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Numerous forecast combination techniques have been proposed. However, these do not systematically outper-
form a simple average (SA) of forecasts in empirical studies. Although it is known that this is due to instability
of learned weights, managers still have little guidance on how to solve this “forecast combination puzzle”,
i.e., which combination method to choose in specific settings. We introduce a model determining the yet un-
known asymptotic out-of-sample error variance of the two basic combination techniques: SA, where no
weightings are learned, and so-called optimal weights that minimize the in-sample error variance. Using the
model, we derive multi-criteria boundaries (considering training sample size and changes of the parameters
which are estimated for optimal weights) to decide when to choose SA. We present an empirical evaluation
which illustrates how the decision rules can be applied in practice. We find that using the decision rules is supe-
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rior to all other considered combination strategies.
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1. Introduction

The combination of forecasts has been subject to research in eco-
nomics since the pioneering work of Reid (1968) and Bates and
Granger (1969). Numerous studies show that the combination of fore-
casts often results in increased accuracy in comparison to any of the
forecasts alone (Makridakis et al., 1982; Clemen, 1989; Makridakis &
Hibon, 2000; Fildes & Petropoulos, 2015). Various techniques aiming
at deriving a weighting of individual forecasts which minimizes errors
out-of-sample have been proposed.

Bates and Granger (1969) introduced the so-called optimal weights
(OW). The weights are determined in a least squares estimation using
available past forecast error data. They are referred to as optimal as
they minimize the in-sample error variance; by design, OW outper-
forms any other linear weighting approach in-sample. However, the
out-of-sample performance is not necessarily superior since the esti-
mated weights are strongly fitted to the training data and are conse-
quently subject to sampling-based variance.

As a consequence, alternative weight estimation approaches have
been proposed. Clemen (1989); Diebold and Lopez (1996), and
Timmermann (2006) provided thorough literature reviews of the vari-
ous approaches to forecast combination. Approaches include variants
of optimal weights constrained to the interval [0,1], shrinkage towards
the average, Bayesian outperformance probabilities, and several more
approaches. Each of the alternative approaches outperformed OW as
well as other approaches out-of-sample in some evaluations, but are
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outperformed in others. As no model exists to decide which of the ap-
proaches to choose and empirical results are ambiguous, there is no
clear consensus on which forecast combination method can be expected
to perform best in a particular situation.

A surprising observation of the reviews was, however, that amongst
the approaches under study, the simple average (SA) was not systemat-
ically outperformed by any other approach in out-of-sample evalua-
tions. Stock and Watson (2004) coined the term “forecast combination
puzzle” for this phenomenon. Besides model-based forecasting, SA is
also competitive when combining expert predictions. For instance
Genre, Kenny, Meyler, and Timmermann (2013) found that for forecasts
of unemployment rate and GDP growth, only few combination methods
outperform SA, while their results caution against any assumption that
the identified improvements would persist in the future.

The forecast combination puzzle is in line with the more general
phenomenon that simpler forecasting procedures usually outperform
more complex techniques. Green and Armstrong (2015) reviewed 97
studies comparing simple and complex methods, concluding that
“none of the papers provide a balance of evidence that complexity im-
proves the accuracy of forecasts out-of-sample”. Simplicity in forecast-
ing procedures corresponds to using models where few different cues
are used and/or few parameters have to be estimated. Likewise, in fore-
cast combination, where weights of forecasts instead of cues are chosen,
SA is the simplest model as - in contrast to more complex models such
as OW - no parameters are estimated at all.

Brighton and Gigerenzer (2015) argued that the benefits of simplic-
ity are often overlooked because of a “bias bias”, where the importance
of the bias component of the error is inflated. In contrast, the variance
component, resulting from oversensitivity to different samples from
the same population, is often ignored. Simpler approaches are typically
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more robust against different samples as the variance component is di-
rectly related to model complexity.

Simple averaging strategies have also been shown to be highly com-
petitive in applications besides forecast combination. For instance, for
venture capital decisions, Woike, Hoffrage, and Petty (2015) found
that the decision quality when using equally weighted binary cues is
comparable to more complex strategies, but even more robust. Graefe
(2015) argued that estimating coefficients (weights) of predictors in
multivariate models is only reasonable for large and reliable datasets
and few predictors. For small and noisy datasets and a large number
of predictors, the authors argued that including all relevant variables
is more important than the weighting.

In forecast combination, the robustness of SA has been an important
research topic and a considerable body of literature examines the fore-
cast combination puzzle theoretically and empirically. As will be
discussed in Section 2, results indicate that the robustness of SA stems
from unstable weight estimates from small training samples or diverg-
ing forecast error characteristics between the training and the evalua-
tion samples. In a broader sense, these findings support the “‘Golden
Rule of Forecasting”, stating that forecasts are to be conservative
(Armstrong, Green, & Graefe, 2015). That is because increasing asym-
metry of weights results in higher sensitivity to the results of one indi-
vidual forecast that is less counterbalanced by others.

Although these qualitative relations are known, managers still have
little guidance on which method to choose in a particular setting. More
specifically, we are not aware of any comprehensive quantitative deci-
sion guidance on when to choose OW or SA.

In this paper, we introduce a model for the expected out-of-sample
error variance of a forecast combination, in particular when using SA
and OW. Using the model, we derive multi-criteria decision boundaries
determining whether OW or SA will lead to lower asymptotic error
variance in a specific setting. Practitioners can furthermore use the
thresholds to assess the robustness of a decision. We show that existing
empirical guidelines can largely be explained by the model. Further-
more, in an empirical study with data from the M3 competition, we
demonstrate that the recommendations and the thresholds can be
used to implement successful combination decision strategies in practi-
cal settings.

2. Related work

A substantial amount of research has been conducted on the perfor-
mance and robustness of SA in comparison to other forecast combina-
tion methods. A basic and intuitive finding is that the performance of
SA depends on the ratio of the error variances of the forecasts as well
as on their correlation. SA can be expected to perform well in case of
similar error variances and low or medium error correlations (Bunn,
1985; Gupta & Wilton, 1987), since the weights which are optimal in
the evaluation sample then approach equal weights. However, as
shown by Dickinson (1973); Winkler and Clemen (1992), and Smith
and Wallis (2009), SA can outperform other methods even for differing
error variances or strongly correlated errors because of instable weight
estimates. Elliott (2011) found that gains from using OW instead of SA
are often too small to balance estimation errors. Claeskens, Magnus,
Vasnev, and Wang (2016) showed that weight estimation can even in-
troduce biases in combinations of unbiased forecasts.

Monte Carlo simulations by Kang (1986) and Gupta and Wilton
(1987) confirmed that unstable weight estimates are key to the high
competitiveness of SA. Evaluations on real-world data, for instance for
U.S. money supply forecasts (Figlewski & Urich, 1983) or GNP forecasts
(Kang, 1986; Clemen & Winkler, 1986) showed similar results.

Some guidelines to help decision-makers in selecting a combination
method have been proposed. In the case of two forecasts, Schmittlein,
Kim, and Morrison (1990) recommended SA for small sample sizes and
for errors with similar variances and weak correlation. De Menezes,
Bunn, and Taylor (2000) recommended SA only for approximately

equal error variances and OW for large samples and low error correlation.
In other cases, they suggested using outperformance probabilities (with
small samples and unequal error variances), optimal weights constrained
to the interval [0,1] (with medium or large samples and correlation over
0.5), or OW calculated with a correlation of zero instead of the estimated
correlation, i.e., assuming uncorrelated errors (with medium sample sizes
and correlations below 0.5). Thresholds for similarity/dissimilarity of
error variances and sample size were, however, not quantified.

Both guidelines assume equal characteristics (error variances and
covariances) of known training and unknown (future) observations.
However, these characteristics might change over time because of
structural changes in time series, which might influence the perfor-
mance of OW and SA very differently. Miller, Clemen, and Winkler
(1992) showed that SA can, in comparison to OW and other approaches,
benefit from several types of structural breaks such as location shifts.
Diebold and Pauly (1987) found that structural changes generally tend
to impact complex approaches more than simpler ones as the estimated
weights tend to increasingly differ from the ones that would minimize
error in the evaluation sample.

In this paper, in contrast to existing guidelines, we propose an ana-
lytical model to determine whether SA will asymptotically outperform
OW in a specific setting. We derive decision rules based on statistical
considerations that do not only consider sample size and variance/
covariance estimates, but also how much those values are allowed
to divergence between training and evaluation sample for a decision
to stay optimal. These thresholds are key to assessing the robustness
of a decision but have received scant attention in the literature so far.

3. Forecast combination

Given two forecasts y, and y for an event y, a combined forecast can
be calculated by weighting both forecasts. The most common approach
is a linear combination of the forecasts using weight w to derive a novel
forecast y = wy, + (1—w)yp. Assuming unbiased individual forecasts
with errors ey = y—y,4 ~ N(0,03), eg = y—yz ~ N(0,03%) and a corre-
lation p between e4 and eg, Bates and Granger (1969) proposed optimal
weights (OW) minimizing the error variance of y in-sample. The orig-
inal definition as well as an alternative one using the ratio of error stan-
dard deviations ¢ =0,/0p and the assumption o,=1 (which, in
combination, does not change the estimate) are presented in Eq. (1).

_ 03 —p0os03 __ 1-po
0% + 05200408 1+¢*—2pd

)

The in-sample error variance of a forecast combination with differ-
ent weights is illustrated in Fig. 1. The individual error variances 03 =
1 and 07 =4 are indicated by the dotted horizontal lines. The graph
shows the error variance resulting from combining forecasts with OW,
SA, and with static weights set to 1/¢ (2:1 in the example).

When using OW, the combined error variance never exceeds the
lower of the two error variances. In contrast, the combined error vari-
ances with SA and a static 2:1 weighting are lowest for an error correla-
tion of — 1 and linearly increase with error correlation. At some level of
error correlation, the combined error variance exceeds the one of the
better forecast (07 = 1, in our case). However, the combined error var-
iance still never exceeds the higher error variance — in our case o3 =A4.
In summary, the difference between error variance with fixed weights
(SAor2:1) and OW is small for strong negative correlations and strictly
increases with error correlation.

While OW combination leads to lower in-sample error variance than
any other weighting scheme (especially weightings that ignore error
variances and error correlation in the training data), we reconsider
that SA often outperforms OW out-of-sample, indicating that the esti-
mated weights do not always fit unknown observations well.
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Fig. 1. The plot shows the in-sample error variance of different combinations of two
forecasts (with error variances 03 = 1,03 =4) for different error correlations. Optimal
weights (dashed line) always performs at least as well as the better forecast (lower
dotted line). Error variances for a SA or 2:1 combination strongly depend on the error
correlation.

Generally, issues with OW can be decomposed into sampling issues
due to small training samples and changes of ¢ or p between training
and evaluation sample. In the example above, as SA and OW have com-
parable in-sample error variances for negative error correlations, small
errors in weight estimations can easily negate the benefits of OW in
case of low and negative error correlations. For (strong) positive error
correlations, weights learned with OW are highly sensitive to error cor-
relation, where small correlation estimation errors can dramatically in-
crease the error variance of the combination. Consider, for instance, the
example above and error correlations approaching + 1. With OW, we
obtain a weight of 2 for y, (and consequently — 1 for y). The weight
learned with OW strongly decreases with decreasing error correlation,
for example to 1.5 when error correlation decreases to 0.9. As a result,
the potential benefits from using OW can easily be eliminated by
small changes in error variance or error correlation between the two
samples.

We will now introduce a statistical model to determine the expected
out-of-sample error variance of linear combinations of forecasts, with
OW and SA as special cases. Using the model, one can anticipate wheth-
er OW will (asymptotically) lead to lower error variance compared to
SA in order to decide which of both combination techniques to use.
We will derive multi-criteria decision boundaries regarding training
sample size, ratio of error standard deviations, and error correlation as
well as regarding the deviations of error variances and correlation be-
tween the training and evaluation sets.

4. Error variance of forecast combination and decision boundaries

The training sample (T) and the evaluation sample (E) are two inde-
pendent bivariate samples of forecast errors. T has size n, a ratio of
error standard deviations ¢rand error correlation pr. Optimal weights w
are estimated from T and are then applied to E (with a potentially dif-
ferent ratio of error standard deviations ¢ and error correlation pg).
The error of jic in E is e£ = wek + (1—w)ek with E[ef] =0. For our theo-
retical analyses, we assume 04 =1 and focus on ¢, as this reduces one
parameter and does not influence a decision between OW and SA. We
denote the error variance of y (in E) by . § depends on the character-
istics of E in terms of ¢; and pg, as well as on the expectation and vari-
ance of the weights estimated on the training set T. § is computed as

shown in Eq. (2). The step-by-step development of § is provided in
Appendix A.

2
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For Bates and Granger's optimal weights, OW, E[W] = ——————
1+ ¢T_2pT¢T
and, as shown by (Winkler & Clemen, 1992),

¢7(1—-p3)
(n=3)(1+ ¢ —2pry)
gives Eon, the expected error variance of OW in E shown in Eq. (3).

Varjw] =

5. Plugging both into Eq. (2) directly
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For SA, we have E[w] = 0.5 and Var[w] = 0 by definition. Plugging
both into Eq. (2) and simplifying gives &s,, the expected error variance
of SA in E shown in Eq. (4).

_ 1+ b+ 2ppd
Esaldp, pp) = 44)% (4)

Assuming ¢g and pg are known, the decision rule would simply be to
choose SA instead of OW if (and only if) o> Esa. However, in practical
settings the parameters ¢ and pg are unknown (and can differ from ¢y
and probserved in the training data), which prevents a straight-forward
application of this decision rule.

We proceed as follows. We will relate Egs. (3) and (4) to derive crit-
ical parameter values (thresholds) for deciding whether OW can be ex-
pected to outperform SA. This allows us to define minimum margins to
the thresholds for selecting OW, which provides a definable level of ro-
bustness for a decision of choosing OW. First, we derive the critical
training sample size n, assuming no changes of ¢ and p between training
and evaluation sample. Second, we derive critical values for ¢ (assum-
ing pr=pg) and pg (assuming ¢r= ¢g). Thresholds for both ¢ and pg
are then used to define the multi-criteria decision boundaries. Third,
we will relate the derived thresholds to ¢ and pr to analyze the maxi-
mum changes of both parameters - our margins- for a decision to
stay optimal.

4.1. Threshold for training sample size

Small sample sizes of T can lead to large parameter estimation errors
and higher error variance with OW in comparison to SA. To determine
the critical training sample size nn depending on ¢ =¢r=dgand p=
pr=pg, we set Eow(n, ¢, b, p, p) = & (b, p) and solve for the critical
sample size 1 shown in Eq. (5). The derivation of Eq. (5) is presented
in Appendix B.

n= K;Z)z(lwz)ﬁl )

OW can be expected to perform at least as well as SA for all training
samples with at least i1 observations, given unchanged error variances
and error correlation.




3954 S.M. Blanc, T. Setzer / Journal of Business Research 69 (2016) 3951-3962

4.2. Thresholds for changes in error correlation and error variances

We now derive the thresholds for ¢ and pg that separate decision
for OW or SA. We will keep one of both characteristics fixed and deter-
mine a threshold for the other.

Regarding changes in error correlation: assuming error variances do
not change and the training sample is large, OW can be expected to per-
form better than SA in case of unchanged error correlation. An increase
in error correlation can also be expected to be beneficial for OW combi-
nation since a higher error correlation would demand an even stronger
weighting. That is because the weights which are optimal in the evalu-
ation sample would then be further away from equal weights than the
estimated OW. Hence, only a decreasing error correlation can make SA
the better choice.

By keeping ¢ = ¢r= ¢ fixed and solving &o (1, b, b, pr, PF) =
Esa(d, pg) for pg, we derive the critical value for pg shown in Eq.
(6). For the complete derivation see Appendix C.

(1=62) (6*~4pr* + dor6—1) (n1—3) + 467 (1 + 7 (1—p})
86*(1=p3) + 20(1-47) (n—3)

(6)

Note that some values of prand ¢ can lead to pg<—1. As correlations
below — 1 do not exist, there is no critical value in these cases and OW
combination is robust against all kinds of changes in error correlation.
We provide a detailed discussion of Eq. (6) in the next section.

Regarding changes in error variances: as discussed earlier in this ar-
ticle, SA is hard to beat for increasingly similar error variances, especially
for ¢ =~ 1, Thus, a change of the ratio of error standard deviations from
¢rto ¢ towards one can lead to SA performing better than OW. In con-
trast, if the difference in error variances increases, OW is still beneficial.
Setting p = pr=pg and solving Eow (1, br, Pg, P, P) = Esa(Pe, p) for g
yields the critical value shown in Eq. (7), where, for reasons of conve-
nience, we set 1); =3 + ¢7 — 4pdr, 1o = 1+ 3¢7 — 4pdpr, ¥ = ¢7(1—p?)
and m=(¢?—1)(n—3). The derivation of Eq. (7) is provided in
Appendix D.

_ Apyp(¢P—1)m= /p2(4w+ (63=1)m)" = (4g—nym) (4 + nm)
£ Ap—mym

(7)

We will provide a detailed discussion and illustrations of Eq. (7) in
the next section, but will now already highlight one surprising conclu-

sion that can be drawn from Eq. (7). If we find that 4pys + p(¢? —1)m2

\/p2(4¢f + (¢%—1)m)2—(4¢1—n1m)(4¢1 +1m,m), two different valid,
i.e., positive, solutions exist; hence, two different thresholds exist
for ¢ The first solution is reached by changing ¢ towards 1. The sec-
ond solution, however, is reached when ¢ decreases to a value close
to zero, in which case OW will also lead to higher asymptotic error
than SA. While the first solution is expected and in line with our pre-
vious discussion, the second solution is less intuitive. This second
threshold can be explained by estimated OW to the weights which
are optimal in the evaluation sample. For example, assuming pr=
pe=0.9 and ¢7=0.6 decreasing to ¢=0.01, the OW estimate is
1.643, while the weight minimizing the error variance in the evalua-
tion sample is 1.009 = 1. In this example, equal weights are “closer”
than the OW estimate - even though ¢ decreased - which is general-
ly beneficial for OW.

Since both sampling issues due to small sample sizes and changing ¢
or p parameters lead to weight estimates which are not well fit to the
evaluation sample, we will henceforth isolate the effect of diverging
sample characteristics from sampling-based weight estimation errors.

For this purpose, we assume an infinitely large training sample and an-
alyze the derived critical values for ¢ and p under n— <, which we will

refer to as Py and &: The thresholds are shown in Egs. (8) and (9).

¢ +1
% (8)

PE = %i_[gf)s =2pr—

g = lim ¢
p(1-et) = \/p2 (1 —¢%)2 + (3+ dF—4pdr) (1+ 367 —4pr)
- 3+ ¢r—4pdr

9

4.3. lllustration and discussion

We now illustrate and discuss the critical values derived in the pre-
vious section, before we compare them to results and recommendations
from the literature. For this purpose, we assume that ¢r<1, which can
always be achieved by switching the two forecasts. The critical training
sample size nis depicted in Fig. 2 as a function of p and for different
¢ between 0.5 and 0.9. First, the figure shows that n increases with
¢ — the training sample size required to put OW in favor of SA increases
with the difference between error variances. Second, for fixed ¢, the
higher the absolute value of p, the smaller the required training sample.
For example, choosing OW requires the largest training samples with
uncorrelated errors.

The first finding is consistent with the literature and intuitively
clear; the closer the error variances of the forecasts, the more training
observations are required to ensure that OW (in these cases close to
equal weights) are beneficial. Considering the uncertainty in weight es-
timation, the probability of estimating OW that are more appropriate in
the evaluation sample than SA decreases with increasing ¢. For instance,
for ¢ over 0.8 and uncorrelated errors, a training sample of at least 25
observations is required. For ¢ exceeding 0.9, more than 75 observa-
tions are necessary to favor OW over SA.

The second relationship, that i1 decreases with |p|, can - for positive
error correlations - be directly concluded from Fig. 1. Reconsidering that
a positive error correlation leads to OW exceeding one for one forecast
and a negative weight for the other, fewer observations 1 are required
in the training sample for OW to perform better than SA.

m 05
® 06
A 07
* 038
X 0.9

Fig. 2. Minimal training sample size n to favor OW over SA. Forecasts with ¢ close to 1
require larger training samples. Strong correlation of forecast errors lowers the required
size of the training sample.
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The relationship between 11 and p for negative values of p is less ob-
vious since error variance with SA also decreases with p decreasing from
0 to — 1. However, as also illustrated in Fig. 1, OW differ only slightly
between negative values of p. That makes OW more robust against

small estimation errors of p. In the example in Fig. 1, assuming that ¢, =
0.5,0W arew = 0.714 for p; = —0.5 and w = 0.667 for p; = —1, a dif-
ference in weighting of only 7% as a result of a correlation changing by
0.5. Similarly, estimation errors of ¢ do not lead to large OW differences.
For instance, assuming that p; = —0.95, OW will estimate w = 0.527

with ¢ = 0.9, while ¢ = 0.8 leads to an OW estimated weights
of w=0.557, a difference of only 6%.

The critical change in error correlation, p; —pr (based on the critical
value p; introduced in Eq. (8)), is depicted in Fig. 3 as a function of pr.
For each curve, ¢ is kept constant at a value between 0.5 and 0.9. It is
clear from the figure that only decreases of error correlation are critical
while the stronger the (positive) error correlation, the smaller the crit-
ical change. Furthermore, the different values of ¢ lead to critical chang-
es differing by a constant factor, which is independent of p;. OW is least
robust against changes for prand ¢ close to 1.

Both dependencies are intuitive. As illustrated above, strong positive
error correlations can lead to extreme OW estimates. In these cases,
small decreases of the error correlation result in equal weights being
closer to the weights which are optimal in the evaluation sample. The
reasoning for the increased robustness for lower ¢ is similar: the
lower ¢, the less likely SA performs as well as OW considering the differ-
ing error variances of the forecasts. As a consequence, high changes of p
are required to make OW perform worse than SA.

The critical change of the ratio of error standard deviations, <Z>°Eu —or,
based on Eq. (9), is depicted in Fig. 4 as a function of ¢r. The figure shows
four curves for different values of p between —0.99 and 0.99 (for each
curve we assume equal error correlation in both samples, p =pr=pg).

The critical change in ¢ decreases with increasing ¢rand p. In partic-
ular, with p close to 1 (the 0.99 line) and similar error variances (¢~ 1),
aminimal change in ¢ leads to a better performance with SA in compar-
ison to OW. In contrast, with extreme differences between error vari-
ances, substantial changes in error variances are required to justify a
decision in favor of SA, increasingly so with higher error correlation.

So far we discussed the critical values that a parameter is allowed
to change assuming the other remains constant. To provide further

0.0 4
—0.3 =
0
= 05
CI)_ ® 0.6
% —0.6 = R0
a * 08
X 09
-0.9 —
“1.2 = T I T T
0.00 0.25 0.50 0.75 1.00

PT

Fig. 3. Critical changes of error correlation depending on the error correlation in T and the
ratio of error standard deviations ¢. An OW combination of forecasts which are highly
correlated in T is less robust to changes than a combination of forecasts with weak
correlations. Larger differences in accuracy (lower ¢) between forecasts increase the
robustness of choosing OW.

1.00 —
0.75 -
p
6 m -099
< ® —-05
050~ a0
e .05
X 0.99
0.25
0.00
T I T I T
0.00 0.25 0.50 0.75 1.00
or

Fig. 4. The figure shows critical changes of the ratio of error standard deviations depending
on the ratio in the training sample and on the error correlations. The critical change of ¢
increases with ¢r as well as with p. The robustness of OW consequently strongly
decreases for higher error correlations.

insights, we will now present numerical results for §4 = oy depending
on multiple parameter changes. Results for selected ¢, pr, and n are
depicted in Fig. 5.

Each graph shows critical thresholds (decision boundaries) for
pe— pr and ¢ — ¢r with different combinations of py and ¢r. The
curves in a plot correspond to threshold lines with different numbers
of training observations. A point in each of the plots indicates zero
changes of p and ¢.

For parameter changes exceeding a threshold line SA would be
advantageous. Taking pr=0.9,¢r= 0.6 (plot on the upper-right of the
figure) with n=50 as an example, SA can be expected to perform better
if, for instance, p decreases by 0.22, ¢ increases by 0.28, or p decreases
by 0.2 and ¢ increases by 0.04.

As the curves in Fig. 5 confirm our previous discussions, we will now
focus on interesting issues regarding small sample sizes and high corre-
lations. First, taking pr=0.75,¢r=0.8 as an example, the “no change”
point is on the right-hand sides of the n =10 and n =25 lines. This indi-
cates a too small training sample, making the estimates on the training
sample too unstable and SA the better decision. For these small training
samples, OW would only have lower asymptotic error variance if ¢
and/or p change significantly between training and evaluation sam-
ple in favor of OW. Second, as previously discussed, not only in-
creases but also strong decreases of ¢ lead to lower error variance
with SA than OW. This can be seen in the plots with py=0.9 and low
¢r, where the area of beneficial OW combinations is convex. This result
especially occurs for small sample sizes, again indicating issues with
small samples. Before we study beneficial margins to the decision
boundaries to learn a more robust decision rule, we now first compare
the decision boundaries to recommendations and results in the litera-
ture on forecast combination.

4.4. Comparison to recommendations in Schmittlein et al. (1990)

First, we compare our decision boundaries to the recommendations
in Schmittlein et al. (1990). Based on mean squared errors (MSEs) with
SA and OW observed in Monte Carlo simulations for different combina-
tions of n, ¢, and p, Schmittlein et al. analyzed when to use which com-
bination method. They considered 19 values for p, 20 values for ¢, and
training sample sizes of 10, 25, 50, and 100.

The results of the replicated simulation experiment with 100 runs are
depicted in Fig. 6. The four plots show which of the two models leads to
lower mean MSE across runs per parameter combination. Filled circles
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Fig. 6. Decision boundaries (OW vs. SA) based on (¢,p), for different training sample sizes n. The plots also show which model leads to lower mean MSE in Monte Carlo simulations. The
simulation described in Schmittlein et al. (1990) was replicated and outcomes of our simulations as well as our decision boundaries conform with the findings in Schmittlein et al. (1990).
Our analytically derived decision boundaries separate the classes well, with mis-classifications only very close to the boundary.
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Table 1

Treatments regarding ¢ and p before and after the structural break in the experiments adapted from Miller et al. (1992). The last column shows the critical values for ¢ or p analytically
derived with our model for n=29. For changes of ¢, only the variance increase treatment (second row) in Set 1 is expected to favor SA. The variance decrease treatment in Set 2 has a
changed value only marginally differing from the threshold; SA and OW are thus expected to perform similarly. Regarding changes of p, we expect that the correlation decreases for both

Set 1 and Set 2 as well as the correlation increase for Set 1 are critical.

Set Treatment Initial properties (t<30) Changed property (t>30) Critical value
Set 1 Var. increase p=0.8,=0.949 $=0.728 ¢ =0.846
Var. decrease p=0.8,$=0.728 $=0.949 (j, —0.857
Set 2 Var. increase p=0.8,$=0.837 $=0.624 ¢ =0.884
Var. decrease p=0.8,$=0.624 $=0.837 (], —0.838
Set 1 Cor. increase p=04,$=0.949 p=08 p=0.907
Cor. decrease p=0.8,$=0.949 p=04 p=0.935
Set 2 Cor. increase p=04,$=0.837 p=038 p = 0.403
Cor. decrease p=0.8,$=0.837 p=04 p=0.715

indicate parameter combinations where SA outperformed OW, while
non-filled circles indicate a recommendation for OW.! As a solid line,
we additionally show the decision boundary resulting from our model.

Recommendations given in Schmittlein et al. (1990), for instance to
choose SA if |p|<0.6, $>0.83, and n<10, or if error standard deviations
differ by at most 10% (¢r>0.91), |p|<0.4 and n=25 are all well cap-
tured by the boundaries.

Furthermore, for smaller sample sizes (n = 10 and n = 25), the de-
cision boundary separates both regions precisely, with only few mis-
classifications when the parameter combinations approach the bound-
ary. In these cases, however, the difference between errors with both
combination methods approaches zero with high randomness regard-
ing the sign. The decision boundaries for larger samples sizes of 50
and 100 at the bottom of the figure also separate the cases for and
against SA precisely. Results with higher numbers of simulation runs
(for instance 1000), which are excluded for reasons of brevity, lead to
even more accurate separations.

4.5. Comparing the impact of structural breaks with Miller et al. (1992)

We also compare the derived boundaries to the results of Miller et al.
(1992), who analyzed the impact of breaks in error time series on differ-
ent combination methods. For this purpose, we re-run their simulation
experiments but with two instead of three individual forecasts. In the
experiment, two forecast error time series of length 100 are generated
and combined using SA and OW. The experiments start at time interval
eight, when OW are first estimated on all past error observations. Then,
the size of the training sample is increased and revised OW are estimat-
ed, again on all past observations. At time 30, one characteristic of the
errors (either ¢ or p) increases or decreases from its initial value.
Based on the treatments of Miller et al. (1992), changes of the character-
istics are defined for two basic sets of properties (referred to as Set 1 and
Set 2), as shown in Table 1.

For each set and treatment, the initial values of p and ¢ are shown
together with the changed characteristic after the break at time 30.
Based on the initial characteristics and n = 29, we calculated the critical

values ¢ and p, for which OW and SA can be expected to perform simi-
larly. In most cases this value is the level a characteristic is allowed to
change for OW to remain the better choice afterwards. However, in
the correlation decrease treatment for both sets, this value is the level
the characteristic would have to change to make OW perform at least
as well as SA. Changed characteristics exceeding (or not exceeding, de-
pending on the threshold) the critical value are printed in bold. As a re-
sult, the variance decrease and the correlation increase treatments for
Set 1 as well as the correlation decrease for both sets can be expected
to result in SA performing better than OW. The variance decrease for
Set 2 can be expected to result in very similar performance. It is

! Note that results for equal error variances (¢=1) are missing in the plots in
Schmittlein et al. (1990) leading to slightly differing results.

important to note that OW learns new weights with each (seen) obser-
vation since the training period continuously grows and weights are ad-
justed after the structural break.

The average root mean squared error (RMSE) outcomes of the simu-
lation experiments over 3000 runs are shown per time interval in Fig. 7.
In the figure, the RMSE over all runs is plotted for each time interval
per parameter set and treatment. Curves are smoothed with smoothing
splines for visualization purposes, as done by Miller et al. (1992).

Results indicate that our derived thresholds properly differentiate
between uncritical and critical structural breaks, and show which com-
bination model should be chosen after the break to achieve lower error
variance. All cases where the new value of the changed characteristic is
(in the right direction) far away from the critical value are indeed un-
critical. On the other hand, we observe a higher RMSE for OW after
the critical variance decrease and (with a small difference between SA
and OW) the correlation increase for Set 1 as well as for the critical cor-
relation decrease in both sets.

An interesting case is the variance decrease for Set 2, where the crit-
ical value and the new value of ¢ only differ by 0.001 (approximately
0.1%). In this case, the average RMSE in Fig. 7 directly after the structural
break is indeed very similar for SA and OW.

5. Application of the decision boundaries to real-world data

In this section, we assess the applicability of the proposed decision
rules to empirical data. We use the out-of-sample error variances of SA
and OW estimated using the proposed model and the derived thresholds
to implement different strategies for deciding between SA and OW.

As empirical data set, we use the time series data of the M3 Compe-
tition (Makridakis & Hibon, 2000). We limit our analysis to monthly
time series (1426 of the 3003 time series) to ensure a sufficient length
of the time series. We preprocess the data as follows. First, we merge
the training and test time series data of the competition and then split
the resulting (longer) time series into three separate samples as illus-
trated in Fig. 8. The first 36 months of time series data (sample I) are
used as training data to calibrate two statistical forecasting methods.
As example prediction models, auto-ARIMA (¥,) and Damped Trend Ex-
ponential Smoothing (y5) provided by Hyndman (2015) for (R Core
Team, 2015) are used. Rolling one-month-ahead forecasts are then cal-
culated for all months in samples II and III. Using the resulting errors in
sample II, OWs are estimated. These weights are applied to the forecasts
for the last 24 months (sample III), our evaluation set for which the
error variance is calculated. It should be noted that the size n of sample
Il varies between time series because of different overall time series
lengths. These differences allow analyzing the robustness against
different n.

5.1. Distributions of ¢ and p

To assess whether we can expect to find a superior performance
of SA in comparison to OW at least in some cases, we now analyze
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Fig. 7. Mean RMSE per time interval before and after a break (vertical line) for different parameter sets and treatments. The performance of OW improves before the break as weight
estimates are stabilizing. Immediately after the break, SA outperforms OW in four of the eight cases, as indicated by our critical values. Results of OW and SA are very similar for the

variance decrease treatment in Set 2, as also indicated by the critical value.

the distributions of ¢ and p in sample II. The two plots in Fig. 9
show the respective distributions, with ¢, distributed around 1
with most values close to 1 and p; strongly skewed with most
values also close to 1. Due to the high frequency of values close to 1
for both ¢ and Py, SA can be expected to be preferable in a substantial
number of cases. Decision strategies utilizing the model and the
thresholds introduced in this paper will be evaluated in the next
section.

5.2. Evaluation of decision strategies

As discussed before, the optimal choice between OW and SA would
require knowledge of ¢r and ¢g, which are unknown parameters in em-
pirical settings. The only information available are estimates of the char-
acteristics p and ¢ which are derived from a sample from a population
with prand ér. As already discussed, the estimators p and ¢ will be
almost certainly deviate from the population characteristics of the

I I I
Training Sample ‘Weight Estimation Sample Evaluation Sample
Sample Size 36 n 24
Error Correlation - Pr Pe
Error SD Ratio - o g

Fig. 8. Each of the time series of the M3 Competition is split into three samples. Sample I is only used as training data for two statistical forecasting models. Rolling forecasts (and
corresponding errors) for the second sample (Sample II) are used to derive optimal weights. OW and SA are then applied to combine forecasts in Sample III, the evaluation data set

held out.
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Fig. 9. Distribution of the estimated ratio of error standard deviations and correlation in Sample II. ¢ris centered around 1. pris skewed and most observations are approaching 1.

evaluation sample because of the sampling-related variance and poten-
tial changes from training to evaluation set.

While the sampling-related variance is already penalized in our for-
mulae to calculate the expected out-of-sample error variance, we do not
know how much the estimate differs from the population error charac-
teristics of the evaluation set. This aspect is closely related to structural
changes that can also cause a difference of parameters which can make
SA the better choice and the thresholds can consequently be used. If the
thresholds of a decision in favor of OW are too narrow, a switch to SA
should be considered since small deviations between the available esti-
mates and the population characteristics of the evaluation set could
change the optimal decision. In such cases, a decision for SA - as the
more robust option - is likely to be beneficial.

This is illustrated in Fig. 10, where the expected difference in com-
bined error variance (calculated as difference between Egs. (3) and
(4)) between SA and OW is depicted, depending on changes of p
(upper plots) and ¢ (lower plots), for different values of the other
characteristic.

The upper plots in the figure indicate the asymmetry of expected
error variance between OW and SA by color density, assuming different
¢rincreasing from left (¢r=0.5) to right (ér=0.9), depending on pr
(increasing from zero to one in each of the plots). Reconsidering that a
correlation decrease benefits SA and vice versa, the plots show that
even small decreases in error correlation can result in large differences
regarding the asymptotic error variance for high pr. Especially for simi-
lar error variances (¢r=0.8 and ¢r=0.9), negative deviations from the
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Fig. 10. Difference in expected combined error variance for changes of p (upper plots) and ¢ (bottom plots). In particular in cases with large pr, relatively small decreases of p can easily
result in large disadvantages when using OW instead of SA. On the other hand, small increases (in favor of OW) lead to much lower advantages when using OW instead of SA. An
asymmetric relationship is also observed when ¢ changes, in particular for higher values of ¢, but we observe rather moderate moderate differences in error variance for moderate

changes, except for cases with high values of p.
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horizontal no-change line (0 —p; = 0) result in steep increases of dif-
ferences in asymptotic error variance, to the disadvantage of OW. As
correlation increases, we observe that the imbalance in favor of OW in-
creases only moderately, overall resulting in a considerable asymmetry
regarding the effect of parameter deviations. Asymmetric error variance
relationships are also observed when ¢ changes (lower plots), in partic-
ular with higher levels of ¢r, but we observe rather moderate increases
of the disadvantage with OW when ¢ decreases only slightly, and steep
increases later on at higher levels of ¢ changes. These insights are im-
portant to derive appropriate decision strategies.

In light of this asymmetry, an appropriate decision rule might be to
select OW when the proposed model suggests to do so, but only if
pre-defined margins to the decision boundary are not violated. The in-
tuition is that small changes can easily negate the expected benefits of
OW, which ought to be considered in a decision to ensure a certain de-
gree of robustness.

In our empirical evaluation, we will apply this decision strategy with
different thresholds regarding changes in p and ¢. We will study the ap-
plication of either narrow minimum margins of 0.01 - distances of 1% to
the thresholds - denoted by L, or higher margins of 0.05, denoted by H.
A decision strategy that, for instance, uses L as threshold for ¢» and H for
p, is denoted by Threshold L-H. The threshold-based rules will be
benchmarked against the static strategies of always choosing one meth-
od (OW and SA) as well as against a strategy based on the model recom-
mendations, ignoring the thresholds (Recommendation).

As an evaluation criterion, we use the relative MSE regret and com-
pute different quantiles over all decisions with a strategy. Relative MSE
is defined as the relative difference between the MSE of a combination
and the MSE of the (ex-post) optimal combination — hence, the relative
MSE that could have been avoided when always making the ex-post
better decision. The relative MSE regret is used as MSE values are not di-
rectly comparable across the time series of our case study, which are at
very different levels. Clearly, regret is zero if all decisions are correct and
increases with every wrong decision.

Table 2 displays the quantiles of regret across all time series of our
case study.

The results shows that the OW and Recommendation strategies result
in the highest regret values of all strategies regarding all quantiles of the
regret distributions. The strategies are clearly the most aggressive ones,
as, in the spirit of the bias-variance theory and the forecast combination
puzzle, they clearly have the lowest in-sample bias but the highest var-
iance. From this point of view, these results are well in line with the
“Golden Rule of Forecasting” that forecasts should be conservative, as
a simple average clearly dominates both approaches.

However, the results also indicate that the “Threshold” strategies are
highly competitive, as all of them outperform all alternative strategies for
most quantiles but the maximum regret. Consequently, the thresholds
are an essential basis for robust decisions on which forecast combination
method to choose. The best performing strategy amongst the strategies
under study is Threshold L-H with a narrow minimum threshold for
error variances and a wide minimum threshold for error correlation. A
lower threshold for changes in error correlations compared to error

Table 2
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variance ratios is well in agreement with our previous theoretical discus-
sion on the impacts of parameter changes in Fig. 10. As a consequence,
strategies involving the thresholds should put more emphasis on thresh-
olds regarding changes of error correlation than error variances.

6. Conclusion and implications

The “forecast combination puzzle” refers to the recurring empirical
finding that more sophisticated weight learning models typically do not
outperform a simple average (SA) in forecast combination. It is known
that estimates of the error variances of individual forecasts and their co-
variances, the parameters used for weighting the forecasts, are often
too unstable because of small training samples or changes in the underly-
ing time series and the corresponding error characteristics. However,
models quantifying the error variance with a particular forecast combina-
tion method do not exist and managers still have little guidance on which
forecast combination method to choose in a specific situation.

We introduced a model for the expected out-of-sample error vari-
ance of a forecast combination, given the characteristics of the training
and evaluation sample. We used the model to calculate decision bound-
aries to determine when to select the simple average (SA) or weights
that minimize the error variance in the training sample (OW). We fo-
cused on the combination of two individual forecasts for two reasons,
which in most cases apply for the prediction of business figures in enter-
prises. Typically, a judgmental forecast and one that is derived using
purely statistical means are available and corporate planning can be
based on one of the forecast or a combination of both forecasts, where
additional forecasts cannot be expected to introduce as much additional
information. Furthermore, focusing on the two-forecast case allowed us
to provide a variety of in-depth analyses. The challenge of extending the
model and the decision boundaries to a larger, arbitrary number of fore-
casts is subject to future research.

In addition, we proposed robust decision rules when to choose OW
based on the introduced minimum margins (of the model recommen-
dation) to the derived decision boundaries (critical values of error cor-
relation and variances in the evaluation sample). The intuition is to
consider changes of error correlation and variances between training
and test samples, which often affect the asymptotic error variance of
OW much more than the one of SA. With the margins, we determined
against which degrees of change of error variances and correlation be-
tween training and test time series a decision in favor of OW must be ro-
bust, i.e., still dominating SA. In an empirical study with data from the
M3 competition, we showed that the thresholds are key to the imple-
mentation of successful strategies for deciding between simple and
complex combinations in practical settings.

Overall, this work provides the means to better understand and an-
alytically solve an important facet of the forecast combination puzzle by
deriving a model for the asymptotic error variance of a combination,
considering - besides bias - the sampling-based variance component
of the error. Managers can apply the model and decision boundaries
(with the L-H thresholds) to their specific settings to make profound
decisions on whether to use a simple average or estimated weights.

Quantiles of the relative MSE regret (computed across all time series) resulting from different decision strategies. Strategies using the model-based recommendation considering thresh-
olds are named “Threshold” followed by a combination of two letters (H or L), where the first (second) letter indicates if a high or low ¢ (p) threshold is used. Most of the threshold-based
strategies outperform the alternative strategies, including the “SA” strategy, which is the most conservative approach.

Strategy Quantile
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SA 0% 0% 0% 0% 0% 0% 0.30% 1.30% 3.43% 9.41% 117.85%
ow 0% 0% 0% 0% 0% 0.22% 1.53% 4.24% 10.53% 34.42% 32,810.09%
Recommendation 0% 0% 0% 0% 0% 0.09% 0.81% 2.78% 6.85% 26.08% 32,810.09%
Threshold H-H 0% 0% 0% 0% 0% 0% 0.17% 0.94% 2.87% 7.11% 163.54%
Threshold H-L 0% 0% 0% 0% 0% 0% 0.30% 1.22% 3.31% 9.54% 261.27%
Threshold L-H 0% 0% 0% 0% 0% 0% 0.06% 0.75% 2.41% 5.88% 163.54%
Threshold L-L 0% 0% 0% 0% 0% 0% 0.30% 1.28% 3.47% 10.16% 261.27%
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Appendix A. Derivation of Eq. (2)

With errors e4, e and corresponding error variances 03,07 in the evaluation sample:
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Appendix D. Derivation of Eq. (7)
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