size, and [ 1,1]λ ∈ −  where 0 1λ< ≤  ( 1 0λ− ≤ < ) means that the two products are 

substitutes (complements). Note that 0λ =  implies that the demands of the two 

products are independent, and ( 1, 2)
ii i r

p c iα ≥ > =  where 
ir

c  is the unit sale cost of 

product i . The manufacturer supplies the product i  with the wholesale prices 

iw ( 1,2i = ). So, the optimal profit of the retailer RΠ  can be found by solving the 

following model:  

1 2 1 2, 1 1 1 2 2 2max {( ) ( ) }.
R q q r r

p c w q p c w qΠ = − − + − −              (2) 

Denote by iπ  the manufacturer’s profit of product i . Based on MTO production, 

we can get 

( )
ii i m i

w c qπ = − ( 1,2i = ). 

where 
im

c  is the unit production cost of product i . Carbon dioxide incurs in the 

production activities. Denote by i
e  the incurred emissions of producing per unit 

product (emission intensity for short) i  ( 1, 2i = ). Let E  be the total emissions of 

the manufacturer, i.e., the used emission permits in production activities. So we can 

obtain 1 1 2 2
.E e q e q= +  Considering the emissions cost, the optimal profit of the 

manufacturer M
Π  can be found by solving the following model: 

1 2 1 2, 1 1 2 2max {( ) ( ) ( ) ( ) }.M w w m mw c q w c q b E C s C E
+ +Π = − + − − − + −         (3) 

The first two terms are the profits when producing the products 1 and 2, respectively. 

The last two terms are the emission costs. Let *

1
w  and *

2
w  be the optimal solutions 

to Model (3) and *

1
q  and *

2
q  be the corresponding optimal order quantities (optimal 

production quantities). Note that the optimal selling prices *

1
p  and *

2
p  can be found 

based on *

1
q , *

2
q  and Equation (1). 



 

 

4. Main Results 

In this section, we firstly develop the optimal total emissions and production 

quantities of two products with cap-and-trade regulation in the supply chain, and then 

discuss the impact of the buying and selling prices of emission permits on the optimal 

total emission, optimal production quantities and optimal profits. 

Based on Model (1) and Model (2), we have that 

1 2 1 2, 1 1 2 1 1 2 2 1 2 2max {( ) ( ) }R q q r rq q c w q q q c w qα λ α λΠ = − − − − + − − − −   (4) 

Lemma 1. The optimal order quantity of product i  to Model (4) satisfies: 

3

2

3 3[ ( ) ] [2(1 )]
i ii i r i i r iq c w c wα α λ λ

−− −= − − − − − − ( 1,2i = ) 

The proof of Lemma 1 (and the subsequent results) can be found in Appendix. 

Lemma 1 shows the relationship of the optimal order quantities with the wholesale 

prices. We find that the optimal order quantities are linear with the wholesale prices. 

From Lemma 1, we know that the retailer-price response function to the 

wholesale prices is 
3

2

3 3[ ( ) ] [2(1 )]
i ii i r i i r iq c w c wα α λ λ

−− −= − − − − − − . We find that 

there is one-to-one relationship between the order quantities and the wholesale prices. 

We change the form of reaction function as follows: 32( )
ii i r i iw c q qα λ −= − − +  

( 1, 2i = ). For simplicity, we let iq ( 1,2i = ) be the decisions variable in the Model (3). 

So we change the Model (3) as follows: 

1 2 1 2, 1 1 2 2max {( ) ( ) ( ) ( ) }.M q q m mw c q w c q b E C s C E
+ +Π = − + − − − + −           (4) 

Denote by 
1E  and 

2E  the emissions of products 1 and 2, respectively. Then 

1 1 1E e q= , 
2 2 2E e q=  and 

1 2 .E E E= +  We have  

2

3i i i i i i iE E E Eπ γ η λ −= − − , 1,2i = ,                           (5) 

where ( )
i ii i r m ic c eγ α= − − , 22 0i ieη = >  and 1 22 ( )e eλ λ= . Here iγ  can be 

interpreted as the maximal potential profit per unit of emission permit of product .i  It 

is easy to verify that 1 2 2η η λ+ ≥  and 2

1 2η η λ≥ . Similarly, we have the optimal 

profit of the retailer 2 2

1 1 2 2 1 2
( ) 2 ( ) 2

R
E E E Eη η λΠ = + + . Since the optimal wholesale 

prices *

1
w  and *

2
w  can be found based on *

1
q , *

2
q  and Lemma 1, we just show the 

optimal total emissions and production quantities of the two products in the optimal 

decisions.  

Define 2 2

1 2 1 1 1 1 2 2 2 2 1 2( , ) 2R E E E E E E E Eγ η γ η λ= − + − − . It is clear that 1 2
( , )R E E  

is the manufacturer’s profit without cap-and-trade regulation. The first and second 



 

 

derivatives of 
1 2( , )R E E  with respect to 

1
E  and 

2
E  is as follows: 

1 2 1 1 1 1 2( , ) 2 2R E E E E Eγ η λ∂ ∂ = − −                       (6) 

       
1 2 2 2 2 2 1( , ) 2 2R E E E E Eγ η λ∂ ∂ = − −                          (7) 

Model (6) and Model (7) show that the reduction of the marginal profit of product 1(2) 

is 
1

2η  (
2

2η ) when the unit emission permit is used to produce product 1(2); 2λ  is 

the reduction of the marginal profit of product 1(2) when the unit emission permit is 

used to produce product 2(1). So, 
1η λ>  indicates that the reduction of Model (6) is 

larger than that of Model (7) when the unit emission permit is used to produce product 

1 and 2η λ>  indicates that the reduction of Model (6) is less than that of Model (7) 

when the unit emission permit is used to produce product 2. Without loss of generality, 

we assume that 
1 2

γ γ≥ . Please note that 
i

γ  is determined by the potential market 

size, the unit production cost, the unit sale cost and the unit emissions. 1 2γ γ≥  does 

not imply that product 1 incurs the lower unit emissions. 

Define 
1 2

2 2

, 1 1 1 1 2 2 2 2 1 2 1 2( ) max { 2 : }E Ef E E E E E E E E E Eγ η γ η λ= − + − − + = . It is 

clear that ( )f E  is the manufacturer’s optimal total profit of the two products under 

given total emissions .E  Let *

1E  and *

2E  be the optimal solutions to ( )f E  under 

given total emissions E . Based on ( )f E , Model (4) can be rewritten as: 

0 0max{ max { ( ) }, max { ( ) }},b s

M M E C M E Cf E bE bC f E sE sC≥ ≥ ≤ ≤Π = Π = − + Π = − +  (8) 

where b

M
Π  is the optimal profit of the manufacturer for the case with buying 

emission permits, and s

M
Π  is the optimal profit of the manufacturer for the case with 

selling emission permits. Let *E  be the optimal total emissions after considering the 

limited allowance availability. After knowing *E , *

1
E  and *

2
E  will also be the 

optimal emissions of the two products after considering the limited allowance 

availability. From Model (8), we know that the optimal decisions can be derived 

based on the property of the function ( )f E . Define 0 1 2 1( ) 2( )C γ γ η λ= − −  and 

0

1 2 2( ) 2( )C γ γ λ η= − −  for the total emissions, where 0
C  ( 0C ) is the minimal 

(maximal) total emission to make Model (6) and Model (7) equal to each other, 

( )f E  and its optimal solutions have the following properties as shown in Lemma 2.  

Lemma 2. The function ( )f E  is strictly concave.  

(1) When 1η λ>  and 2η λ≥ , ( )f E  and its optimal solutions satisfy: 

(i) If 
0 ,E C≤  then  

2

1 1( ) .f E E Eγ η= −  The optimal solutions satisfy 
*

1E E=  



 

 

and *

2 0E = ; 

(ii) If 
0 ,E C≥  then 

2 2 2

1 2 1 2 2 1 1 2 1 2( ) {( ) 4[ ( ) ( )] 4( ) } [4( 2 )].f E E Eγ γ γ η λ γ η λ η η λ η η λ= − + − + − − − + −

The optimal solutions satisfy *

1 1 2 2 1 2[ 2( ) ] [2( 2 )]E Eγ γ η λ η η λ= − + − + −  and 

*

2 2 1 1 1 2( 2( ) ) [2( 2 )]E Eγ γ η λ η η λ= − + − + − . 

(2) When 
1η λ>  and 

2η λ< , ( )f E  and its optimal solutions satisfy: 

(i) If 
0 ,E C≤ then  2

1 1( ) .f E E Eγ η= −  The optimal solutions satisfy *

1E E=  

and *

2 0E = ; 

(ii) If 
0

0C E C≤ ≤  then 

2 2 2

1 2 1 2 2 1 1 2 1 2( ) {( ) 4[ ( ) ( )] 4( ) } [4( 2 )].f E E Eγ γ γ η λ γ η λ η η λ η η λ= − + − + − − − + −

The optimal solutions satisfy *

1 1 2 2 1 2[ 2( ) ] [2( 2 )]E Eγ γ η λ η η λ= − + − + −  and 

*

2 2 1 1 1 2( 2( ) ) [2( 2 )]E Eγ γ η λ η η λ= − + − + − ; 

(iii) If 0E C> , then 
2

2 2 2 2( )f E E Eγ η= − . The optimal solutions satisfy 
*

1 0E =  

and 
*

2E E= . 

(3) When 1η λ≤  and 2η λ≥ , 2

1 1( ) .f E E Eγ η= −  

Lemma 2 shows the optimal total profit and emissions of the two products under 

given total emissions .E  Lemma 2 implies that whether the manufacturer produces 

product i  not only depends on the total emissions but also the exogenous parameters 

( 1η , 2η  and λ ). Lemma 2 (1) indicates that the manufacturer firstly uses the 

emission permits to only produce product 1 when the total emissions is less than the 

lower threshold ( 0
C ), then to produce product 2 for the rest total emissions. This 

occurs because the marginal profit per unit of emission permit of product 1 is always 

larger than that of product 2 when the total emissions are less than the lower threshold 

and can be equal to that of product 2 when the total emissions is no less than the lower 

threshold. Note that the higher threshold is not existed in this situation. Lemma 2(2) 

implies that the manufacturer firstly only produces product 1 and then produces the 

two products and finally only produces product 2, which means that more emission 

permits will be allocated to produce product 2 as the emission permits increases. It is 

because the marginal profit per unit of emission permit of product 1(2) is larger than 

that of product 2(1) when the total emission is less than the lower (higher) threshold 

and they can be equal to each other for intermediate levels of the total emission. 



 

 

Lemma 2 (3) means that the marginal profit per unit of emission permit of product 1 

is always larger than that of product 2 so that the manufacturer only produces product 

1.  

Define 
1 2 1 2 2( ) ( )M γ λ γ η λ η= − −  and 

2 2 1 1 1( ) ( )M γ η γ λ η λ= − − . 
1

M  can be 

interpreted as the maximal potential profit per unit of emission permit when the 

manufacturer only wants to produce product 2 or the minimal potential profit per unit 

of emission permit when the manufacturer produces the two products simultaneously. 

2
M  can be interpreted as the minimal potential profit per unit of emission permit 

when the manufacturer only wants to produce product 1 or the maximal potential 

profit per unit of emission permit when the manufacturer produces the two products. 

Note that 
1

0M ≤  means that the manufacturer will never only produce product 2 and 

2 0M ≤  means that the manufacturer will never produce the two products 

simultaneously. We define the following thresholds for Theorem 1 to Theorem 3, 

1

1 1max{( ) (2 ) ,0}bC bγ η= − ， 2 2

1 2 2 1 1 2[( )( ) ( )( )] [2( )]bC b bγ η λ γ η λ η η λ= − − + − − − , 

3

2 2( ) (2 )bC bγ η= − ； 2

1 2 2 1 1 2[ ( ) ( )] [2( )]sC γ η λ γ η λ η η λ= − + − − , 1

1 1( ) (2 )sC sγ η= − ，
2 2

1 2 2 1 1 2[( )( ) ( )( )] [2( )]sC s sγ η λ γ η λ η η λ= − − + − − − , 3

2 2( ) (2 )sC sγ η= − , then the 

optimal total emissions and production quantities of the two products under different 

situations can be shown in the following three theorems.  

In the paper, we use “increasing” and “decreasing” in the non-strict sense to mean 

“non-decreasing” and “non-increasing”, respectively.  

Theorem 1. When 1η λ>  and 2η λ≥ , the optimal total emissions and production 

quantities of the two products over all possible levels of cap C  in three cases are 

shown in Table 1. Pleases see Table 1 in Appendix. 

Theorem 1 shows that the emission trading decisions depend on the received cap 

and follow a two-threshold policy. The lower threshold is equal to the amount of 

emission permits to satisfy that the marginal profits of the two products are equal to 

the buying price of emission permits. The higher threshold is equal to the amount of 

emission permits to satisfy that the marginal profits of the two products are equal to 

the selling price of emission permits. If the cap is lower than the lower threshold, then 

the manufacturer buys emission permits from the outside market; if the cap is larger 

than the higher threshold, then the manufacturer sells surplus emission permits to the 



 

 

outside market and if the cap is between the two thresholds, the manufacturer will 

neither buy nor sell emission permits. For example, in the case with 
2

M b> , when 

20 bC C≤ < , the manufacturer buys 2min{ , }bC C T−  unit emission permits; when 

2 2

b sC C C≤ ≤ , the manufacturer neither buys nor sells emission permits; when 2

sC C> , 

the manufacturer sells 2min{ , }sC C V−  unit emission permits. 

Theorem 1 also shows that the optimal total emissions and production quantities 

of the two products are increasing in the cap. This result is rather intuitive because the 

firm tends to produce more products when more emission permits are received. Note 

that the optimal total emissions and production quantities may remain constant as the 

cap increases. For example, in the case with 
2

M b> , the optimal total emissions and 

production quantities of the two products remain constant as the cap increases when 

2 2( )b bC T C C− < <  or 2 2

s sC C C V< ≤ + . They remain constant because the 

manufacturer allocates the emission permits to the two products to make the marginal 

profits of the two products equal to the emission permits prices. After considering the 

limited allowance availability, the marginal profits of the two products are equal to 

zero when sC C V> +  because the manufacturer cannot sell all the surplus emission 

permits so that he will use the emission permits to produce the two products.  

Theorem 1 indicates that product 1 is the “dominant product” which means that 

the manufacturer always produces this product. However, whether the manufacturer 

produces product 2 depends on 2M  and the cap. When 2M s≤ , which indicates that 

the manufacturer will not simultaneously produce the two products, he only produces 

product 1 because the maximal potential profit per unit of emission permit of product 

1 is no less than that of product 2; when 2s M b< ≤ , which indicates that the 

manufacturer will not buy emission permits to produce the two products, he produces 

product 2 under high cap; when 2
M b> , which indicates that the manufacturer 

always produces product 2, he produces product 2 under any cap.  

Theorem 2. When 1η λ>  and 2η λ< , the optimal total emissions and production 

quantities of the two products over all possible levels of cap C  in six cases are shown 

in Table 2. Please see Table 2 in Appendix. 

Similar to Theorem 1, Theorem 2 shows that the emission trading decisions also 

depend on the received cap and follow a two-threshold policy. However, there is some 



 

 

difference in the two thresholds. When 
1

M b≤ , which indicates that the manufacturer 

will never buy emission permits to only produce product 2, the lower threshold is the 

same to that in Theorem 1; When 
1

M b> , which indicates that the manufacturer will 

buy emission permits to only produce product 2, the lower threshold is equal to the 

amount of emission permits to satisfy that the marginal profit of product 2 is equal to 

the buying price of emission permits. When 
1

M s≤ , the higher threshold is the same 

to that in Theorem 1; When 
1

M s> , the higher threshold is equal to the amount of 

emission permits to satisfy that the marginal profit of product 2 is equal to the selling 

price of emission permits. If the cap is lower than the lower threshold, then the 

manufacturer buys emission permits from the outside market; if the cap is larger than 

the higher threshold, then the manufacturer sells surplus emission permits to the 

outside market and if the cap is between the two thresholds, the manufacturer will 

neither buy nor sell emission permits. 

Theorem 2 also shows that the optimal total emissions and production quantities 

of product 2 are increasing in the cap. However, as the cap increases, (1) the optimal 

production quantities of product 1 firstly increase and then decrease when 2M s> ;  

(2) the optimal production quantities of product 1 increases when 2M s≤ . The 

optimal total emissions and production quantities of the two products increases as the 

cap increases because (i) the manufacturer cannot buy enough emission permits from 

the outside market; (ii) he will only uses the received cap to produce products; (iii) he 

cannot sell all the surplus emission permits to the outside market. And the optimal 

production quantities of product 1 are decreasing in the cap because the manufacturer 

uses more emission permits to produce product 2 when 2M s> . Based on Model (6) 

and (7), we know the marginal profit of each product per unit of emission permit 

decreases when more emission permits are used to produce the two products. 

Theorem 2 indicates that, if the reduction of the marginal profit of product 1 is larger 

than that of product 2 when the unit emission permit is used to produce product 1 

(product 2), then the manufacturer will allocate more emission permits to product 2 as 

the cap increases. So, the manufacturer reduces the emission permits to produce 

product 1 and increases the emission permits to produce product 2. Theorem 2 also 

indicates that, even though product 1 has larger maximal potential profit per unit of 



 

 

emission permit than product 2, the manufacturer allocate more emission permits to 

product 2 for the reason of the substitutability and complementarity of the two 

products.  

Note that the optimal total emissions and production quantities of the two 

products remain constant as the cap increases because the manufacturer produces the 

two products to make the marginal profits of the two products equal to the emission 

trading prices or make the marginal profits of product 2 equal to the selling price of 

emission permits. After considering the limited allowance availability, we find that the 

manufacturer produces the two products to make the marginal profits of the two 

products equal to zero or make the marginal profits of product 2 equal to zero when 

there are enough surplus emission permits. It is because the manufacturer cannot sell 

surplus emission permits to obtain profits and he has the motivation to produce more 

products to make their marginal profit equal to zero.  

Similar to Theorem 1, we find that the manufacturer may produce product 1 or 

both of the products. However, under high value of T , the manufacturer may only 

produce product 2 because the marginal profit of product 2 is always larger than that 

of product 1 which is not exited in two independent products. For example, 

when 1 2s b M M≤ < ≤ , the manufacturer only produces product 2. We know that 

1 2η λ η> > . Recall that 22i ieη = ( 1,2i = ). We can easily verify that 1 2e e< . So, 

cap-and-trade regulation may not have the ability to induce the manufacturer to 

produce low-carbon products which have less carbon emissions per unit of product in 

production process. It is because the profit-maximizing manufacturer produces the 

products which can obtain more profit and he has no motivation to care other aspects. 

Theorem 3. When 1η λ≤  and 2η λ≥ , we have (i) if 10 bC C≤ < , the optimal total 

emissions are 
* 1min{ , },bE T C C= + and the optimal production quantities are 

* 1

1 1min{ , }bq T C C e= +  and 
*

2 0q = ; (ii) if 
1 1

b sC C C≤ < , the optimal total emissions 

are 
* ,E C=  and the optimal production quantities are 

*

1 1q C e=  and 
*

2 0q = ; (iii) 

when 
1 1

s sC C C V≤ < + , the optimal total emissions are 
* 1

sE C= , and the optimal 

production quantities are 
* 1

1 1sq C e=  and 
*

2 0q = ; (iv) when 

1

1 1(2 )sC V C Vγ η+ ≤ < + , the optimal total emissions are 
*E C V= − , and the 

optimal production quantities are 
*

1 1( )q C V e= −  and 
*

2 0q = ; (v) when 



 

 

1 1
(2 )C Vγ η≥ + , the optimal total emissions are *

1 1(2 )E γ η= , and the optimal 

production quantities are *

1 1 1 1(2 )q eγ η=  and *

2 0q = . 

Theorem 3 shows that the emission trading decisions depend on the received cap 

and follow a two-threshold policy. Note that only product 1 will be produced (that is, 

the emission permits are allocated only to product 1). The lower threshold is equal to 

the amount of emission permits to satisfy that the marginal profit of product 1 is equal 

to the buying price of emission permits. The higher threshold is equal to the amount of 

emission permits to satisfy that the marginal profit of product 1 is equal to the selling 

price of emission permits. If the cap is lower than the lower threshold, then the 

manufacturer buys emission permits from the outside market; if the cap is larger than 

the higher threshold, then the manufacturer sells surplus emission permits to the 

outside market and if the cap is between the two thresholds, the manufacturer will 

neither buy nor sell emission permits. 

Theorem 3 also shows that the optimal total emissions and production quantities 

of product 1 are increasing in the cap. It occurs because the firm tends to produce 

more products when more emission permits are received. Note that the optimal total 

emissions and production quantities of product 1 may remain constant as the cap 

increases. For example, when 1 1

s sC C C V≤ < + , the optimal total emissions and 

production quantities of product 1 is 1

sC  and 1

1sC e , respectively. It is because the 

manufacturer produces product 1 to make the marginal profits of product 1 equal to 

the emission permits prices. Theorem 3 indicates that, if the reduction of marginal 

profit of product 1 is always less than that of product 2 when the unit emission permit 

is used to produce product 1 or product 2, then the manufacturer will allocate all the 

emission permits to product 1 because the marginal profit of product 1 is always 

larger than that of product 2. We can easily verify that 1 2
e e>  because of 1 2

η η< . So, 

cap-and-trade regulation may not have the ability to induce the manufacturer to 

produce low-carbon products. 

From Theorem 1 to 3, we can easily find that the cap has significant impact on 

the manufacturer’s optimal production decisions. For example, when 1η λ≤  and 

2η λ≥ , the optimal total emissions are 1min{ , }bT C C+  if 10 bC C≤ < ; C  if 

1 1

b sC C C≤ <  and C V−  if 3

2 2(2 )sC V C Vγ η+ ≤ < + . The result is different from 



 

 

that of Hua et al. (2011) and Benjaafar et al. (2013), who hold that the cap cannot be 

used as a direct lever to control carbon emissions. However, for the reason of the limit 

of the purchases (sales) of emission permits from (to) the outside market and the 

difference of the buying and selling prices of emission permits, the cap can directly 

affect the optimal production decisions, which implies that the cap can be used as a 

direct lever to control carbon emissions. 

If the manufacturer produces a single product, suppose that he will only produce 

product 1, Theorem 3 shows the optimal total emissions and production quantities of 

product 1. Based on the above theoretical results, we can find that there are some 

differences between one product setting and two-product setting. (1) the production of 

two products will involve the allocation of emission permits which makes the problem 

more complex. For example, when 1η λ>  and 2η λ≥ , the firm should allocate the 

emission permits on the two products if 2M b> ; (2) it will involve the product 

portfolio selection and production. Theorem 2 indicates the manufacturer may 

produce product 1(product 2) or both of the two products. (3) the optimal total 

emissions under one-product scenario are no larger than that under two-product 

scenario while the optimal production quantities of product 1 under one-product 

scenario are no less than that under two-product scenario. It indicates that the optimal 

total emissions increase in the kinds of products while the production of the existing 

products will be reduced after adding one or more kinds of products. In practice, firms 

produce multi-product to face various market demands. Since it is too complex to 

investigate multi-product setting by considering the substitutability and 

complementarity, we select two products as the representation of multi-product. Note 

that, if 0λ = , the demands of the two products will be independent which is a special 

case of Theorem 1. The optimal production decisions can be extended to multiple 

independent products because they have similar model structure. So, there is no 

difference in emission trading decisions and production decision between the two 

independent products setting and multiple independent products setting. That is, for 

multiple products, the emission trading decisions follows a two-threshold policy and 

the manufacturer produces multiple products to make the marginal profits of the 

multiple products equal to the emission trading prices. However, the only difference 



 

 

between the two settings is the increase of thresholds to determine the kinds of 

products. 

Corollary 1. The manufacturer’s optimal profit is decreasing in b  and is increasing 

in s . The retailer’s optimal profit is decreasing in b ( s ). 

Corollary 1 shows that the increase of the buying price of emission permits will 

reduce the manufacturer’s profit because it increases the manufacturer’s buying cost 

in the case that he buys emission permits from the outside market, and that the 

increase of the selling price per unit of emission permit will increase the 

manufacturer’s profit for the reason that he can generate more profit when selling 

surplus emission permits to the outside market. 

According to Theorem 1 to 3, we can obtain a clear result that the increase of the 

emission permits prices will induce the manufacturer to produce less. As a result, the 

order quantities are also reduced. Thus based on the retailer’s profit 

2 2

1 1 2 2 1 2
( ) 2 ( ) 2

R
E E E Eη η λΠ = + + , we can find that its profit will decrease. Note that 

the two firms’ optimal profits may remain constant as the increase of b ( s ) under the 

given cap, for example, in the case when the optimal total emissions are equal to the 

received cap.  

Corollary 2. (1) When 1η λ>  and 2η λ≥ , *E ， *

1q  and 
*

2q  are decreasing in 

b ( s ); (2) When  1η λ>  and 2η λ< , *E  and 
*

2q  are decreasing in b ( s ) and 

*

1q  is firstly increasing and then decreasing in b ( s ); (3) When  1η λ≤  and 2η λ≥ , 

*E  and 
*

1q  are decreasing in b ( s ). 

Corollary 2 (1) and Corollary 2 (3) show that the optimal total emissions and 

production quantities of the two products are decreasing in the buying or selling price 

of emission permits. This result is intuitive because the increase of the buying or 

selling price of emission permits induces the manufacturer to buy less emission 

permits or sell more emission permits so that the optimal production quantities of the 

two products will be reduced. Corollary 2 (2) shows that the optimal total emissions 

and production quantities of product 2 are decreasing in the buying or selling price of 

emission permits and the optimal production quantities of product 1 is firstly 

increasing and then decreasing in the buying or selling price of emission permits. 

Based on Lemma 2(2), we know that the manufacturer has the motivation to produce 



 

 

product 1 when the given total emissions are low and to produce product 2 when the 

given total emissions are high. So, when the buying (selling) price of emission permits 

increases which implies that the manufacturer will buy less (sell more) emission 

permits, he will reduce the production quantities of product 2 and increase the 

production quantities of product 1. When the buying (selling) price of emission 

permits is larger enough, the manufacturer may only produce product 1 which means 

that it will not involve the allocation of emission permits so that the production 

quantities of product 1 will also be reduced. Corollary 2 indicates that, if the reduction 

of the marginal profit of product 1 is larger than that of product 2 when the unit 

emission permit is used to produce product 1 (product 2), then the manufacturer will 

allocate more emission permits to product 1 as the buying (selling) price of emission 

permits increases. 

5.  Numerical Study 

In this section, we conduct two numerical examples to illustrate part of the above 

theoretical results. The first example shows the optimal total emissions and 

production quantities of the two products over all the levels of cap; the second 

example demonstrates the impact of the buying price of emission permits on the 

optimal total emissions and production quantities of the two products. The related 

parameters are set as follows: 
1 380α = , 

2 350α = ,
1

30rc = ,
2

10rc = , 
1

50mc = , 

2
7mc = , 1 2e = , 2 3e = , 8s = , 40b = , 70T = , 50V = . We have 

1 150γ = , 

1 0.5η = , 
2 111γ = , 

2 2 9η = . Note that 1/ 3 1/ 3λ− ≤ ≤  because of 2

1 2λ η η≤ . We 

know that the substitutability and complementarity of products exist in many 

industries and have significant impact on the manufacturer’s optimal production 

decisions. Since λ  represents the relationship of the two products (substitutability 

and complementarity), we let 0,1/ 6,5 /18λ =  in the following two examples. 

0λ =  means that the demands of the two products are independent ( Theorem 1 

indicates that 0λ =  and 0λ <  have no difference in production decisions so that 

we do not consider the complementarity in the numerical study ); in order to illustrate 

Theorem 1, we let 1/ 6λ =  so that 1η λ> , 2η λ> ; in order to illustrate Theorem 2, 

we let 5 /18λ =  so that 1 2η λ η> > . 

In the first example, we present the following three figures to show the optimal 



 

 

total emissions and production quantities of the two products over all the levels of cap 

under each value of λ . 

 

Fig 1.1  The optimal total emissions over different levels of cap 

 

 

 

 

 

 

 

 

 

Fig 1.2  The optimal production quantities of product 1 over different levels of cap 

 

 

 

 

 

 

 

 

 

Fig 1.3  The optimal production quantities of product 2 over different levels of cap 



 

 

Fig 1.1 shows that the emission permits follows a two-threshold policy which 

have been found in Theorem 1 to 3. For example, if 0λ = , the manufacturer buys 

emission permits when the cap is in the interval of [0, 269.75) , then neither buys nor 

sells emission permits when the cap is in the interval of [269.75,373.75]  and finally 

sells the surplus emission permits when the cap is in the interval of (373.75, )+∞ . 

Figs 1.1 to 1.3 show that the optimal total emissions and production quantities of 

product 2 are increasing in the cap. The optimal production quantities of product 1 are 

also increasing in the cap if 0λ =  or 1/ 6λ = , however, if 5 /18λ = , they are 

increasing in the cap when the cap is in the interval of [0,17.75)  and are decreasing 

in the cap when the cap is in the interval of (17.75, )+∞ . We know that 
1 2η λ η> >  

if 5 /18λ = . Based on Model (6) and (7), we can verify that the marginal profit of 

product 1 is less than that of product 2 when enough emission permits are received to 

produce the two products. So, the manufacturer will reduce the production quantities 

of product 1 and increase the production of product 2.  

Moreover, if 5 /18λ = , we can easily verify that the marginal profits of the two 

products are equal to 40b =  when the cap is in the interval of [72.4,142.4)  and are 

equal to 8s =  when the cap is in the interval of (220.9, 271)  which indicates that 

the manufacturer buys or sells emission permits to ensure that its marginal profits of 

the two products equals the emission permits prices. Please note that (i) the marginal 

profits of the two products are equal to zero when the cap is in the interval of 

(290.55, )+∞ ; (ii) the marginal profits of the two products is between zero and 8s =  

when the cap is in the interval of (271, 290.55) . They occur because of the limited 

allowance availability (the manufacturer use the unsold emission permits to produce 

the two products so that their marginal profits are less than the selling price of 

emission permits and finally are equal to zero under high cap). Similarly, we can also 

find that the marginal profits are equal to the emission permits prices or zero if 0λ =  

or 1 / 6λ = . 

In the second example, we let 50C = , and b  varies from 8 to 120 with 

one-step size. The following three figures shows the impact of the buying emission 

permits on the optimal total emissions and production quantities of the two products 

under each value of λ . 



 

 

 

Fig 2.1 The impact of the buying prices of emission permits on the total emissions 

 

Fig 2.2 The impact of the buying prices of emission permits on the optimal 

production quantities of product 1 

 

Fig 2.3 The impact of the buying prices of emission permits on the optimal 

production quantities of product 2 

Figs 2.1 to 2.3 demonstrate the impact of the buying prices of emission permits 



 

 

on the optimal total emissions and production quantities of the two products which is 

shown in Corollary 2. Fig 2.1 and Fig 2.3 show that the optimal total emissions and 

production quantities of product 2 are decreasing in the buying prices of emission 

permits. Fig 2.2 shows that, if 0λ =  or 1 / 6λ = , the optimal production quantities 

of product 1 are also decreasing in the buying prices of emission permits, however, if 

5 /18λ = (
1 2η λ η> > ) the optimal production quantities of product 1 are increasing 

in the buying price of emission permits when [8,62.25]b ∈  because more emission 

permits are used to produce product 1 after less emission permits are obtained which 

can be seen in Lemma 2(2); they are decreasing in the buying price of emission 

permits when (62.25, )b ∈ +∞  because only product 1 will be produced so that it will 

not involve the allocation of emission permits. Figs 2.1 to 2.3 also show that, if the 

reduction of the marginal profit of product 1 is larger than that of product 2 when the 

unit emission permit is used to produce product 1 (product 2), then (i) the 

manufacturer will allocate more emission permits to product 1 as the buying price of 

emission permits increases when they produce two products; (ii) he will reduce the 

production of product 1 as the buying price of emission permits increases when he 

only produce product 1.  

6.  Conclusion 

With the imposed regulations and legislation on carbon emission control, firms 

have to manage carbon emissions in their supply chains. In this paper, we derive the 

optimal total emissions and production quantities of the two products over all possible 

levels of cap, and explore the impact of the emission trading prices on the optimal 

production decisions and the optimal profits. 

By analyzing the impact of the cap and emission trading prices on the production 

decisions, we find some managerial insights: (1) the emission trading decisions follow 

a two-threshold policy. If the cap is lower (higher) than one (the other) threshold, then 

the manufacturer buys (sells) emission permits from (to) the outside market and if the 

cap is between the two thresholds, the manufacturer will neither buy nor sell emission 

permits; (2) if the reduction of the marginal profit of product 1 is larger than that of 

product 2 when the unit emission permit is used to produce product 1 (product 2), 

then the manufacturer will allocate more emission permits to product 2 as the cap 



 

 

increases, otherwise, the manufacturer will allocate all the emission permits to 

product 1. So, the manufacturer may produce product 1 (product 2) or both of the two 

products which indicates that cap-and-trade regulation may not have the ability to 

induce the manufacturer to produce low-carbon products; (3) the optimal total 

emissions and production quantities of product 2 are decreasing in buying or selling 

price of emission permits, while the optimal production quantities of product 1 may 

be increasing in buying or selling price of emission permits.  

In this paper, we assume that the emission trading prices are exogenous. It is 

possible that the emission trading prices varies with the cap allocated by the 

government agencies because the amount of the cap will affect the emission permits’ 

supply and demand in the outside market. Moreover, it is interesting to consider 

multi-period production problem where the surplus emission permits can be used in 

the next period.  
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Appendix 

Proof of Lemma 1. Based on the Model (4), we let 

1 21 2 1 1 2 1 1 2 2 1 2 2( , ) ( ) ( )r rF q q q q c w q q q c w qα λ α λ= − − − − + − − − − , then the first partial 

derivatives of 
1 2( , )F q q  with regard to 

1q and 
2q  are 

11 2 1 1 1 1 2( , ) 2 2rF q q q c w q qα λ∂ ∂ = − − − −  and 

21 2 2 2 2 2 1( , ) 2 2rF q q q c w q qα λ∂ ∂ = − − − − , respectively, and the second partial 

derivatives of 
1 2( , )F q q with regard to 

1q  and 
2q  are that 2 2

1 2 1( , ) 2F q q q∂ ∂ = −  

and 2 2

1 2 2( , ) 2F q q q∂ ∂ = − , and the second mixed partial derivative of 
1 2( , )F q q  

with regard to 
1q  and 

2q  is 2

1 2 1 2( , ) 2F q q q q λ∂ ∂ ∂ = − . 

We let 2 2

1 1 2 1( , ) 2H F q q q= ∂ ∂ = − , 2 2

2 1 2 2( , ) 2H F q q q= ∂ ∂ = − , and 

2

3 1 2 1 2( , ) 2H F q q q q λ= ∂ ∂ ∂ = − , then we can get that 2

1 2 3( ) 0H H H− >  and 
1 0H < . 

So we can obtain the optimal solution of 
R

Π  when the first partial derivatives of 

1 2( , )F q q  with regard to 
1q  and 

2q  are equal to zero, that is, 

3

2

3 3[ ( ) ] [2(1 )]
i ii i r i i r iq c w c wα α λ λ

−− −= − − − − − −  ( 1, 2i = ). 

Proof of Lemma 2. Since 
1 2 ,E E E+ =  ( )f E  can be rewritten as the following 

equation 

1

2 2

1 1 1 1 2 1 2 1 1 1( ) max { ( ) ( ) 2 ( )}E Ef E E E E E E E E E Eγ η γ η λ≤= − + − − − − −      (A.1) 

Let 2 2

1 1 1 1 1 2 1 2 1 1 1( ) ( ) ( ) 2 ( )g E E E E E E E E E Eγ η γ η λ= − + − − − − − . Denote by 
1( )g E′  

and 
1( )g E′′  the first and second derivatives of 

1( )g E , respectively. It can be verified 

that 1 1 2 2 1 1 1 2 1( ) 2 2 4 2 2g E E E E E Eγ γ η λ λ η η′ = − + − + − −  and 

1 1 2( ) 2(2 ) 0.g E λ η η′′ = − − − <  Note that 
1( ) 0g E′′ <  implies that (i) 

1( )g E′  is 



 

 

strictly decreasing in 
1E , (ii) 

1( )g E  is strictly concave, and (3) ( )f E  is also 

strictly concave because strict concavity is preserved under maximization.  

We know that 
1 2 2(0) 2 2g E Eγ γ η λ′ = − + −  and 

1 2 1( ) 2 2g E E Eγ γ η λ′ = − − + . 

It is obvious that the optimal solution *

1E  to Eq.(A.1) depends on the sign of (0)g′  

and ( )g E′ . Note that
2 1

.γ γ≤  (1) when 
1η λ>  and 

2η λ≥ , it is clear that 

1 2 2(0) 2 2 0g E Eγ γ η λ′ = − + − ≥ . So the optimal solution *

1E  to Eq.(A.1) depends on 

the sign of 
1 2 1( ) 2 2g E E Eγ γ η λ′ = − − + . If 

1 2 1( ) 2 2 0,g E E Eγ γ η λ′ = − − + ≥  then 

*

1E E= . Otherwise (i.e., if 
1 2 1( ) 2 2 0g E E Eγ γ η λ′ = − − + < ), 

*

1 1 2 2 1 2( 2 ) 2( ).E Eγ γ η η η= − + +  Hence, if 
0 ,E C≤  then we have ( ) 0.g E′ ≥  So, 

the optimal solutions satisfy *

1E E=  and *

2 0E = , and 2

1 1( ) ;f E E Eγ η= −  if 

0 ,E C≥  then ( ) 0.g E′ ≤  So, the optimal solutions satisfy 

*

1 1 2 2 1 2[ 2( ) ] [2( 2 )]E Eγ γ η λ η η λ= − + − + −  and 

*

2 2 1 1 1 2( 2( ) ) [2( 2 )]E Eγ γ η λ η η λ= − + − + − , and 

2 2 2

1 2 1 2 2 1 1 2 1 2( ) {( ) 4[ ( ) ( )] 4( ) } [4( 2 )].f E E Eγ γ γ η λ γ η λ η η λ η η λ= − + − + − − − + − (2) 

when 1η λ>  and 2η λ< , we can find that 0

00 C C< ≤  because of 1 2 2η η λ+ > . If 

1 2 1( ) 2 2 0,g E E Eγ γ η λ′ = − − + ≥  then 1 2 2(0) 2 2 0g E Eγ γ η λ′ = − + − ≥ . So, *

1E E=  

when 
0E C≤ . If 1 2 2(0) 2 2 0g E Eγ γ η λ′ = − + − ≤ , then 

1 2 1( ) 2 2 0g E E Eγ γ η λ′ = − − + ≤ . So, *

1 0E =  when 0E C≥ . When 0

0C E C≤ ≤ , 

then 1 2 2(0) 2 2 0g E Eγ γ η λ′ = − + − ≥  and 1 2 1( ) 2 2 0g E E Eγ γ η λ′ = − − + ≤ . So, 

*

1 1 2 2 1 2[ 2( ) ] [2( 2 )]E Eγ γ η λ η η λ= − + − + − . Since 
1 2 ,E E E+ =  we can easily get 

*

2E . (3) when 1η λ≤  and 2η λ≥ , we can find that (0) ( ) 0g g E′ ′≥ ≥  because of 

1 2 2η η λ+ > . So, *

1E E=  and *

2 0E = . 

Before proving Theorem 1, we first show the following lemma: 

Lemma A.1. Suppose that A  and B  are constants. The following results hold: 

0 1 1arg max { ( ) : } max{ , min{( ) (2 ) , }}
E

f E pE A E B C A p Bγ η− ≤ ≤ ≤ = − ，    (A.2) 

0arg max { ( ) : }
E

f E pE C A E B− ≤ ≤ ≤  

2

1 2 2 1 1 2max{ , min{[( )( ) ( )( )] [2( )], }}A p p Bγ η λ γ η λ η η λ= − − + − − −   (A.3) 

Proof of Theorem 1. When 
0E C≤ , Lemma 2(1) indicates that 2

1 1( )f E E Eγ η= − . 

From the strict concavity of ( )f E , it is easy to verify that ( )f E pE−  attains its 

maximum over 
0A E B C≤ ≤ ≤  at point 

1 1max{ , min{( ) 2 , }}A p Bγ η− . That is, 

0 1 1arg max { ( ) : } max{ , min{( ) (2 ), }}
E

f E pE A E B C A p Bγ η− ≤ ≤ ≤ = − . 



 

 

When 
0E C≥ , we have 

2 2 2

1 2 1 2 2 1 1 2 1 2( ) {( ) 4[ ( ) ( )] 4( ) } [4( 2 )]f E E Eγ γ γ η λ γ η λ η η λ η η λ= − + − + − − − + −  

from Lemma 2 (1). The strict concavity of ( )f E  implies that ( )f E pE−  attains its 

maximum over 
0C A E B≤ ≤ ≤   at point 

2

1 2 2 1 1 2max{ ,min{[( )( ) ( )( )] [2( )], }}A p p Bγ η λ γ η λ η η λ− − + − − − . That is,  

0arg max { ( ) : }
E

f E pE C A E B− ≤ ≤ ≤  

2

1 2 2 1 1 2max{ ,min{[( )( ) ( )( )] [2( )], }}A p p Bγ η λ γ η λ η η λ= − − + − − − . 

We now develop the optimal decisions in the case with 
2 1 1 1( ) ( ) sγ η γ λ η λ− − ≤ . 

Recall that 2M  is the maximal profit per unit of emission permit of product 2. 

2
M s≤  indicates that the manufacturer will never produce product 2. So, the optimal 

total emissions are no more than 
0C  based on Lemma 2(1). So in finding the optimal 

total emissions, we can directly restrict them with a maximum 
0.C  We next show the 

optimal total emissions and the optimal production quantities in two cases: 

Case 1 
2 1M s bγ≤ < ≤  

In this case, 1 0bC = . The interval 10 bC C≤ <  is empty. Recall that 1γ  is the 

maximal profit per unit of emission permit of product 1. 1 bγ ≤  indicates that the 

manufacturer will never buy emission permits to produce product 1. 

Subcase 1. 1 1

b sC C C≤ ≤  

1 1

b sC C C≤ ≤  implies that 1 1 1 2 1 00 ( ) 2 ( ) [2( )] .C s Cγ η γ γ η λ≤ ≤ − ≤ − − =  

Since
00max { ( ) } max { ( ) }

s

M E C E C Cf E sE sC f E sE sC≤ ≤ ≤ ≤Π = − + = − + , we have 

0arg max { ( ) : } arg max { ( ) : 0 }
E E

f E sE sC E C f E sE sC E C C− + ≤ = − + ≤ ≤ ≤ . 

Equation (A.2) implies that  

0 1 1arg max { ( ) : 0 } max{0, min{( ) (2 ) , }} ,
E

f E sE sC E C C s C Cγ η− + ≤ ≤ ≤ = − = (A.4) 

Equations (A.4) indicate that the optimal total emissions are * ,E C=  and the 

manufacturer neither buys nor sells emission permits. Recall that *

2 0q ≡ . So, the 

optimal production quantity of product 1 is *

1 1q C e= .  

Subcase 2. 1

sC C>  

1

sC C>  implies that 
1 1( ) (2 )C sγ η> − . Note that 1

0.sC C≤  Similar to Subcase 1, we 

have 

0arg max { ( ) : 0 } arg max { ( ) : 0 min( , )}.
E E

f E sE sC E C f E sE sC E C C− + ≤ ≤ = − + ≤ ≤

Equation (A.2) implies that 



 

 

1

1 1 0arg max { ( ) : 0 } max{0,min{( ) (2 ) ,min( , )}}E sf E sE sC E C s C C Cγ η− + ≤ ≤ = − =   

(A.5) 

Since C  is a feasible solution to 
0max { ( ) }s

M E C f E sE sC≤ ≤Π = − + , Equations (A.5) 

indicate that the optimal total emissions are * 1,sE C=  the manufacturer sells 1

sC C−  

unit emission permits. However, the maximal sales of emission permits to outside 

market are V . We have that (i) if 1

sC C V≤ + , then * 1

sE C= ; (ii) if 

1

1 1(2 )sC V C Vγ η+ ≤ < + , then *E C V= − ; (iii) if 
1 1

(2 )C Vγ η≥ + , then 

*

1 1(2 )E γ η= . Recall that *

2 0q ≡ . So, the optimal production quantity of product 1 is 

* 1

1 1sq C e= .  

Case 2 
2 1M s b γ≤ < <  

In this case, 1

1 1( ) (2 ).bC bγ η= − 10 bC C≤ <  implies that 

1 1 1 1 1 2 1 00 ( ) (2 ) ( ) (2 ) ( ) [2( )] .C b s Cγ η γ η γ γ η λ≤ ≤ − ≤ − ≤ − − = Recall 

that
00max { ( ) } max { ( ) }

b

M E C C E Cf E bE bC f E bE bC≥ ≥ ≤ ≤Π = − + = − + . Based on 

Equation (A.2), we have 

1

1 1 0arg max { ( ) : } max{ , min{( ) (2 ) , }}E bf E bE bC E C C b C Cγ η− + ≥ = − = ,    (A.6) 

because 1

1 1( ) (2 ) =Cbbγ η−  and 
1 1 0( ) (2 )C b Cγ η≤ − ≤ . Since 1

0bC C≤ , Equation 

(A.2) implies that  

1 1arg max { ( ) : 0 } max{0, min{( ) (2 ) , }} ,
E

f E sE sC E C s C Cγ η− + ≤ ≤ = − =    (A.7)     

because 
1 10 ( ) (2 )C sγ η≤ ≤ − .  

Since C  is a feasible solution to 0max { ( ) }b

M E C f E bE bC≥ ≥Π = − + , Equations 

(A.6) and (A.7) indicate that the optimal total emissions are 1,bC  and the 

manufacturer buys 1

bC C−  unit emission permits. However, the emission permits 

buying from carbon trade market are no more than ,T  so 

* 1min{ , }.bE T C C= + Recall that *

2 0q ≡ . So, the optimal production quantity of 

product 1 is * 1

1 1min{ , }bq T C C e= + . 

Following the same process in proving Subcases 1 and 2 of Case 1, we can 

similarly prove the optimal total emissions and the optimal production quantities for 

the case with 
1 bγ >  when 1 1

b sC C C≤ ≤  and 1

sC C> , respectively.         � 

Similarly, we can get the optimal total emissions and production quantities in the 

case with 2
s M b< ≤  and 2

M b> , respectively. 

Before proving Theorem 2, we first show the following lemma: 



 

 

Lemma A.2. Suppose that A  and B  are constants. The following results hold: 

0 1 1arg max { ( ) : } max{ , min{( ) (2 ) , }}
E

f E pE A E B C A p Bγ η− ≤ ≤ ≤ = − ，    (A.8) 

0

0arg max { ( ) : }E f E pE C A E B C− ≤ ≤ ≤ ≤  

2

1 2 2 1 1 2max{ ,min{[( )( ) ( )( )] [2( )], }}A p p Bγ η λ γ η λ η η λ= − − + − − −   (A.9) 

0

2 2arg max { ( ) : } max{ , min{( ) (2 ) , }}E f E pE C A E B A p Bγ η− ≤ ≤ ≤ = −   (A.10) 

Proof of Theorem 2. Similar to the proof of Theorem 1, we now develop the optimal 

decisions in the case with 
1 2

s b M M≤ < ≤ . It is easy to verify that 
2 1

M γ≤  because 

of 
2 1

γ γ≤ . Recall that 
1

M  is the maximal profit per unit of emission permit when 

the manufacturer only wants to produce product 2. 
1

M b>  indicates that the 

manufacturer will only produce product 2. So, the optimal total emissions are no less 

than 0C  based on Lemma 2(2). So in finding the optimal total emissions, we can 

directly restrict them with a minimum 0.C  We next show the optimal total emissions 

as follows: 

Case 1 30 bC C≤ <  

In this case, 3

2 2( ) (2 ).bC bγ η= − 30 bC C≤ <  implies that 

2 2 2 20 ( ) (2 ) ( ) (2 ).C b sγ η γ η≤ ≤ − ≤ − Note that 3 0.bC C>  Similar to Theorem 1, we 

have 

0arg max { ( ) : 0 } arg max { ( ) : }.E Ef E sE sC E C f E sE sC C E C− + ≤ ≤ = − + ≤ ≤  

Equation (A.10) implies that 

0 0

2 2arg max { ( ) : } max{ ,min{( ) (2 ) , }} .E f E sE sC C E C C s C Cγ η− + ≤ ≤ = − = (A.11) 

Recall that 00 max( , )
max { ( ) } max { ( ) }

b

M E C C C E
f E bE bC f E bE bC≥ ≥ ≤

Π = − + = − + . Based 

on Equation (A.10), we have 

0arg max { ( ) : max{ , }}E f E bE bC E C C− + ≥  

0 3

2 2max{max{ , }, min{( ) (2 ) , }} bC C b Cγ η= − +∞ =    (A.12) 

   Since C  is a feasible solution to 0max { ( ) }b

M E C f E bE bC≥ ≥Π = − + , Equations 

(A.11) and Equations (A.12) indicate that the optimal total emissions are 3 ,bC  and 

the manufacturer buys 3

bC C−  unit emission permits. However, the emission permits 

buying from carbon trade market are no more than ,T  so ①  if 

3

0min{ , }bC T C C+ < , the optimal emissions are * 3min{ , }bE C T C= + , and the optimal 

production quantities are * 3

1 1min{ , }bq C T C e= +  and *

2 0q = ; ②  if 

2 0

0 min{ , }bC C T C C≤ + ≤ , the optimal emissions are * 3min{ , }bE C T C= + , the 



 

 

optimal production quantities are 

* 3

1 1 2 2 1 1 2[ 2( ) min{ , }] [2 ( 2 )]bq C T C eγ γ η λ η η λ= − + − + + − and 

* 3

2 2 1 1 2 1 2( 2( ) min{ , }) [2 ( 2 )]bq C T C eγ γ η λ η η λ= − + − + + − ; ③   if 

2 0min{ , }bC T C C+ > , the optimal emissions are * 3min{ , }bE C T C= + , the optimal 

production quantities are *

1 0q = and * 3

2 2min{ , })bq C T C e= + . 

Case 2 3 3

b sC C C≤ <  

3 3

b sC C C≤ ≤  implies that 0

1 2 2( ) [2( )]C Cγ γ λ η≥ − − = . 

Since 0max { ( ) } max { ( ) }
s

M E C C E C
f E sE sC f E sE sC≤ ≤ ≤

Π = − + = − + , we have 

0arg max { ( ) : } arg max { ( ) : }E Ef E sE sC E C f E sE sC C E C− + ≤ = − + ≤ ≤ . 

Equation (A.10) implies that 

0 0

2 2arg max { ( ) : } max{ ,min{( ) (2 ) , }} ,E f E sE sC C E C C s C Cγ η− + ≤ ≤ = − =  

(A.13) 

Recall that 00max { ( ) } max { ( ) }
b

M E C C C E
f E bE bC f E bE bC≥ ≥ ≤ ≤

Π = − + = − + . Based on 

Equation (A.10), we have 

0

2 2arg max { ( ) : } max{ , min{( ) (2 ) , }}E f E bE bC E C C C b Cγ η− + ≥ ≥ = − +∞ =  

(A.14) 

Equations (A.13) and Equations (A.14) indicate that the optimal total emissions are 

* ,E C=  and the manufacturer neither buys nor sells emission permits. Recall that 

*

1 0q ≡ . So, the optimal production quantity of product 2 is *

2 2q C e= .  

Case 3 3

sC C≥  

3

sC C≥  implies that 0

2 2 2 2 1 2 2( ) (2 ) ( ) (2 ) ( ) [2( )]C s b Cγ η γ η γ γ λ η≥ − ≥ − ≥ − − = . 

Similar to Case 1, we have 

0 0arg max { ( ) : } arg max { ( ) : }.E Ef E sE sC C E C f E sE sC C E C− + ≤ ≤ = − + ≤ ≤  

Equation (A.10) implies that  

0 0 3

2 2arg max { ( ) : } max{ , min{( ) (2 ) , }}E sf E sE sC C E C C s C Cγ η− + ≤ ≤ = − =  

(A.15) 

Recall that 00max { ( ) } max { ( ) }
b

M E C C C E
f E bE bC f E bE bC≥ ≥ ≤ ≤

Π = − + = − + . Based on 

Equation (A.10), we have 

0

2 2arg max { ( ) : } max{ , min{( ) (2 ) , }}E f E bE bC E C C C b Cγ η− + ≥ ≥ = − +∞ =  

(A.16) 

Since C  is a feasible solution to 0max { ( ) }b

M E C f E bE bC≥ ≥Π = − + , Equations 



 

 

(A.15) and (A.16) indicate that the optimal total emissions are 3,sC  and the 

manufacturer sells 3

sC C−  unit emission permits. However, the maximal sales of 

emission permits to outside market are V . We have that (i) if 3 3

s sC C C V≤ < + , then 

* 3

sE C= ; (ii) if 3

2 2(2 )sC V C Vγ η+ ≤ < + , then *E C V= − ; (iii) if 

2 2
(2 )C Vγ η≥ + , then *

2 2(2 )E γ η= . Recall that *

1 0q ≡ . So, the optimal production 

quantity of product 2 is * 3

2 2sq C e= . 

Similarly, we can get the optimal total emissions and production quantities in the 

case with 
1 2

s M b M< ≤ < , 
1 2

s M M b< ≤ ≤ , 
1 2

M s b M≤ ≤ < , 
1 2

M s M b≤ < ≤  

and 1 2M M s b≤ ≤ ≤ . 

Proof of Theorem 3. 

Follow the same process in proving Theorem 1, we can easily get the results shown 

in Theorem 3. 

Proof of Corollary 1. 

We now explore the relationship of the manufacturer’s optimal profit and the 

buying price of emission permits in the case with 1η λ>  and 2η λ≥ . When 

2M b> , we can verify that 2

M bb C C∂Π ∂ = −  or M b T∂Π ∂ = −  if 20 bC C≤ < . It 

is obvious that 0M b∂Π ∂ ≤ . Note that the manufacturer’s optimal profit keeps 

unchanged if 2

bC C> . When 2s M b≤ ≤ , we can verify that 

1( ) (2 ) 0M b b η∂Π ∂ = − ≤  or 0M b T∂Π ∂ = − ≤  if 10 bC C≤ < . Note that the 

manufacturer’s optimal profit remains constant if 1

bC C> . It is obvious that the 

function of the manufacturer’s optimal profit is continuous about the buying price of 

emission permits. So, the manufacturer’s optimal profit is decreasing in b  when 

1η λ>  and 2η λ≥ . Following the same process, we can get that the manufacturer’s 

optimal profit is increasing in s  when 1η λ>  and 2η λ≥ . Similarly, we can get 

that the manufacturer’s optimal profit is decreasing in b  and is increasing in s  

when (1) 1η λ>  and 2η λ<  or (2) 1η λ≤  and 2η λ≥ .  

We explore the relationship of the retailer’s optimal profit and the buying price 

of emission permits in the case with 1η λ>  and 2η λ≥ . We know that the retailer’s 

optimal profit is * 2 * 2 * *

1 1 2 2 1 2
[ ( ) ] 2 [ ( ) ] 2

R
E E E Eη η λΠ = + + . When 2

M b> , we can 

verify that 21 (2 ) 0R bb C∂Π ∂ = − <  or 0
R

b∂Π ∂ =  if 20 bC C≤ < . Note that the 

retailer’s optimal profit remains constant as the buying price of emission permits 



 

 

increases if 2

bC C> . When 
2

s M b< ≤ , we can verify that 

1 1
( ) (4 ) 0

R
b bγ η∂Π ∂ = − − <  or 0

R
b∂Π ∂ =  if 

10 bC C≤ < . Note that the retailer’s 

optimal profit remains constant if 1

bC C> . It is obvious that the function of the 

retailer’s optimal profit is continuous about the buying price of emission permits. So, 

the retailer’s optimal profit is decreasing in b  when 
1η λ>  and 

2η λ≥ . Following 

the same process, we can get that the retailer’s optimal profit is decreasing in s  

when 
1η λ>  and 

2η λ≥ . Similarly, we can get that the retailer’s optimal profit is 

decreasing in b ( s ) when (1) 
1η λ>  and 

2η λ<  or (2) 
1η λ≤  and 

2η λ≥ .  

Proof of Corollary 2. 

(1) From Theorem 1, we can easily get that *E ， *

1q  and *

2q  are decreasing in b ( s ). 

(2) From Theorem 2, we know that *

1 0q ≡  when 1 2
s b M M≤ < ≤  and 

2
* 1 2 2
1

1 1 2

2( ) min{ , }

2 ( 2 )

b
C T C

q
e

γ γ η λ

η η λ

− + − +
=

+ −
 when 1 2

s M b M< ≤ <  and 10 bC C≤ < . It is 

easy to verify that *

1q  is increasing in b  because of 2η λ< . * 1

1 1min{ , }bq T C C e= +  

when 
1 2

s M M b< ≤ ≤  and 10 bC C≤ < . It is easy to verify that  *

1q  is decreasing in 

b . So, *

1q  is firstly increasing and then decreasing in b . Similarly, we can have *

1q  

is firstly increasing and then decreasing in s . From Theorem 2, we can easily get that 

*E  and *

2q  are decreasing in b ( s ).  

(3) From Theorem 3, we can get that *E  and 
*

1q  are decreasing in b ( s ). 

 

Table 1: When 1η λ>  and 2η λ≥ , the optimal total emissions and production 

quantities of the two products over different caps 

 C  *
E  

*

1q  and 
*

2q  

2M s≤  

10 bC C≤ <  1min{ , }bT C C+  * 1

1 1min{ , }bq T C C e= + ,
*

2 0q =  

1 1

b sC C C≤ <  C  
*

1 1q C e= ,
*

2 0q =  

1 1

s sC C C V≤ < +  1

sC  * 1

1 1sq C e= ,
*

2 0q =  



 

 

1

1 1(2 )sC V C Vγ η+ ≤ < +  C V−  
*

1 1( )q C V e= − , *

2 0q =  

1 1
(2 )C Vγ η≥ +  1 1

(2 )γ η  *

1 1 1 1(2 )q eγ η= , *

2 0q =  

2s M b< ≤  

10 bC C≤ <  1min{ , }
b

T C C+  * 1

1 1min{ , }bq T C C e= + ,
*

2 0q =  

1

0b
C C C≤ ≤  C  

*

1 1 ,q C e= *

2 0q =  

2

0 sC C C≤ ≤  C  

* 1 2 2
1

1 1 2

2( )

2 ( 2 )

C
q

e

γ γ η λ

η η λ

− + −
=

+ −
 

* 2 1 1
2

2 1 2

2( )

2 ( 2 )

C
q

e

γ γ η λ

η η λ

− + −
=

+ −
 

2 2

s sC C C V< ≤ +  2

sC  

* 1 2 2 2
1 2

1 1 2
2 ( )

s s
q

e

γ η γ λ η λ

ηη λ

− − +
=

−

* 2 1 1 1
2 2

2 1 22 ( )

s s
q

e

γ η γ λ η λ

η η λ

− − +
=

−
 

2

s sC V C C V+ < ≤ +  C V−  

* 1 2 2
1

1 1 2

2( )( )

2 ( 2 )

C V
q

e

γ γ η λ

η η λ

− + − −
=

+ −
 

* 2 1 1
2

2 1 2

2( )( )

2 ( 2 )

C V
q

e

γ γ η λ

η η λ

− + − −
=

+ −
 

s
C C V> +  s

C  

* 2

1 1 2 2 1 1 2( ) [2 ( )]q eγ η γ λ η η λ= − −

* 2

2 2 1 1 2 1 2
( ) [2 ( )]q eγ η γ λ η η λ= − −  

2M b>  

20
b

C C≤ <  

2

0min{ , }bC T C C+ <  C T+  * 2

1 1min{ , }bq C T C e= + ,
*

2 0q =  

2

0min{ , }bC T C C+ ≥  2min{ , }bC T C+  

2
* 1 2 2
1

1 1 2

2( ) min{ , }

2 ( 2 )

b
C T C

q
e

γ γ η λ

η η λ

− + − +
=

+ −

2
* 2 1 1
2

2 1 2

2( ) min{ , }

2 ( 2 )

b
C T C

q
e

γ γ η λ

η η λ

− + − +
=

+ −

 

2 2

b sC C C≤ ≤  C  
* 1 2 2
1

1 1 2

2( )

2 ( 2 )

C
q

e

γ γ η λ

η η λ

− + −
=

+ −
 



 

 

* 2 1 1
2

2 1 2

2( )

2 ( 2 )

C
q

e

γ γ η λ

η η λ

− + −
=

+ −
 

2 2

s sC C C V< ≤ +  
2

sC  

* 1 2 2 2
1 2

1 1 2
2 ( )

s s
q

e

γ η γ λ η λ

ηη λ

− − +
=

−

* 2 1 1 1
2 2

2 1 22 ( )

s s
q

e

γ η γ λ η λ

η η λ

− − +
=

−
 

2

s sC V C C V+ < ≤ +  C V−  

* 1 2 2
1

1 1 2

2( )( )

2 ( 2 )

C V
q

e

γ γ η λ

η η λ

− + − −
=

+ −
 

* 2 1 1
2

2 1 2

2( )( )

2 ( 2 )

C V
q

e

γ γ η λ

η η λ

− + − −
=

+ −
 

s
C C V> +  s

C  

* 2

1 1 2 2 1 1 2( ) [2 ( )]q eγ η γ λ η η λ= − −  

* 2

2 2 1 1 2 1 2( ) [2 ( )]q eγ η γ λ η η λ= − −  

 

Table 2: When 1η λ>  and 2η λ< , the optimal total emissions and production 

quantities of the two products over different caps 

 C  *
E  *

1q  and 
*

2q  

1 2
s b M M≤ < ≤  

30 bC C≤ <

 

3

0
min{ , }

b
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Highlights 

� We model a make-to-order supply chain with a manufacturer and a retailer. 

� The production and pricing problems under cap-and-trade regulation are analyzed. 

� Two substitutable or complementary products are discussed in our study. 

� Cap-and-trade regulation may not induce producing low-carbon products. 

 

 




