
Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎
Contents lists available at ScienceDirect
Omega
http://d
0305-04

☆This
n Corr
E-m

Pleas
(2016
journal homepage: www.elsevier.com/locate/omega
Parallel-machine scheduling of deteriorating jobs with potential
machine disruptions$

Yunqiang Yin a,n, Yan Wang a, T.C.E. Cheng b, Wenqi Liu a, Jinhai Li a

a Faculty of Science, Kunming University of Science and Technology, Kunming, China
b Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
a r t i c l e i n f o

Article history:
Received 10 August 2015
Accepted 27 July 2016

Keywords:
Scheduling
Deteriorating jobs
Disruptive environment
Fully polynomial-time approximation
scheme
x.doi.org/10.1016/j.omega.2016.07.006
83/& 2016 Elsevier Ltd. All rights reserved.

manuscript was processed by Associate Edito
esponding author.
ail address: yinyunqiang@126.com (Y. Yin).

e cite this article as: Yin Y, et al. Pa
), http://dx.doi.org/10.1016/j.omega.
a b s t r a c t

We consider parallel-machine scheduling of deteriorating jobs in a disruptive environment in which
some of the machines will become unavailable due to potential disruptions. This means that a disruption
to some of the machines may occur at a particular time, which will last for a period of time with a certain
probability. If a job is disrupted during processing by a disrupted machine and it does not need (needs) to
re-start after the machine becomes available again, it is called the resumable (non-resumable) case. By
deteriorating jobs, we mean that the actual processing time of a job grows when it is scheduled for
processing later because the machine efficiency deteriorates over time due to machine usage and aging.
However, a repaired machine will return to its original state of efficiency. We consider two cases, namely
performing maintenance immediately on the disrupted machine when a disruption occurs and not
performing machine maintenance. In each case, the objective is to determine the optimal schedule to
minimize the expected total completion time of the jobs in both non-resumable and resumable cases. We
determine the computational complexity status of various cases of the problem, and provide pseudo-
polynomial-time solution algorithms and fully polynomial-time approximation schemes for them, if
viable.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Contemporary production and service systems often operate in a dynamic and uncertain environment, in which unexpected events
may occur from time to time. Should the expected events be disruptions, they may cause some resources (machines or facilities) to be
unavailable for a certain period of time, which will directly affect the utilization of the resources and ultimately customer service.
Examples of disruptive events occurring during production abound, e.g., machine breakdowns, power failures, and shortages of raw
materials, personnel, tools, etc. Research on scheduling that takes disruptions into account is commonly known as scheduling with
availability constraints, which has been extensively investigated in the literature. Lee et al. [13], Sanlaville and Schmidt [23], Schmidt [25],
and Ma et al. [19] survey and summarize the major results and practices in this area.

Machine scheduling with availability constraints can be categorized into two major classes. One class is where the machine unavail-
ability is deterministic due to some internal factors such as preventive maintenance. In this case, both the disruption starting time and
duration are either fixed in advance [4,8–11,20,31,34,33] or are decision variables in the scheduling model [5,18,21,22,28–30,32]. The other
class is where the machine unavailability is stochastic [1–3], which is caused by machine breakdowns or other internal and external
factors. Lee and Yu [15] consider single-machine scheduling with potential disruptions due to external factors, e.g., bad weather (typhoons
and snowstorms), labour strikes, power shortages, etc. In such a case, the disruption starting time is roughly known (should it happen);
however, the disruption duration is unknown until the damage is made. They provide pseudo-polynomial-time algorithms to solve the
problems of minimizing the expected total weighted completion time and the expected maximum tardiness. Subsequently, Lee and Yu
[16] extend the results to the parallel-machine case to minimize the expected total weighted completion time.
r Strusevich.

rallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
2016.07.006i

www.sciencedirect.com/science/journal/03050483
www.elsevier.com/locate/omega
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
mailto:yinyunqiang@126.com
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
We pursue the stream of research initiated by Lee and Yu [15,16]. We consider scheduling of jobs on m identical parallel machines that
are subject to potential disruptions in a deteriorating production environment, which means that the job processing times will deteriorate
over time. Some of the machines may become unavailable for a period of time over the scheduling period due to potential disruptions
arising from worker shortage, power shortage, etc. In such a case, we often know the disruption starting time (should it happen) in
advance, yet the duration is unknown until it happens. That is, there is a possibility that a disruption will happen at a particular time and
the disruption will last for a certain duration with a certain probability. So the machine unavailability will only be revealed at the time
when the disruption occurs. Thus we assume that once a disruption occurs, we will know its duration. Specifically, we consider two cases.
One is to perform maintenance immediately on each of the disrupted machines when a disruption occurs and the other is not to perform
machine maintenance, where performing machine maintenance will improve the efficiency of the machine by returning it to its original
state of efficiency at the expense of the cost incurred from maintenance. With known probabilities of all the unexpected events, the
scheduling objective is to find an optimal schedule for the jobs to minimize the expected total completion time of the jobs. We extend the
work of Lee and Yu [16] in three major ways as follows:

� We consider the scheduling problem in a deteriorating production environment, i.e., the actual processing time of a job grows when it is
scheduled for processing later because the machine efficiency deteriorates over time due to machine usage and aging, which more
accurately reflects real-life production.

� We assume that machine unavailability will only occur on some of the machines, which is the case where the factory has backup power
to keep some of the machines working when the disruption occurs due to power shortage, whereas Lee and Yu [16] assume that
machine unavailability will happen on all the machines.

� We include the case where the disruption may not happen (i.e., ζγ ¼ 0) in the non-resumable case, which Lee and Yu [16] do not
consider.

The purpose of this paper is twofold. One is to study a more realistic and complex scheduling model that takes both potential machine
disruptions and job deterioration into consideration. The other is to ascertain the computational complexity status and provide solution
procedures, if viable, for the problems under consideration.

The rest of the paper is organized as follows: In Section 2 we introduce the notation and formally formulate our problems. In Section 3
we derive some structural properties of the optimal solutions that are useful for tackling our problems. In Sections 4 and 5 we analyze the
computational complexity status and provide solution procedures, if viable, for the problems in the non-resumable and resumable cases,
respectively. In the last section we conclude the paper and suggest topics for future research.
2. Problem formulation

We formally describe the general problem under consideration as follows: There are n independent jobs in the job set N¼ fJ1; J2;…; Jng
to be processed on m identical parallel machines M1;M2;…;Mm over a scheduling period T. All the n jobs are available for processing at
time zero. Each job needs to be processed on one machine only and each machine is capable of processing any job but at most one job at a
time. The machines will experience deterioration in efficiency due to usage and aging [26]. As a result of deterioration in machine
efficiency over time, the actual processing time of a job will become longer if it is scheduled for processing later. Specifically, if job Jj is
processed on machine Mi and starts processing at time t, we define its actual processing time as pjt ¼ pjð1þatÞ, where pj is the normal
processing time of job Jj and a (a40) is the deteriorating rate common to all the jobs. Some of the m machines may become unavailable
due to potential machine disruptions, each of which will last for a period of time with a certain probability. Without loss of generality, we
assume that a machine disruption will happen at time r, which makes the first ι machines M1;…;Mι, 1r ιrm, unavailable and the
duration will take γ (γ ¼ 0;1;…; s) time units with a probability ζγ , which is the same for all the disrupted machines once the anticipated
disruption occurs. Here, ζ0 is the probability that the disruption will not happen and s is the maximum possible duration.

In order to reduce the effect of machine deterioration, an option strategy is to perform machine maintenance, which will improve the
efficiency of the machine by making it return to its original state of efficiency. It follows that the actual processing time of job Jj will be the
same as its normal processing time if it is the first job that starts processing on a repaired machine after maintenance. However, we focus
on the case where the effect of machine deterioration on the objective value during the scheduling period is smaller compared with the
cost incurred from the maintenance duration and the maintenance cost, which is reasonable in most production and service systems. As a
consequence, we consider the following two cases:

Case 1: Perform maintenance immediately on each of the disrupted machines with a fixed duration, denoted by κ, when a disruption
occurs by several maintenance workers (or teams). Thus, the disrupted machines will become unavailable during the time interval ½r; r
þmaxfγ; κg� under the scenario γ (γZ1).

Case 2: Do not perform machine maintenance.
The reason for considering Case 1 is twofold. One is that it may reduce the effect on the objective value caused by machine disruptions

because performing maintenance can improve the efficiency of the machines. The other is that it may reduce the effect on the objective
value caused by performing maintenance because disrupted machines have unavailable time intervals due to machine disruptions, which
can reduce the effect from maintenance duration. In each case, we consider both the resumable and non-resumable cases. If a job is
disrupted during processing by a disrupted machine and it does not need (needs) to re-start after the machine becomes available again, it
is called the resumable (non-resumable) case (see [12]). Assume that the last job started before but not completed at r is job Jj. In the non-
resumable case, Jj needs to re-start at times rþmaxfγ; κg and rþγ for Case 1 and Case 2, respectively, under scenario γZ1, while in the
resumable case, processing of the remaining part of Jj will continue at times rþmaxfγ; κg and rþγ for Case 1 and Case 2, respectively,
without any penalty.

We assume throughout the paper that pj, r, s, and κ are known positive integers such that κrs and a is chosen such that apj is a positive
integer for all j¼ 1;…;n. The objective is to determine an optimal schedule to minimize the expected total completion time of the jobs, i.e.,
EðPn

j ¼ 1 CjÞ, where Cj denotes the completion time of job Jj in a given sequence.
Please cite this article as: Yin Y, et al. Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
(2016), http://dx.doi.org/10.1016/j.omega.2016.07.006i

http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
Using the three-field notation αjβjγ introduced by Graham et al. [6] for describing scheduling problems, we denote our problem by
Px; ιj r=nr�a;M=NM;DE; PDRjEðPn

j ¼ 1 CjÞ, where α¼ Px; ι denotes that there are m identical parallel machines, in which x is empty whenm
is considered to be part of the input and x¼m when m is fixed, and the first ι machines will become unavailable if an anticipated
disruption happens; r�a and nr�a denote the resumable and non-resumable cases, respectively; M and NM denote performing main-
tenance immediately on the disrupted machines when an anticipated disruption occurs and not performing machine maintenance,
respectively; DE denotes job deterioration; and PDR indicates potential disruptions.
3. Preliminary analysis

In this section we derive some structural properties of the optimal schedules for the problems under study, which we will use for the
design of solution algorithms in the following sections. Let us first recall some results on the corresponding single-machine problem
without machine disruptions.

Lemma 3.1 ([27]). For the problem 1jDEjθ, where θ is any regular scheduling measure to be minimized, the completion time of the jth job in
the sequence ðJ½1�;…; J½j�1�; J½j�; J½jþ1�;…; J½n�Þ is equal to C ½j� ¼ s0þ1

a

� �
∏j

k ¼ 1 1þap½k�
� �

�1
a if the first job starts processing at time s0.

Lemma 3.2 ([27]). For the problem 1jDEjPCj, there exists an optimal schedule in which the jobs are scheduled in the shortest processing time
(SPT) order.

As a consequence of Lemma 3.2, the following result holds:

Lemma 3.3. For the problem Px; ιj r=nr�a;M=NM;DE; PDRjE Pn
j ¼ 1 Cj

� �
, there exists an optimal schedule in which

(1) the jobs finished no later than r on each disrupted machine Mi, i¼ 1;…; ι, and the jobs processed on each non-disrupted machine Mi,
i¼ ιþ1;…;m, are sequenced in the SPT order, respectively; and

(2) the jobs started no earlier than r on each disrupted machine Mi, i¼ 1;…; ι, are sequenced in the SPT order.

Proof. It follows from Lemma 3.2 that the arguments hold for all possible scenarios of γ and all the machines with the objective of
minimizing the total completion time. Thus, the lemma holds for the objective of minimizing the expected total completion time

E
Pn

j ¼ 1 Cj

� �
. □

Thus, in the rest of this paper, we assume, without loss of generality, that the jobs are re-indexed in the SPT order such that p1r⋯rpn.
For notational convenience, we let pmax ¼maxj ¼ 1;…;npj, TP ¼ 1

a∏
n
j ¼ 1ð1þapjÞ�1

a, and TP ¼ rþsþ1
a

� �
∏n

j ¼ 1ð1þapjÞ�1
a. We assume that ro

TPrT for the case of performing machine maintenance and TPrT for the case of not performing machine maintenance. Otherwise, the
potential machine disruptions have no effect on the solution.
4. The non-resumable case

Since even for the case without deteriorating effect with ι¼m and ζs ¼ 1, the problem with an arbitrary m, denoted as
P;hi1 jnr�ajPn

j ¼ 1 Cj, is NP-hard in the strong sense [17], our problem when both m and ι are arbitrary, denoted as P; ιjnr�a;M=NM;DE

; PDRj E
Pn

j ¼ 1 Cj

� �
, is NP-hard in the strong sense, too. Note also that Lee and Liman [14] show that the problem without deteriorating

effect on a single machine with ζs ¼ 1 is NP-hard, which implies that our problem is also NP-hard when m is fixed. Hence, we focus on the
case with a fixed m in this section. We first design a pseudo-polynomial-time solution algorithm for each of the cases of performing and
not performing machine maintenance, establishing that it is NP-hard in the ordinary sense. We then show how to convert the solution
algorithm into a fully polynomial-time approximation scheme (FPTAS) for the special case with ι¼ 1. Recall that a solution algorithm Aε
for a minimization problem is a ð1þεÞ-approximation algorithm if it always delivers an approximate solution Z with Zr ð1þεÞZn for all
the instances, where Zn is the optimal solution value. A family of approximation algorithms fAεg defines an FPTAS for the considered
problem, if for any ε40, Aε is a ð1þεÞ-approximation algorithm that is polynomial in n, L, and 1=ε, where L¼ log maxfn; r; s; apmaxg is the
number of bits in binary encoding for the largest numerical parameter in the input.

4.1. Pseudo-polynomial-time algorithms

In this subsection we develop pseudo-polynomial-time dynamic programming algorithms to solve the problems Pm; ιjnr�a;M;DE;
PDRj E

Pn
j ¼ 1 Cj

� �
and Pm; ιjnr�a;NM;DE; PDRj E

Pn
j ¼ 1 Cj

� �
, respectively.

4.1.1. The problem Pm; ιjnr�a;M;DE; PDRj E
Pn

j ¼ 1 Cj

� �
This subsection focuses on the case of performing machine maintenance. For simplicity, we only analyze the two-machine case with

ι¼ 1 in detail, and then briefly discuss how to generalize the results to the case with m machines for any given ι.
We first develop a forward dynamic programming algorithm NRMDPDDP for the case where ζ0a0. The algorithm first fixes the variable t1,

which denotes the starting time of the first job scheduled on machine M1 that will finish after r in the final optimal schedule when disruption
does not happen on machine M1. This means that if disruption does not happen, the first job scheduled on machine M1 that will finish after r
starts at time t1, and if the anticipated disruption happens and lasts for a time period γ (γ40), the first job scheduled on machine M1 that will
finish after r will restart at time rþmaxfγ; κg, even though it may have been processed during ½t1; r�. Due to the deteriorating effect, it is easy to
see that t1 ranges from τ to r, where τ¼ ⌈ r�pmax

1þapmax
⌉. For each given t1, the algorithm consists of nþ1 phases and in each phase j, j¼ 0;1;…;n, a

state space F ðj;t1Þ is generated. Any state in F ðj;t1Þ is a vector ðu1;u2; v1; q1; f Þ that encodes a feasible partial schedule for the jobs fJ1;…; Jjg, where
the variables u1 (0ru1rt1) and u2 denote the total actual processing time of the jobs finished no later than r on machine M1 and the total
Please cite this article as: Yin Y, et al. Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
(2016), http://dx.doi.org/10.1016/j.omega.2016.07.006i

http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
actual processing time of the jobs processed on machineM2, respectively, v1 and q1 measure the total actual processing times of the jobs finished
after r on machine M1 for the cases where the disruption does not happen and the anticipated disruption does happen on machine M1,
respectively, and f stands for the expected total completion time of the partial schedule. The state spaces F ðj;t1Þ, j¼ 0;1;…;n; t1 ¼ τ;…; r, are
constructed iteratively, where the initial space F ð0;t1Þ for each t1 ¼ τ;…; r contains ð0;0;0;0;0Þ as its only element. For each given t1, in the jth
phase, j¼ 1;…;n, we build a state by adding a single job Jj to a previous state, if it is possible for the given state. To add job Jj to a state
ðu1;u2; v1; q1; f ÞAF ðj�1;t1Þ, there are three cases to consider as follows:

Case 1: Schedule job Jj before t1 on machine M1. This is possible only when u1þpjð1þau1Þrt1. In this case, the contribution of job Jj to
the objective function is u1þpjð1þau1Þ. Hence, we include the new state ðu1þpjð1þau1Þ;u2; v1; q1; f þu1þpjð1þau1ÞÞ in F ðj;t1Þ if
u1þpjð1þau1Þrt1.

Case 2: Schedule job Jj to be finished after r on machine M1. In this case, when the scenario γ ¼ 0 with probability ζ0 happens, the
completion time of job Jj is t1þv1þpjð1þaðt1þv1ÞÞ since the machine efficiency is not improved during the scheduling horizon; however,
when scenario γ ¼ 1;…; s, with probability ζγ happens, the completion time of job Jj is rþκþq1þpjð1þaq1Þ if 1rγrκ, and rþγþq1þ
pjð1þaq1Þ otherwise since the machine maintenance takes κ time units. Hence, the expected completion time of job Jj is
ζ0ðt1þv1þpjð1þaðt1þv1ÞÞÞþ

Ps
γ ¼ 1 ζγðrþmaxfγ; κgþq1þpjð1þaq1ÞÞ. Therefore, if t1þv1þpjð1þaðt1þv1ÞÞ4r, which ensures that Jj will

be finished after r when γ ¼ 0 happens, we include the new state ðu1;u2; v1þpjð1þaðt1þv1ÞÞ; q1þpjð1þaq1Þ; f þζ0ðt1þv1þpjð1þaðt1þ
v1ÞÞÞþ

Ps
γ ¼ 1 ζγðrþmaxfγ; κgþq1þpjð1þaq1ÞÞÞ in F ðj;t1Þ.

Case 3: Schedule job Jj on machine M2. In this case, the contribution of job Jj to the objective function is u2þpjð1þau2Þ. Hence, we
include the new state ðu1;u2þpjð1þau2Þ; v1; q1; f þu2þpjð1þau2ÞÞ in F ðj;t1Þ.

Note that the process to construct F ðj;t1Þ may generate more than a single state that does not lead to a complete optimal schedule. The
following result shows how to reduce the set F ðj;t1Þ.

Lemma 4.1. For any two states ðu1;u2; v1; q1; f Þ and ðu0
1;u

0
2; v

0
1; q

0
1; f

0Þ in F ðj;t1Þ with u1ru0
1, u2ru0

2, v1rv01, q1rq01, and f r f 0, we can
eliminate the latter state.

Proof. This is due to the fact that for any extension for the partial schedule corresponding to the state ðu0
1;u

0
2; v

0
1; q

0
1; f

0Þ to a solution for the
complete problem, the corresponding extension for the partial schedule corresponding to the state ðu1;u2; v1; q1; f Þ yields a feasible
solution whose f value is at least as good as that of the former. □

We summarize the results of the above analysis in the following solution algorithm for the problem P2;1jnr�a;M;DE; PDRj EPn
j ¼ 1 Cj

� �
with ζ0a0.

Algorithm NRMDPDDP
Step
Step

S

Step

Please ci
(2016), h
1.
 [Preprocessing] Re-index the jobs in the SPT order.

2.
 [Initialization] Set τ¼ ⌈ r�pmax

1þapmax
⌉ and F ð0;t1Þ ¼ fð0;0;0;0;0Þg for each t1 ¼ τ;…; r.
3.
 [Generation]
tep

For t1 ¼ τ to r do
For j¼1 to n do

Set F ðj;t1Þ ¼∅

For each ðu1;u2; v1; q1; f ÞAF ðj�1;t1Þ do

=n Schedule job Jj before t1 on machine M1
If u1þpjð1þau1Þrt1, then

Set F ðj;t1Þ’F ðj;t1Þ [fðu1þpjð1þau1Þ;u2; v1; q1; f þu1þpjð1þau1ÞÞg;
Endif

=n Schedule job Jj to be finished after r on machine M1
If t1þv1þpjð1þaðt1þv1ÞÞ4r, then

Set F ðj;t1Þ’F ðj;t1Þ [fðu1;u2; v1þpjð1þaðt1þv1ÞÞ; q1þpjð1þaq1Þ; f þ

ζ0ðt1þv1þpjð1þaðt1þv1ÞÞÞþ

Ps
γ ¼ 1 ζγðrþmaxfγ; κgþq1þpjð1þaq1ÞÞÞg;
Endif

=n Schedule job Jj on machine M2
Set F ðj;t1Þ’F ðj;t1Þ [fðu1;u2þpjð1þau2Þ; v1; q1; f þu2þpjð1þau2ÞÞg;

Endfor

[Elimination] =n Update set F ðj;t1Þ

n=
For any two states ðu1;u2; v1; q1; f Þ and ðu0
1;u

0
2; v

0
1; q

0
1; f

0Þ in F ðj;t1Þ with u1ru0
1,
u2ru0
2, v1rv01, q1rq01, and f 1r f 01, eliminate the latter state from set F ðj;t1Þ;
Endfor

Endfor
4.
 [Result] The optimal solution value is given by minff j ðu1;u2; v1; q1; f ÞAF ðn;t1Þ; t1 ¼ κ;…; rg and the optimal solution can be
found by backtracking.
Theorem 4.2. Algorithm NRMDPDDP solves the problem P2;1jnr�a;M;DE; PDRj EðPn
j ¼ 1 CjÞ with ζ0a0 in Oðnr2TP3Þ time.

Proof. The optimality of algorithm NRMDPDDP follows directly from Lemma 3.3 and the above analysis. We now analyze its time
complexity. Step 1 is a sorting procedure, which takes OðnlognÞ time. In Step 3, an upper bound on the number of the vectors fu1;u2; v1; q1g
is rTP3 because, by Lemma 3.1, there are at most r possible values for u1 and at most TP possible values for each of u2, v1, and q1,
te this article as: Yin Y, et al. Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
ttp://dx.doi.org/10.1016/j.omega.2016.07.006i

http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5
respectively. Thus, for each given t1, before each iteration j, there are at most rTP3 possible states ðu1;u2; v1; q1; f ÞAF ðj�1;t1Þ because the
number of the vectors fu1;u2; v1; q1; f g is upper-bounded by rTP3 due to the elimination rules. In iteration j, there are at most three new
states generated from each state in F ðj�1;t1Þ for each candidate job. Therefore, there are at most 3rTP3 new states generated in F ðj;t1Þ. Thus,
the construction of F ðj;t1Þ requires OðrTP3Þ time, which is also the time required for the elimination process. After nr iterations, Step 3 can
be executed in Oðnr2TP3Þ time, as required. Step 4 takes Oðr2TP3Þ time. Therefore, the overall time complexity of the algorithm is indeed
Oðnr2TP3Þ. □

If ζ0 ¼ 0, i.e., the anticipated disruption will definitely happen although the duration is uncertain, the time complexity of algorithm
NRMDPDDP can be reduced to OðnrTP2Þ since the parameters t1 and v1 can be dropped in the state vector. We give a formal description of
the algorithm for this case in the following, where F ðjÞ is the state space generated in the jth iteration.

Algorithm NRMDPDDP0
Step
Step
S

Please
(2016)
1.
 [Preprocessing] Re-index the jobs in the SPT order.

2.
 [Initialization] Set F ð0Þ ¼ fð0;0;0;0Þg.

3.
 [Generation]
tep
For j¼1 to n do

Set F ðjÞ ¼∅

[State Generation]

For each ðu1;u2; q1; f ÞAF ðj�1Þ do
=n Schedule job Jj before r on machine M1
If u1þpjð1þau1Þrr, then

Set F ðjÞ’F ðjÞ [fðu1þpjð1þau1Þ;u2; q1; f þu1þpjð1þau1ÞÞg;
Endif

=n Schedule job Jj to be finished after r on machine M1
Set F ðjÞ’F ðjÞ [fðu1;u2; q1þpjð1þaq1Þ; f þ
Ps

γ ¼ 1 ζγðrþmaxfγ; κgþq1þpjð1þaq1ÞÞÞg;

=n Schedule job Jj on machine M2
Set F ðjÞ’F ðjÞ [fðu1;u2þpjð1þau2Þ; q1; f þu2þpjð1þau2ÞÞg;

Endfor

[Elimination] =n Update set F ðjÞ n=
The same as in algorithm NRMDPDDP;

Endfor
4.
 [Result] The optimal solution value is given by minff j ðu1;u2; q1; f ÞAF ðnÞg and the optimal solution can be found by backtracking.
Step

Hence, we conclude with the following result.

Theorem 4.3. Algorithm NRMDPDDP0 solves the problem P2;1jnr�a;M;DE; PDRj E
Pn

j ¼ 1 Cj

� �
with ζ0 ¼ 0 in O nrTP2

� �
time.

Note that the idea of algorithm NRMDPDDP can be applied for the general case with m machines and any given ι, in which we should
include the new variables ti to denote the starting time of the first job scheduled on machine Mi that will finish after r in the final optimal
schedule when the disruption does not happen on machine Mi, and vi and qi to denote the total actual processing time of the jobs finished
after r on machine Mi for the cases where the disruption does not happen and where the anticipated disruption does happen on machine
Mi, respectively, for all i¼ 2;…; ι. We conclude with the following result.

Theorem 4.4. The problem Pm; ιjnr�a;M;DE; PDRj E Pn
j ¼ 1 Cj

� �
can be solved in Oðnr2ιTPmþ ιÞ time if ζ0a0 and in OðnrιTPmÞ time otherwise.

4.1.2. The problem Pm; ιjnr�a;NM;DE; PDRj E
Pn

j ¼ 1 Cj

� �
This subsection focuses on the case of not performing machine maintenance. For simplicity, we only analyze the two-machine case

with ι¼ 1 and ζ0a0 in detail, and develop a forward dynamic programming algorithm NRNMDPDDP for solving it.
The idea of algorithm NRNMDPDDP is analogous to that of NRMDPDDP. Let t1 and τ be defined as before. For each given t1, the algorithm

consists of nþ1 phases and in each phase j, j¼ 0;1;…;n, a state space Lðj;t1Þ is generated. Any state in Lðj;t1Þ is a vector ðu1;u2; v1; q1; f Þ that
encodes a feasible partial schedule for the jobs fJ1;…; Jjg, where the variables u1, u2, v1, and f are defined as before, and q1 ¼ ðq11;…; qs1Þ is a vector
in which q1

γ, γ ¼ 1;…; s, denotes the total actual processing times of the jobs finished after r on machine M1 under the scenario γ. The state
spaces Lðj;t1Þ, j¼ 0;1;…;n; t1 ¼ κ;…; r, are constructed iteratively. The initial space F ð0;t1Þ for each t1 ¼ κ;…; r contains ð0;0;0;0;0Þ with
¼ ð0;…;0|fflfflffl{zfflfflffl}sÞ as its only element. For each given t1, in the jth phase, j¼ 1;…;n, we build a state by adding a single job Jj to a previous state, if it is

possible for the given state. To add job Jj to a state ðu1;u2; v1; q1; f ÞALðj�1;t1Þ, there are three cases analogous to those in algorithm NRMDPDDP to
consider. The procedures for Cases 1 and 3 are the same as those in algorithm NRMDPDDP. We illustrate Case 2 here, i.e., scheduling job Jj to be
finished after r on machine M1. In this case, under the scenario γ ¼ 0 with probability ζ0, the completion time of job Jj is
t1þv1þpjð1þaðt1þv1ÞÞ; however, when scenario γ ¼ 1;…; s, with probability ζγ happens, the completion time of job Jj is
rþγþqγ1þpjð1þaðrþγþqγ1ÞÞ. Hence, the expected completion time of job Jj is ζ0ðt1þv1þ pjð1þaðt1þv1ÞÞÞþ

Ps
γ ¼ 1

ζγðrþγþqγ1þpjð1þaðrþγþqγ1ÞÞ. Therefore, if t1þv1þpjð1þaðt1þv1ÞÞ4r, which ensures that Jj will be finished after r when γ ¼ 0 happens,
we include the new state ðu1;u2; v1þpjð1þaðt1þv1ÞÞ; q1; f þζ0ðt1þv1þpjð1þaðt1þv1ÞÞÞþ

Ps
γ ¼ 1 ζγðrþγþqγ1þpjð1þaðrþγþqγ1ÞÞÞÞ in Lðj;t1Þ,

where q1 ¼ ðq1
1;…; qs

1Þ with qγ1 ¼ qγ1þpjð1þaðrþγþqγ1ÞÞ, γ ¼ 1;…; s.
cite this article as: Yin Y, et al. Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
, http://dx.doi.org/10.1016/j.omega.2016.07.006i

http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
Before presenting the dynamic programming algorithm in detail, a similar elimination property can be derived to reduce the state
space.

Lemma 4.5. For any two states ðu1;u2; v1; q1; f Þ and ðu0
1;u

0
2; v

0
1; q

0
1; f

0Þ in Lðj;t1Þ with u1ru0
1, u2ru0

2, v1rv01, q1rq01, and f r f 0, we can eliminate
the latter state, where q1rq01 means that qγ1rq

0γ
1 for all γ ¼ 1;…; s.

Proof. The proof is analogous to that of Lemma 4.1. □

We summarize the results of the above analysis in the following solution algorithm for the problem P2;1jnr�a;NM;DE; PDRj EðPn
j ¼ 1

CjÞ with ζ0a0.

Algorithm NRNMDPDDP
Step
Step

S

Step

Step
Step
Step

Please ci
(2016), h
1.
 [Preprocessing] Re-index the jobs in the SPT order.

2.
 [Initialization] Set τ¼ ⌈ r�pmax

1þapmax
⌉ and Lð0;t1Þ ¼ fð0;0; ;0;0Þg for each t1 ¼ τ;…; r, where ¼ ð0;…;0|fflfflffl{zfflfflffl}

s

Þ.
3.
 [Generation]
tep

For t1 ¼ τ to r do
For j¼1 to n do

Set Lðj;t1Þ ¼∅

For each ðu1;u2; v1; q1; f ÞALðj�1;t1Þ do

=n Schedule job Jj before t1 on machine M1
If u1þpjð1þau1Þrt1, then

Set Lðj;t1Þ’Lðj;t1Þ [fðu1þpjð1þau1Þ;u2; v1; q1; f þu1þpjð1þau1ÞÞg;
Endif

=n Schedule job Jj to be finished after r on machine M1
If t1þv1þpjð1þaðt1þv1ÞÞ4r, then

Set Lðj;t1Þ’Lðj;t1Þ [fðu1;u2; v1þpjð1þaðt1þv1ÞÞ; q1; f þ

ζ0ðt1þv1þpjð1þaðt1þv1ÞÞÞþ

Ps
γ ¼ 1 ζγðrþγþqγ1þpjð1þaðrþγþqγ1ÞÞÞÞg,
where q1 ¼ ðq1
1;…; qs

1Þ with qγ1 ¼ qγ1þpjð1þaðrþγþqγ1ÞÞ, γ ¼ 1;…; s;

Endif

=n Schedule job Jj on machine M2
Set Lðj;t1Þ’Lðj;t1Þ [fðu1;u2þpjð1þau2Þ; v1; q1; f þu2þpjð1þau2ÞÞg;

Endfor

[Elimination] =n Update set Lðj;t1Þ

n=
For any two states ðu1;u2; v1; q1; f Þ and ðu0
1;u

0
2; v

0
1; q

0
1; f

0Þ in Lðj;t1Þ with u1ru0
1,
u2ru0
2, v1rv01, q1rq01, and f r f 0, eliminate the latter state from set Lðj;t1Þ;
Endfor

Endfor
4.
 [Result] The optimal solution value is given by minff j ðu1;u2; v1; q1; f ÞALðn;t1Þ; t1 ¼ κ;…; rg and the optimal solution can be
found by backtracking.
Theorem 4.6. Algorithm NRNMDPDDP solves the problem P2;1jnr�a;NM;DE; PDRj EðPn
j ¼ 1 CjÞ with ζ0a0 in Oðnr2 TPsþ1TPÞ time.

Proof. The proof is analogous to that of Theorem 4.2, the only difference being that the number of different combinations of fu1;u2; v1; q1g is
upper-bounded by rTPsþ1TP because, by Lemma 3.1, there are at most r possible values for u1, at most TP possible values for u2, and at most
TP values for each of v1 and qγ1, γ ¼ 1;…; s, respectively. □

Analogous to the analysis in Section 4.1.1, algorithm NRNMDPDDP can be generalized to solving the general problem Pm; ιjnr�a;NM
;DE; PDRj E

Pn
j ¼ 1 Cj

� �
with ζ0a0 or ζ0 ¼ 0, and the following result holds.

Theorem 4.7. The problem Pm; ιjnr�a;NM;DE; PDRj E
Pn

j ¼ 1 Cj

� �
can be solved in O nr2ιTPðsþ1ÞιTPm� ι

� �
time if ζ0a0 and in O

nrιTPsιTPm� ι� �
time otherwise.

4.2. FPTASs for the case where ι¼ 1 and ζ0 ¼ 0

In this subsection we first describe how to convert algorithm ıNRMDPDDP0 into an FPTAS and then briefly discuss how to generalize
the result to the case with m machines, ι¼ 1 and ζ0 ¼ 0. To do this, we borrow the idea from Hall and Potts [7] to partition the state space
into boxes, which originates from the interval partitioning approach suggested by Sahni [24]. Specifically, to convert algorithm
NRMDPDDP0 into an FPTAS, we partition the state space F ðjÞ; j¼ 1;…;n into three-dimensional boxes and approximate the solution by
retaining only one state within any box. We formally describe the procedure as follows:

Algorithm NRMDPDAAε
1.
 [Preprocessing] Re-index the jobs in the SPT order.

2.
 [Initialization] Set F ð0Þ ¼ fð0;0;0;0Þg.

3.
 [Generation]
te this article as: Yin Y, et al. Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
ttp://dx.doi.org/10.1016/j.omega.2016.07.006i

http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

S

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
tep

Please ci
(2016), h
For j¼1 to n do

Set F ðjÞ ¼∅

[State Generation] =n Generate F ðjÞ from F ðj�1Þ n=
The same as that in algorithm NRMDPDDP0;

[Labeling] =n Attach a label to each state in F ðjÞ n=
For each state ðu1;u2; q1; f ÞAF ðjÞ, attach the label ðΔðu2Þ;Δðq1Þ;Δðf ÞÞ to it, where the function Δ is defined as ΔðxÞ ¼ k in

which x satisfies δkrxrδðkþ1Þ and δ¼ 1þ ε
2ð1þεÞn;
[Elimination] =n Update set F ðjÞ n=
(1) For any two states ðu1;u2; q1; f Þ and ðu0
1;u2; q1; f Þ in F ðjÞ with the same label and u1ru0

1, eliminate the latter state from
set F ðjÞ;
(2) For any two states ðu1;u2; q1; f Þ and ðu1;u0
2; q

0
1; f

0Þ in F ðjÞ with u2ru0
2, q1rq01, and f 1r f 01, eliminate the latter state from

set F ðjÞ;

Endfor
4.
 [Result] The approximate solution value is given by minff j ðu1;u2; q1; f ÞAF ðnÞg and the approximate solution can be found by
backtracking.
Lemma 4.8. For any eliminated state ðu1;u2; q1; f ÞAF ðjÞ, there exists a state ðfu1 ;fu2 ;fq1 ;ef Þ such that fu1 ru1, fu2 rδju2, fq1 rδjq1, and ef rδjf .

Proof. Refer to Appendix for details. □

Theorem 4.9. For any ε40 and an optimal solution value f n, algorithm NRMDPDAAε finds in O n7L3

ε3

� �
time a solution value ef such thatef r ð1þεÞf n.

Proof. Let ðun

1;u
n

2; q
n

1; f
nÞAF ðnÞ be a state corresponding to the optimal solution value f n. By the proof of Lemma 4.8, for ðun

1;u
n

2; q
n

1; f
nÞ, there

exists a non-eliminated state ðfu1 ;fu2 ;fq1 ;ef Þ such that ef rδnf n. It follows from 1þ x
n

� �nr1þ2x, for any 0rxr1, that

1þ ε
2ð1þεÞn

� �n
r1þ ε

1þεr1þε, so ef rδnf nr ð1þεÞf n.
For the time complexity of algorithm NRMDPDAAε, Step 1 requires Oð1Þ time. Note that there are at most TP possible values for each of

u2 and q1, respectively, and at most nTP possible values for f. Therefore, the number of possible values of Δðu2Þ and Δðq1Þ are given by

⌈log δTP⌉¼ ⌈lnTP=lnδ⌉r⌈ð1þ2nð1þεÞ=εÞlnTP⌉r⌈ð1þ2nð1þεÞ=εÞ
Xn
k ¼ 1

lnð1þapkÞ� lna

 !
⌉;

where the first inequality is obtained from the well-known inequality lnxZ ðx�1Þ=x for all xZ1. Similarly, the number of possible values
of Δðf Þ is given by

⌈log δnTP⌉r⌈ð1þ2nð1þεÞ=εÞ
Xn
k ¼ 1

lnð1þapkÞþ lnn� lna

 !
⌉:

Thus, the total number of different boxes at the beginning of each iteration, which equals the number of different states at the beginning of
each iteration since at most one state is retained for each possible label after the elimination process, is at most O n6L3

ε3

� �
. In each iteration j,

there are at most three new states generated from each state in F ðj�1Þ. Thus, the number of new states generated is at most

3� O ⌈ð1þ2nð1þεÞ=εÞðPn
k ¼ 1 lnð1þapkÞ� ln aÞ⌉2⌈ð1þ2nð1þεÞ=εÞðPn

k ¼ 1 lnð1þapkÞþ ln n� ln aÞ⌉� �
, which equals 3� O n6L3

ε3

� �
. Thus, the

construction of F ðjÞ requires O n6L3

ε3

� �
time, which is also the time required for the elimination process. After n iterations, the total number of

different boxes is at most O n7L3

ε3

� �
, which is also the overall time complexity of algorithm NRMDPDAAε. □

Note that the idea of algorithm NRMDPDAAε can be generalized to the general case with m machines, ι¼ 1 and ζ0 ¼ 0, in which we
should include the new variables ui to denote the total actual processing time of the jobs scheduled on machine Mi for all i¼ 3;…;m in the
state vector. We conclude with the following result.

Theorem 4.10. The problem Pm;1jnr�a;M;DE; PDRj EðPn
j ¼ 1 CjÞ with ζ0 ¼ 0 admits an FPTAS that runs in O n2mþ 3Lmþ 1

εmþ 1

� �
time.

In a similar way, the following result holds.

Theorem 4.11. The problem Pm;1jnr�a;NM;DE; PDRj EðPn
j ¼ 1 CjÞ with ζ0 ¼ 0 admits an FPTAS that runs in O n2ðs� 1Þιþ 2mþ 3Lðs� 1Þιþmþ 1

εðs� 1Þιþmþ 1

� �
time.

Remark 4.12. It is well known that FPTAS is the strongest type of approximation result for an NP-hard problem. Theorems 4.10 and 4.11
indicate that in the non-resumable case, no matter whether performing machine maintenance or not, the problem admits an FPTAS when
m is fixed, ι¼ 1, and ζ0 ¼ 0. However, the time complexity of the FPTAS may pose a challenge to solving the problem in practice, so future
research should design fast and efficient constant ratio approximation algorithms for the problems.
5. The resumable case

It is worth noting that the proof given in Levin et al. [17] for the problem P;1jnr�ajPn
j ¼ 1 Cj can be applied for the resumable case,

implying that our problemwhen both m and ι are arbitrary, denoted as P; ιj r�a;M=NM;DE; PDRj EðPn
j ¼ 1 CjÞ, is also NP-hard in the strong

sense. In addition, since even for the case without deteriorating effect on two identical parallel machines with ι¼ 2 and ζs ¼ 1, the
te this article as: Yin Y, et al. Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
ttp://dx.doi.org/10.1016/j.omega.2016.07.006i

http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
problem is NP-hard [16], our problem with a fixed m is NP-hard, too, when ιZ2. In the following we focus on the case with a fixed m
under the resumable availability constraint, and design a pseudo-polynomial-time solution algorithm for each of the cases of performing
and not performing machine maintenance, establishing that it is NP-hard in the ordinary sense. However, the question as to whether or
not the problem with ι¼ 1 is NP-hard remains open.

Before developing the algorithm, we note that scheduling the jobs on each machine in the SPT order is optimal for the case without the
deteriorating effect on m identical parallel machines with ι¼m under the resumable availability constraint (see Theorem 4 in Lee and
Yang [16]). However, this result does not hold for our problem even for the single-machine case, as shown in the following example.

Example 5.1. Let n¼ 3;m¼ 1; p1 ¼ 10; p2 ¼ 50; p3 ¼ 90; a¼ 0:1; r¼ 40; κ ¼ s¼ 5; and ζs ¼ 1.
For the case of performing maintenance, consider a solution obtained by splitting job J2 into two pieces J02 and J″2 with normal pro-

cessing times 15 and 35, and scheduling jobs J1, J
0
2, J

″
2, and J3 in the intervals [0,10], [10,40], [50,85], and [85,490], respectively. It fulfils the

property that the jobs follow the SPT order and yields an objective value of 585. However, a better solution is obtained by splitting job J2
into two pieces J02 and J″2 with normal processing times 40 and 10, and scheduling jobs J02, J

″
2, J1, and J3 in the intervals [0,40], [50,60],

[60,80], and [80,440], respectively, which yields a smaller objective value of 580.
Similarly, for the case of not performing maintenance, the solution in which the jobs follow the SPT order yields an objective value of

2700. However, a better solution with objective value of 2500 is obtained by splitting job J2 into two pieces J02 and J″2 with normal
processing times 40 and 10, respectively, and scheduling the jobs in the following order: J02, J

″
2, J1, and J3.

5.1. The problem Pm; ιj r�a;M;DE; PDRj EðPn
j ¼ 1 CjÞ

This subsection focuses on the case of performing machine maintenance. Again, we only analyze the two-machine case with ι¼ 1 and
ζ0a0 in detail, and develop a forward dynamic programming algorithm RMDPDDP for solving it.

The idea of algorithm RMDPDDP is analogous to that of NRMDPDDP, except that we need to enumerate all the possible dis-
rupted jobs that start processing no later than r but finish processing after r on machine M1 by Lemma 3.3 and Example 5.1. Thus
we have to add a new parameter k1 to denote that the disrupted job on machine M1 is job Jk1 in the final optimal schedule. For
each fixed k1, let τ1 denote the starting time of job Jk1 on machine M1 in the final optimal schedule, which must satisfy
τ1þpk1 ð1þaτ1Þ4r, implying that τ1 ranges from χk1 to r, where χk1 ¼ ⌈

r�pk1
1þapk1

⌉. For any feasible combination of k1 and τ1, we set

ιðk1 ;τ1Þ ¼ ðr�τ1Þ=ð1þaτ1Þ, which denotes the normal processing part of job Jk1 processed before r when the disruption does happen,
and re-index Jk1 as Jnþ1 and Jj as Jj�1 for j¼ k1þ1;…;n. For each given feasible combination of k1 and τ1, this algorithm consists of
n phases and in each phase j, j¼ 0;1;…;n�1, a state space F ðj;k1 ;τ1Þ is generated. Any state in F ðj;k1 ;τ1Þ is a vector ðu1;u2; v1; q1; f Þ that
encodes a feasible partial schedule for the jobs fJ1;…; Jjg, where the variables u1;u2; v1; q1, and f are defined as before. The state
spaces F ðj;k1 ;τ1Þ, j¼ 0;1;…;n�1; k1 ¼ 1;…;n; τ1 ¼ χk1 ;…; r, are constructed iteratively, where the initial space F ð0;k1 ;τ1Þ for k1 ¼ 1;…;n
and τ1 ¼ χk1 ;…; r, contains ð0;0; pnþ1ð1þaτ1Þ; pnþ1�ιðk1 ;τ1Þ; ζ0ðτ1þpnþ1ð1þaτ1ÞÞþ

Ps
γ ¼ 1 ζγðrþmaxfγ; κgþpnþ1� ιðk1 ;τ1ÞÞÞ as its only

element. For any possible combination of k1 and τ1, in the jth phase, j¼ 1;…;n�1, we build a state by adding a single job Jj to a
previous state in an analogous way to that in algorithm NRMDPDDP, if it is possible for the given state. Note also that Lemma 4.1
still holds for this case.

The solution procedure for the problem P2;1j r�a;M;DE; PDRj EðPn
j ¼ 1 CjÞ with ζ0a0 can be formally described as follows.

Algorithm RMDPDDP
Ste
Ste

Please cite t
(2016), http
p 1.
 [Preprocessing] Re-index the jobs in the SPT order.

p 2.
 [Initialization] For any k1 ¼ 1;…;n, set χk1 ¼ ⌈

r�pk1
1þapk1

⌉. For any k1 ¼ 1;…;n and t1 ¼ χk1 ;…; r, set ιðk1 ;τ1Þ ¼ ðr�τ1Þ=ð1þaτ1Þ
and let F ð0;k1 ;t1Þ ¼ fð0;0; pk1 ð1þaτ1Þ; pk1 � ιðk1 ;τ1Þ; ζ0ðτ1þpk1 ð1þaτ1ÞÞþ

Pκ
γ ¼ 1 ζγðrþmaxfγ; κgþpk1 � ιðk1 ;τ1ÞÞÞg.
p 3.
 [Generation]
Ste

For k1 ¼ 1 to n do
For the original SPT order do: re-index Jk1 as Jnþ1 and Jj as Jj�1 for j¼ k1þ1;…;n;

For τ1 ¼ χk1 to r do

For j¼1 to n�1 do

Set F ðj;k1 ;τ1Þ ¼∅

For each ðu1;u2; v1; q1; f ÞAF ðj�1;k1 ;τ1Þ do
=n Schedule job Jj before τ1 on machine M1
If u1þpjð1þau1Þrτ1, then

Set F ðj;k1 ;τ1Þ’F ðj;k1 ;τ1Þ [fðu1þpjð1þau1Þ;u2; v1; q1; f þu1þpjð1þau1ÞÞg;
Endif

=n Schedule job Jj to be finished after r on machine M1
Set F ðj;k1 ;τ1Þ’F ðj;k1 ;τ1Þ [fðu1;u2; v1þpjð1þaðτ1þv1ÞÞ; q1þpjð1þaq1Þ; f þζ0ðτ1þv1þpjð1þaðτ1þv1ÞÞÞ
þPs

γ ¼ 1 ζγðrþmaxfγ; κgþq1þpjð1þaq1ÞÞÞg;

=n Schedule job Jj on machine M2
Set F ðj;k1 ;τ1Þ’F ðj;k1 ;τ1Þ [fðu1;u2þpjð1þau2Þ; v1; q1; f þu2þpjð1þau2ÞÞg;

Endfor

[Elimination] =n Update set F ðj;k1 ;τ1Þ

n=
The same as that in algorithm NRMDPDDP;

Endfor
Endfor
his article as: Yin Y, et al. Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
://dx.doi.org/10.1016/j.omega.2016.07.006i

http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

Ste

Table
Summ

Pro

P; ιj
Pm;

Pm;

Pm;

Pm;

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9

Ple
(20
p 4.
1
ary of resu

blem

r=nr�a;M=

ιjnr�a;M;

ιjnr�a;NM

ιj r�a;M;D

ιj r�a;NM;

ase cite t
16), http
[Result] The optimal solution value is given by minff j ðu1;u2; v1; q1; f ÞAF ðn�1;k1 ;τ1Þ; k1 ¼ 1;…;n; τ1 ¼ χk1 ;…; rg
and the optimal solution can be found by backtracking.
Theorem 5.2. Algorithm RMDPDDP solves the problem P2;1j r�a;M;DE; PDRj EðPn
j ¼ 1 CjÞ with ζ0a0 in Oðn2r2TP3Þ time.

Proof. The proof is analogues to that of Theorem 4.2. □

Analogous to the analysis in Subsection 4.1.1, algorithm RMDPDDP can be applied for solving the general problem Pm; ιj r�a;M;DE;
PDRjEðPn

j ¼ 1 CjÞ with slightly modifications, and we conclude the following result.

Theorem 5.3. The problem Pm; ιj r�a;M;DE; PDRjEðPn
j ¼ 1 CjÞ can be solved in Oðnιþ1r2ιTPmþ ιÞ time if ζ0a0 and in Oðnιþ1r2ιTPmÞ time

otherwise.

5.2. The problem Pm; ιj r�a;NM;DE; PDRj EðPn
j ¼ 1 CjÞ

This subsection focuses on the case of not performing machine maintenance. The idea of the algorithm for this case with ζ0a0 is
analogous to those of algorithms NRNMDPDDP and RMDPDDP. Compared with algorithm RMDPDDP, we need new parameters qi

γ,
i¼ 1;…; ι, γ ¼ 1;…; s, to denote the total actual processing times of the jobs finished after r on machine Mi under the scenario γ in the state
vector. Thus, combining Theorems 4.7 and 5.3, we obtain the following result.

Theorem 5.4. The problem Pm; ιj r�a;NM;DE; PDRj EðPn
j ¼ 1 CjÞ can be solved in Oðnιþ1r2ι TPðsþ1Þι TPm� ιÞ time if ζ0a0 and in Oðnιþ1r2ι

TPsιTPm� ιÞ time otherwise.
6. Conclusions

This paper addresses parallel-machine scheduling of deteriorating jobs with potential machine disruptions. In such a case, the job processing
times will deteriorate over time and some of the machines may become unavailable for some periods of time due to the potential machine
disruptions. The disruption starting time is often known (should it happen) in advance, yet the disruption duration that will last for a certain duration
with a certain probability is unknown until it happens. We consider the cases of performing maintenance immediately on the disrupted machines
when a disruption occurs and not performing machine maintenance, where performing machine maintenance will improve the efficiency of a
machine, making it return to its original state of efficiency. In each case, the objective is to find an optimal schedule to minimize the expected total
completion time of the jobs for both the non-resumable and resumable cases. We summarize the major results of this paper in Table 1.

It is worth noting that performing maintenance on the disrupted machines when a disruption occurs will decrease the expected total
completion time of the jobs at the expense of the maintenance cost. When this cost is included in the objective function, it is not difficult
to make a decision whether or not to perform machine maintenance immediately on the disrupted machines when a disruption occurs by
using our algorithms.

For future research, we suggest several interesting topics as follows:

� Ascertain the computational complexity status of the problem Pm;1j r�a;M=NM;DE; PMDj EðPn
j ¼ 1 CjÞ.� Design efficient constant ratio approximation algorithms for the problems under consideration.

� Extend our model to the case where the objective is to determine the optimal maintenance starting time and optimal schedule to
minimize the expected total completion time of the jobs.
lts.

Complexity Reference

NM;DE; PDRjEðPn
j ¼ 1 CjÞ NP-hard in the strong sense Levin et al. [17]

DE; PDRjEðPn
j ¼ 1 CjÞ NP-hard in the ordinary sense Lee and Liman [14]

Oðnr2ιTPmþ ιÞ: DP if ζ0a0 Theorem 4.4

OðnrιTPmÞ: DP if ζ0 ¼ 0 Theorem 4.4

O
n2mþ3Lmþ1

εmþ1

 !
: FPTAS if ζ0 ¼ 0 and ι¼ 1

Theorem 4.10

;DE; PDRjEðPn
j ¼ 1 CjÞ NP-hard in the ordinary sense Lee and Liman [14]

Oðnr2ιTPðsþ1ÞιTPm� ιÞ: DP if ζ0a0 Theorem 4.7

OðnrιTPsιTPm� ιÞ: DP if ζ0 ¼ 0 Theorem 4.7

O
n2ðs�1Þιþ2mþ3Lðs�1Þιþmþ1

εðs�1Þιþmþ1

 !
: FPTAS if ζ0 ¼ 0 and ι¼ 1

Theorem 4.11

E; PDRjEðPn
j ¼ 1 CjÞ NP-hard in the ordinary sense if ιZ2; open if ι¼ 1 Lee and Yu [16]

Oðnιþ1r2ιTPmþ ιÞ: DP if ζ0a0 Theorem 5.3

Oðnιþ1rιTPmÞ: DP if ζ0 ¼ 0 Theorem 5.3

DE; PDRjEðPn
j ¼ 1 CjÞ NP-hard in the ordinary sense if ιZ2; open if ι¼ 1 Lee and Yu [16]

Oðnιþ1r2ιTPðsþ1ÞιTPm� ιÞ: DP if ζ0a0 Theorem 5.4

Oðnιþ1r2ιTPsιTPm� ιÞ: DP if ζ0 ¼ 0 Theorem 5.4

his article as: Yin Y, et al. Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
://dx.doi.org/10.1016/j.omega.2016.07.006i

http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎10
� Extend our model to the case where the disruption starting time is random that follows a given probability distribution.
� Extend our model to different machine environments, e.g., the flow shop.
Acknowledgements

We thank the editor, an associate editor, and anonymous referees for their helpful comments on earlier versions of our paper. Yin was
supported in part by the National Natural Science Foundation of China (Nos. 11561036 and 71301022) and the Personnel Training Fund of
Kunming University of Science and Technology under grant number KKSY201407098; and Cheng was supported in part by The Hong Kong
Polytechnic University under the Fung Yiu King – Wing Hang Bank Endowed Professorship in Business Administration.
Appendix A
Proof of Lemma 4.8. We prove the lemma by induction on j. It is clear that the lemma holds for j¼1. As the induction hypothesis, we
assume that the lemma holds for any j¼ k�1, i.e., for any eliminated state ðu1;u2; q1; f ÞAF ðk�1Þ, there exists a state ðfu1 ;fu2 ;fq1 ;ef Þ such thatfu1 ru1, fu2 rδk�1u2, fq1 rδk�1q1, and ef rδk�1f . We show that the lemma holds for j¼k.

Consider an arbitrary state ðu1;u2; q1; f ÞAF ðkÞ. First, we assume that job Jj finishes processing no later than r on machine M1 in the
corresponding partial schedule. Then there must be u1rr by the constraint. While implementing algorithm NRMDPDAAε, the state ðu1;

u2; q1; f Þ is constructed from ððu1�pjÞ=ð1þpjaÞ;u2; q1; f �u1ÞAF ðk�1Þ. According to the induction hypothesis, there exists a state ðcu1 ;cu2 ;cq1 ;bf ÞAF ðk�1Þ such that cu1 r ðu1�pjÞ=ð1þpjaÞ, cu2 rδk�1u2, cq1 rδk�1q1, and bf rδk�1ðf �u1Þ. Sincecu1 þpjð1þacu1 Þ ¼ ðcu1 ð1þpjaÞþpjÞru1rr;

the state ðcu1 þpjð1þacu1 Þ;cu2 ;cq1 ;bf þcu1 þpjð1þacu1 ÞÞ is generated during the state generation process. However, this state may be elimi-
nated by another state ðfu1 ;fu2 ;fq1 ;ef Þ through the elimination rules in algorithm NRMDPDAAε. If it is eliminated by ðfu1 ;fu2 ;fq1 ;ef Þ through
elimination rule (1), we have
(a) fu1 rcu1 þpjð1þacu1 Þru1;

(b) fu2 rδcu2 rδku2,
(c) fq1 rδcq1 rδkq1, and
(d) ef rδðbf þcu1 þpjð1þacu1 ÞÞrδðδk�1ðf �u1Þþu1Þrδδk�1ðf �u1þu1Þ ¼ δkf .

Otherwise, by the above proof, we have fu1 ¼cu1 þpjð1þacu1 Þru1; fu2 rcu2 rδcu2 rδku2, fq1 rcq1 rδcq1 rδkq1, andef rbf þcu1 þpjð1þacu1 Þrδk�1f rδkf .
It follows that the induction hypothesis holds for j¼k when job Jj finishes processing no later than r on machine M1 in the corre-

sponding partial schedule.
Now, we turn to the case where job Jj finishes processing after r on machine M1 in the corresponding partial schedule.

While implementing algorithm NRMDPDAAε, the state ðu1;u2; q1; f Þ is constructed from ðu1;u2; ðq1�pjÞ=ð1þpjaÞ; f �Ps
γ ¼ 1 ζγ

ðrþmaxfγ; κgþq1ÞÞAF ðk�1Þ. According to the induction hypothesis, there exists a state ðcu1 ;cu2 ;cq1 ;bf ÞAF ðk�1Þ such that cu1 ru1, cu2 rδk�1u2,cq1 rδk�1ðq1�pjÞ=ð1þpjaÞ, and bf rδk�1ðf �Ps
γ ¼ 1 ζγðrþmaxfγ; κgþq1ÞÞ. During the state generation process, the state ðcu1 ;cu2 ;cq1 þpjð1þacq1 Þ;bf þPs

γ ¼ 1 ζγðrþmaxfγ; κgþcq1 þpjð1þacq1 ÞÞÞ is generated. However, this state may be eliminated by another state ðfu1 ;fu2 ;fq1 ;ef Þ through the
elimination rules in algorithm NRMDPDAAε. If it is eliminated by ðfu1 ;fu2 ;fq1 ;ef Þ through elimination rule (1), we have
(a) fu1 rcu1 ru1;

(b) fu2 rδcu2 rδku2,
(c) fq1 rδðcq1 þpjð1þacq1 ÞÞ ¼ δðpjþcq1 ð1þpjaÞÞrδðpjþð1þpjaÞδk�1ðq1�pjÞ=ð1þpjaÞÞ

¼ δðpjþδk�1ðq1�pjÞÞrδδk�1ðpjþðq1�pjÞÞ ¼ δkq1;

and

(d) ef rδ bf þ Xs
γ ¼ 1

ζγðrþmaxfγ; κgþcq1 þpjð1þacq1 ÞÞ
0@ 1A

rδ δk�1 f �
Xs
γ ¼ 1

ζγ rþmaxfγ; κgþq1
� �0@ 1A0@

þ
Xs
γ ¼ 1

ζγðrþmaxfγ; κgþcq1 þpjð1þacq1 ÞÞ
1A

rδ δk�1 f �
Xs
γ ¼ 1

ζγðrþmaxfγ; κgþq1Þ
0@ 1A0@
Please cite this article as: Yin Y, et al. Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
(2016), http://dx.doi.org/10.1016/j.omega.2016.07.006i

http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

þ
Xs

ζγðrþmaxfγ; κgþδk�1q1Þ
1A

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 11
γ ¼ 1

rδ δk�1 f �
Xs
γ ¼ 1

ζγðrþmaxfγ; κgþq1Þ
0@ 1A0@

þδk�1 Xs
γ ¼ 1

ζγðrþmaxfγ; κgþq1Þ
1A0@ 1A¼ δkf :

Otherwise, by the above proof, we have fu1 ¼cu1 ru1; fu2 rcu2 rδcu2 rδku2, fq1 rcq1 þpjð1þacq1 Þrδðcq1 þpjð1þacq1 ÞÞrδkq1, andef rbf þPs
γ ¼ 1 ζγðrþmaxfγ; κgþcq1 þpjð1þacq1 ÞÞrδk�1f rδkf .

It follows that the induction hypothesis holds for j¼kwhen job Jj finishes processing after r on machine M1 in the corresponding partial
schedule.

Finally, we consider the case where job Jj is scheduled on machine M2 in the corresponding partial schedule. While implementing
algorithm NRMDPDAAε, the state ðu1;u2; q1; f Þ is constructed from ðu1; ðu2�pjÞ=ð1þpjaÞ; q1; f �u2ÞAF ðk�1Þ. According to the induction

hypothesis, there exists a state ðcu1 ;cu2 ;cq1 ;bf ÞAF ðk�1Þ such that cu1 ru1, cu2 rδk�1ðu2�pjÞ=ð1þpjaÞ, cq1 rδk�1q1, and bf rδk�1ðf �u2Þ.
During the state generation process, the state ðcu1 ;cu2 þpjð1þacu2 Þ;cq1 ;bf þcu2 þpjð1þacu2 ÞÞ is generated. However, this state may be elimi-

nated by another state ðfu1 ;fu2 ;fq1 ;ef Þ through the elimination rules in algorithm NRMDPDAAε. If it is eliminated by ðfu1 ;fu2 ;fq1 ;ef Þ through
elimination rule (1), we have
(a) fu1 rcu1 ru1;

(b) fu2 rδðcu2 þpjð1þacu2 Þ ¼ δðpjþcu2 ð1þpjaÞÞrδðpjþð1þpjaÞδk�1ðqu2�pjÞ=ð1þpjaÞÞ
¼ δðpjþδk�1ðu2�pjÞÞrδδk�1ðpjþðu2�pjÞÞ ¼ δku2;

(c) fq1 rδfq1 rδδk�1q1 ¼ δkq1, and

(d) ef rδðbf þcu2 þpjð1þacu2 ÞÞ
rδðδk�1ðf �u2Þþcu2 þpjð1þacu2 ÞÞ
rδðδk�1ðf �u2Þþδk�1u2Þ ¼ δkf :

Otherwise, by the above proof, we have fu1 ¼cu1 ru1; fu2 rcu2 þpjð1þacu2 Þrδðcu2 þpjð1þacu2 ÞÞrδku2, fq1 rcq1 rδcq1 rδkq1, andef rbf þcu2 þpjð1þacu2 Þrδk�1f rδkf .

It follows that the induction hypothesis holds for j¼k when job Jj is scheduled on machine M2 in the corresponding partial schedule.
Thus, the induction hypothesis holds in each case and the result follows. □
References

[1] Bean JC, Birge JR, Mittenthal J, Noon CE. Matchup scheduling with multiple resources, release dates and disruptions. Operations Research 1991;39:470–83.
[2] Birge J, Glazebrook KD. Assessing the effects of machine breakdowns in stochastic scheduling. Operations Research Letters 1988;7:267–71.
[3] Camci F. Maintenance scheduling of geographically distributed assets with prognostics information. European Journal of Operational Research 2015;245:506–16.
[4] Chen JS. Optimization models for the machine scheduling problem with a single flexible maintenance activity. Engineering Optimization 2006;38:53–71.
[5] Finke G, Gara-Ali A, Espinouse M-L, Jost V, Moncel J. Unified matrix approach to solve production-maintenance problems on a single machine. Omega, http://dx.doi.org/

10.1016/j.omega.2016.02.005.
[6] Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG. Optimization and approximation in deterministic machine scheduling: a survey. Annals of Discrete Mathematics

1979;5:287–326.
[7] Hall NG, Potts CN. Rescheduling for job unavailability. Operations Research 2010;58:746–55.
[8] Ji M, He Y, Cheng TCE. Scheduling linear deteriorating jobs with an availability constraint on a single machine. Theoretical Computer Science 2006;362:115–26.
[9] Kacem I. Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval. Computers & Industrial

Engineering 2008;54:401–10.
[10] Kacem I. Approximation algorithms for makespan minimization with positive tails on a single machine with a fixed nonavailability interval. Journal of Combinatorial

Optimization 2009;17:117–33.
[11] Kacem I, Levner E. An improved approximation scheme for scheduling a maintenance and proportional deteriorating jobs. Journal of Industrial and Management

Optimization 2016;1:811–7.
[12] Lee C-Y. Machine scheduling with an availability constraint. Journal of Global Optimization 1996;9:363–84.
[13] Lee C-Y, Lei L, Pinedo M. Current trends in deterministic scheduling. Annals of Operations Research 1997;70:1–41.
[14] Lee C-Y, Liman SD. Single machine flow-time scheduling with scheduled maintenance. Acta Informatica 1992;29:375–82.
[15] Lee C-Y, Yu G. Single machine scheduling under potential disruption. Operations Research Letters 2007;35:541–8.
[16] Lee C-Y, Yu G. Parallel-machine scheduling under potential disruption. Optimization Letters 2008;2:27–37.
[17] Levin A, Mosheiov G, Sarig A. Scheduling a maintenance activity on parallel identical machines. Naval Research Logistics 2009;56:33–41.
[18] Luo W, Liu F. On single-machine scheduling with workload-dependent maintenance duration. Omega, http://dx.doi.org/10.1016/j.omega.2016.06.008.
[19] Ma Y, Chu C, Zuo C. A survey of scheduling with deterministic machine availability constraints. Computers & Industrial Engineering 2010;58:199–211.
[20] Mor B, Mosheiov G. Batch scheduling with a rate-modifying maintenance activity to minimize total flowtime. International Journal of Production Economics

2014;153:238–42.
[21] Rustogi K, Strusevich VA. Single machine scheduling with general positional deterioration and rate-modifying maintenance. Omega 2012;40:791–804.
[22] Rustogi K, Strusevich VA. Combining time and position dependent effects on a single machine subject to rate-modifying activities. Omega 2014;42:166–78.
Please cite this article as: Yin Y, et al. Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
(2016), http://dx.doi.org/10.1016/j.omega.2016.07.006i

http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref1
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref1
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref2
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref2
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref3
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref3
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref4
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref4
dx.doi.org/10.1016/j.omega.2016.02.005
dx.doi.org/10.1016/j.omega.2016.02.005
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref6
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref6
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref6
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref7
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref7
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref8
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref8
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref9
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref9
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref9
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref9
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref10
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref10
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref10
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref11
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref11
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref11
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref12
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref12
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref13
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref13
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref14
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref14
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref15
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref15
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref16
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref16
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref17
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref17
dx.doi.org/10.1016/j.omega.2016.06.008
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref19
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref19
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref19
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref20
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref20
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref20
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref21
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref21
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref22
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref22
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

Y. Yin et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎12
[23] Sanlaville E, Schmidt G. Machine scheduling with availability constraints. Acta Informatica 1998;35:795–811.
[24] Sahni SK. Algorithms for scheduling independent tasks. Journal of the ACM 1976;23(1):116–27.
[25] Schmidt G. Scheduling with limited machine availability. European Journal of Operational Research 2000;121:1–15.
[26] Valdez-Flores C, Feldman RM. A survey of preventive maintenance models for stochastically deteriorating single-unit systems. Naval Research Logistics 1989;36:419–46.
[27] Wang JB, Cheng TCE. Scheduling problems with the effects of deterioration and learning. Asia-Pacific Journal of Operational Research 2007;24(2):245–61.
[28] Xu D, Wan L, Liu A, Yang DL. Single machine total completion time scheduling problem with workload-dependent maintenance duration. Omega 2015;52:101–6.
[29] Yang DL, Yang SJ. Unrelated parallel-machine scheduling problems with multiple rate-modifying activities. Information Sciences 2013;235:280–6.
[30] Yang SJ, Yang DL, Cheng TCE. Single-machine due-window assignment and scheduling with job-dependent aging effects and deteriorating maintenance. Computers and

Operations Research 2010;37:1510–4.
[31] Yin Y, Wang DJ, Cheng TCE. Rescheduling on identical parallel machines with machine disruptions to minimize total completion time. European Journal of Operational

Research 2016;252:737–49.
[32] Yin Y, Wu W-H, Cheng TCE, Wu C-C. Due date assignment and single-machine scheduling with generalized positional deteriorating jobs and deteriorating multi-

maintenance activities. International Journal of Production Research 2014;52:2311–26.
[33] Yin Y, Xu J, Cheng TCE, Wu C-C, Wang DJ. Approximation schemes for single-machine scheduling with a fixed maintenance activity to minimize the total amount of late

work. Naval Research Logistics 2016;63:172–83.
[34] Yin Y, Ye D, Zhang G. Single machine batch scheduling to minimize the sum of total flow time and batch delivery cost with an unavailability interval. Information

Sciences 2014;274:310–22.
Please cite this article as: Yin Y, et al. Parallel-machine scheduling of deteriorating jobs with potential machine disruptions. Omega
(2016), http://dx.doi.org/10.1016/j.omega.2016.07.006i

http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref23
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref23
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref24
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref24
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref25
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref25
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref26
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref26
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref27
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref27
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref28
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref28
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref29
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref29
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref30
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref30
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref30
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref31
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref31
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref31
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref32
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref32
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref32
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref33
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref33
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref33
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref34
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref34
http://refhub.elsevier.com/S0305-0483(16)30451-0/sbref34
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006
http://dx.doi.org/10.1016/j.omega.2016.07.006

	Parallel-machine scheduling of deteriorating jobs with potential machine disruptions
	Introduction
	Problem formulation
	Preliminary analysis
	The non-resumable case
	Pseudo-polynomial-time algorithms
	The problem Pm,ι|nr-a,M,DE,PDR| E(sumjequal1nCj)
	The problem Pm,ι|nr-a,NM,DE,PDR| E(sumjequal1nCj)

	FPTASs for the case where ιequal1 and ζ0equal0

	The resumable case
	The problem Pm,ι|r-a,M,DE,PDR| E(sumjequal1nCj)
	The problem Pm,ι|r-a,NM,DE,PDR| E(sumjequal1nCj)

	Conclusions
	Acknowledgements
	References

