
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tetn20

Download by: [University of California, San Diego] Date: 29 February 2016, At: 21:28

International Journal of Electronics

ISSN: 0020-7217 (Print) 1362-3060 (Online) Journal homepage: http://www.tandfonline.com/loi/tetn20

VLSI Design of a RSA Encryption/Decryption Chip
using Systolic Array based Architecture

Chi-Chia Sun, Bor-Shing Lin, Gene Eu Jan & Jheng-Yi Lin

To cite this article: Chi-Chia Sun, Bor-Shing Lin, Gene Eu Jan & Jheng-Yi Lin (2016): VLSI Design
of a RSA Encryption/Decryption Chip using Systolic Array based Architecture, International
Journal of Electronics, DOI: 10.1080/00207217.2016.1138511

To link to this article: http://dx.doi.org/10.1080/00207217.2016.1138511

Accepted author version posted online: 08
Feb 2016.

Submit your article to this journal

Article views: 1

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tetn20
http://www.tandfonline.com/loi/tetn20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207217.2016.1138511
http://dx.doi.org/10.1080/00207217.2016.1138511
http://www.tandfonline.com/action/authorSubmission?journalCode=tetn20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tetn20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207217.2016.1138511
http://www.tandfonline.com/doi/mlt/10.1080/00207217.2016.1138511
http://crossmark.crossref.org/dialog/?doi=10.1080/00207217.2016.1138511&domain=pdf&date_stamp=2016-02-08
http://crossmark.crossref.org/dialog/?doi=10.1080/00207217.2016.1138511&domain=pdf&date_stamp=2016-02-08

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

To appear in the International Journal of Electronics
Vol. 00, No. 00, January 2013, 1–13

VLSI Design of a RSA Encryption/Decryption Chip using

Systolic Array based Architecture

Chi-Chia Sun∗, Bor-Shing Lin, Gene Eu Jan and Jheng-Yi Lin

(v4.0 released January 2013)

This paper presents the VLSI design of a configurable RSA public key cryptosystem
supporting the 512-bit, 1024-bit and 2048-bit based on Montgomery algorithm achiev-
ing comparable clock cycles of current relevant works but with smaller die size. We use
binary method for the modular exponentiation and adopt Montgomery algorithm for
the modular multiplication to simplify computational complexity, together with sys-
tolic array concept for electric circuit designs effectively lower the die size. The main
architecture of the chip consists of four functional blocks, namely input/output mod-
ules, registers module, arithmetic module and control module. We applied the concept
of systolic array to design the RSA encryption/decryption chip by using VHDL hard-
ware language and verified by the TSMC/CIC 0.35 m 1P4M technology. The die area
of the 2048-bit RSA chip without the DFT is 3.9×3.9 mm

2 (4.58×4.58 mm
2 with

DFT). Its average baud rate can reach 10.84 Kbps under a 100 MHz clock.

Keywords: VLSI; Cryptology; RSA; 2048-bit; Systolic Array;

1. Introduction

Cryptosystems, as according to the practice of key distribution, can be classified
as private key cryptosystems and public key cryptosystems. Rivest, Shamir and
Adleman published the RSA public key cryptosystem in 1978 (Rivest, Shamir, &
Adleman, 1978). There, each user possesses a pair of keys, the public key and the
private key. The public key as the name implied is open to the public while the
private key needs to be stored secretly. The encryption process in the RSA public
key cryptosystem can be expressed as, ME (mod N), where M is the plain text,
E is the public key and N is the modulus, while the decryption process can be
expressed as, CD (mod N), where C is the cipher text, D is the private key. This
type of operation is also called modular exponentiation, which can be decomposed
into a series of modular multiplications to save the computation time. In 2010,
the 1024-bit RSA has been reported that it is no longer safe to protect the secure
data. With a small cluster of 81 Pentium–4 chips and 104 hours of processing
time, it is able to hack 1024-bit encryption in OpenSSL on a SPARC-based system
(Pellegrini, Bertacco, & Austin, 2010). This gives a strong reason why 2048-bit or
even larger RSA cryptosystems are important.

Montgomery algorithm as published by L. P. Montgomery (Montgomery, 1985)
has been used constantly in the modular multiplication electric circuit designs.

∗Corresponding author. Department of Electrical Engineering, National Formosa University, Taiwan,
Email:ccsun@nfu.edu.tw

1

Publisher: Taylor & Francis
Journal: International Journal of Electronics DOI:
10.1080/00207217.2016.1138511

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

Using Montgomery algorithm for modular multiplication does not need comparison
operations and is suitable for the odd modulus, which just meets the requirements
of the RSA public key cryptosystem. In the literature, Montgomery algorithm can
save the computation time of modular multiplication (Eldridge & Walter, 1993;
Walter, 1993, 1995), but the results fall into the range [0, 2N), which is far too
large than the correct range of [0, N). To obtain the right result, many researches
proposed improved methods (Chen, Hwang, & Wu, 1996; Yang, Jen, & Chang,
1996), however, they either increase the space complexity of the hardware or the
time complexity of computation. This paper proposes a simple solution based on
the Montgomery algorithm with modified architecture (Walter, 1993, 1999), de-
signs and implements a 2048-bit RSA public key cryptosystem (about 617 decimal
digits), to achieve comparable clock cycles of relevant works but with smaller die
size with near O(N) hardware complexity. Experimental results show that the RSA
core is implemented in a small area by using the systolic array and verified by Time
Mill postlayout simulation with the TSMC/CIC 0.35 µm 1P4M technology, where
the average baud rate can reach 10.84 Kbps under a 100 MHz clock in a 3.9×3.9
mm2 (2048-bit RSA chip without the DFT). It is worth noting that the presented
O(N) hardware complexity 2048-bit RSA core is ideal for being extended to secure
the important data in portable devices, such as RSA SecurID Software Token or
Bitcoin digital currency. It provides the comparable computing time among the
other approaches but requires smaller chip area.

This paper is organized as follows. Section 2 briefly introduces the concept of
modular exponentiation algorithms in the RSA public key cryptosystem. In Sec-
tion 3, we will present the proposed RSA encryption/decryption chip architecture
and analysis the experimental results in Section 4, while Section 5 concludes this
paper.

2. Algorithms

2.1 Modular Exponentiation Operations

Modular exponentiation operations are the core operation for the public key cryp-
tosystem. Using binary method (Singh & Datta, 1935), modular exponentiation
can be split into a series of modular multiplications (Knuth, 1969). The binary
method algorithm is shown below as Algorithm 1 .

Algorithm 1: H(M,E,N) Binary Method Algorithm

Input: Modulus: N (n-bit) Exponent: E = (1 ek−2 ek−3 . . . e1 e0)2
Message: M (n-bit)
Output: R[k − 1]=ME(mod N)
R[0] = M ;
for i = 0; i < k − 1; i + + do

R[i + 1] = R[i] × R[i](mod N);
if (ek−i−2 == 1) then

R[i + 1] = R[i + 1] × M(mod N);

else

R[i + 1] = R[i + 1];

return R[k − 1];

2

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

2.2 Modular Multiplication Operations

Modular multiplication can be expressed as, A × B(mod N). Among algorithms
commonly used for modular multiplication, Montgomery algorithm is the most
comparatively suitable for hardware implementation (Montgomery, 1985). Its mul-
tiplication and division operations in each iteration need only add, xor and shift
operations and without extra comparison operations. The Algorithm 2 is listed as
follows.

Algorithm 2: MONT(A, B, N) Montgomery Algorithm

Input: Modulus: N(n-bit), gcd(N , 2) = 1
Multiplier: A = (an−1 an−2 . . . a1 a0)2
Multiplicand: B = (bn−1 bn−2 . . . b1 b0)2
Output: R[n] ≡ A × B × 2−n(mod N)
R[0] = 0;
for i = 0; i < n; i + + do

qi = R[i] + ai × B(mod 2);
R[i + 1] = (R[i] + ai × B + qi × N)/2;

return R[n];

There, qi is the so-called quotient digit; its purpose is to make the least significant
bit (LSB) of the result in calculating R[i] + ai ×B + qi ×N to be zero, so that no
data will be lost in the division by 2 (right shift one bit operation). qi is determined
by the xor operation of the least significant bit of R[i] and ai × B.

From the algorithm listed above, it can be deduced that modulus N must be
odd numbers. As the modulus in RSA cryptosystem is the product of two prime
numbers, it is also an odd number; therefore this algorithm is also suitable for the
RSA cryptosystem. However, there are two problems remain to be answered.

Problem 1: Result from Montgomery algorithm is R[n] ≡ A × B × 2−n(mod N)
which is 2−n more than intended result. To eliminate this extra factor, we can use
approaches published by Eldridge and Walter (Eldridge & Walter, 1993); steps are
shown below:

(1) Pre–processing: Prior to exercising modular exponentiation, Montgomery al-
gorithm is used to compute the result for the plain text M , pre–computed
constant Kp and modulus N where Kp = 22n(mod N). And let M ′ ≡

MONT (M, 22n (mod N), N) ≡ 2n × M (mod N).
(2) Normal–processing: Replacing M by M ′ in the binary method operations,

that is: MONT (2n × M(mod N), 2n × M(mod N), N) ≡ 2n × M2(mod N);
MONT (2n × M2(mod N), 2n × M(mod N), N) ≡ 2n × M3(mod N); etc.

(3) Post–processing: After completing the modular exponentiation, Montgomery
algorithm is again used with its result, modulus N and 1 as shown below, to
eliminate this extra factor. MONT (1, 2n × R(mod N), N) ≡ R(mod N).

Problem 2: It can be deduced that 2i ×R[i] =
∑j=i−1

j=0 ajB +
∑j=i−1

j=0 qjN where

0 ≤ R[i] < 2N . This means that the final result may need to perform subtraction
operation (Walter, 1995). Hence, to use this algorithm, the range for R must be
limited to [0, N).

Traditional works on the solution are to modify Montgomery algorithm (Chen
et al., 1996; Yang et al., 1996) by separating it into two procedures, one for multi-
plication procedure and the other for Montgomery modular reduction procedure;
partial products obtained from the first procedure are fed into the second procedure

3

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

for further processing. Blum and Paar (Blum, 1999) proposed to slightly modify
Montgomery algorithm and reconfigure hardware architecture and data stream,
the modified algorithm can be used for the modular exponentiation.

Later, Walter (Walter, 1999) applied a redundant number system to limit the
influence of carries; modular exponentiation then can be done without modifying
Montgomery algorithm.

To exemplify: for an n-bit system, the result from each iteration of Montgomery
algorithm fall into the range 0 ≤ R[i] < N + B < 2N . If using n+1-bit system
to operate on n-bit data, we need to add one more bit of zero value in front
of the most significant bit of the original n-bit data to make it n+1-bit. The
parameter then looks like: Modulus: N ′ = (0 N)2 = (0 nn−1 nn−2 . . . n1 n0)2,
gcd(N ′, 2) = 1, Multiplier: A′ = (0 A)2 = (0 an−1 an−2 . . . a1 a0)2, Multiplicand:
B′ = (0 B)2 = (0 bn−1 bn−2 . . . b1 b0)2. Now, for the nth iteration, the result of R[n]
is (R[n−1]+an−1×B′+qn−1×N ′)/2 and its value is in [0, 2N] or 0 ≤ R[n]/2 < N .

For the n + 1th iteration, the result is R[n + 1] = (R[n] + an × B′ + qn × N ′)/2;
since an = 0, then R[n + 1] = (R[n] + qn ×N ′)/2 = R[n]/2 + (qn ×N ′)/2; also 0 ≤

R[n]/2 < N and 0 ≤ (qn×N)/2 < N then 0 ≤ R[n]/2+(qn×N)/2 < 2N therefore
0 ≤ R[n+1] < 2N . From there, we know that, in each iteration of the Montgomery
algorithm, the result range can be confined to 2N for the next iteration. In this way,
modular exponentiation can be done with successive multiplication of Montgomery
algorithm. Now, in the post-processing, Rfinal = MONT (1, Rpost, N

′), where Rpost

represents the result from normal processing and 0 ≤ Rpost < 2N ; furthermore,

MONT (A′, B′, N ′) = (A′ × B′ + Q × N ′) × 2−(n−1), where the maximum value
of Q is 2n+1 − 1, therefore Rfinal = (Rpost + Q × N ′) × 2−(n+1) < N . This means
that from post-processing operations, the result from modular exponentiation can
be limited to the range of [0, N) and no need for an extra subtraction operation.

Summarizing from above, the Walter algorithm and the modified modular ex-
ponentiation algorithm (Eldridge & Walter, 1993; Walter, 1993, 1999) used in this
paper are listed below as Algorithms 3 and 4, respectively.

Algorithm 3: M MONT(A, B, N) Walter Algorithm

Input: Modulus: N(n-bit), gcd(N , 2) = 1
Multiplier: A = (0 an an−1 an−2 . . . a1 a0)2
Multiplicand: B = (0 bn bn−1 bn−2 . . . b1 b0)2
Output: R[n] ≡ A × B × 2−n(mod N)
R[0] = 0;
for i = 0; i < n + 2; i + + do

qi = R[i] + ai × B(mod 2);
R[i + 1] = (R[i] + ai × B + qi × N)/2;

return R[n];

Algorithm 4 shown above has three sections, where the normal processing section
employing the binary method to achieve modular exponentiation. It can be shown
that, from pre–processing, R[0] ≡ 2n+2×M(mod N), from normal processing, R[i]
in each iteration contains 2n+2 and, from post–processing, with A = 1, 2n+2 can be
eliminated and result is limited to [0, N]. Final result from this algorithm is then
R = ME(mod N), where R < N .

4

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

Algorithm 4: M H(M , E, N , kp) Modified Modular Exponentiation Algorithm

Input: Modulus: N (n-bit) Message: M (n-bit)
Exponent: E = (1 ek−2 ek−3 . . . e1 e0)2 Constant: kp = 22(n+2)(mod N)
Output: R[k − 1] = ME(mod N)
//Pre–processing;
R[0] = M ′ = M MONT(M , kp, N);
//Normal processing;
for i = 0; i < k − 1; i + + do

R[i + 1] = M MONT(R[i], R[i], N);
if (ek−i−2 == 1) then

R[i + 1] = M MONT(R[i + 1], M ′, N);

else

R[i + 1] = R[i + 1];

//Post–processing;
R[k] = M MONT(1, R[k − 1], N);
return R[k];

Figure 1. Architecture of the RSA Chip Design

3. RSA VLSI Design

The RSA encryption/decryption chip is configured to compose of four modules:
arithmetic module, input/output modules, registers module and control module.
We have used the VHDL hardware language to describe each module with the
following features: modularity, regularity, local interconnection, and high degree
pipelining. Thereby, this design is especially suited for VLSI design. Figure 1 shows
its architecture.

3.1 Input/Output Modules

Both the input and output modules have three and one 16-bit shift registers, re-
spectively. Input module receives the external 16-bit data in parallel mode and
sends them to the registers module, while the output module receives the data
from registers module and sends them to external interface in 16-bit parallel mode.
By using the handshaking protocol, the input data clock and system clock can be
asynchronous as shown in Figure 2.

5

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

D

Processing Element

Processing Element

A B N R Control

2D 2D D 2D

2D2D2DD D

D

D

R

D

Mux_back

D

Figure 2. Waveform of the RSA Chip Interface

3.2 Registers Module

Registers module satisfied the temporary data storage requirements during the
encryption and decryption. It consists four independent Synchronous RAM
(SRAM): E register (512∼2048-bit) for the keys, M register (513∼2049-bit) for
plant/encrypted text, N register (512∼2048-bit) for modulus and K register
(51∼2049-bit) for constant or computation results.

The input data width is 16-bit ordered by MSB to the LSB for each data fetching.
In the same way, the output data is also outputted by by MSB to the LSB with
16-bit data width. Since we applied the Walter’s algorithm, the input data for
modulus systolic array has to be LSB first, hence the data fetching orders of the
M , N and K registers are LSB to MSB. Since we also used the H Algorithm, the
E register has to be outputted from the MSB to LSB.

3.3 Arithmetic Module

Arithmetic module is where modular exponentiation is performed. To facilitate
illustration, the following Figure 3 shows the processing scheme of the Montgomery
algorithm for n=2. It is obvious that a very regular structure with 3-bit adder
array is given in Figure 3 and this regular structure is ideal for systolic array
design. Therefore, we applied it to design an n+2 bit by n+2 bit multiplier for
Algorithm 3. The Dependency Graph (DG) of Figure 3 is shown in Figure 4. The
internal structure of each node in DG is shown in Figure 5.

After completing DG design for supporting the systolic array, Figure 6 shows the
corresponding circuit for the Signal Flow Graph (SFG) of modular multiplication,

which can be separated into dependency graph projection along the ~d (Projection
Direction) and scheduling for modular multiplication DG. Finally, the multiplica-

6

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

Start

Reset

Yes

Load Modulus
E or D

Load Constant
M or C

Load Exponent
N

Load Message
Kp

Pre-processing
R=M'=M_MONT(M, Kp, N)

i = n

R=M_MONT(R, R, N)
i = i - 1

ei=1 ?

Yes

R=M_MONT(R, M ',
N)

i=0 ?
Post-processing

R=M_MONT(1, R, N)

Output R

Stop

No

Yes

ei=1 ?

i = i - 1
No

Yes

No

Figure 3. Processing Scheme of the Montgomery Algorithm for n = 2

tion result of the SFG will be mapped to the hardware components as shown in
the Figure 7, where D indicates the Delay; and Processing Element is the node of
Figure 5;

The control signal is (10 . . . 00)2. A and B are inputs at top in bit–serial form.
The operation qi = R[i] + ai × B(mod 2) can be performed as R0 ⊕ (a0 × b0),
where ⊕ is the xor operation. Since in each basic unit, we must hold the computed
quotient digit qi and the input ai, we add two latches to the basic unit to lock the
correct values of qi and ai with control signal.

7

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

Figure 4. Dependency Graph (DG) for the Montgomery Algorithm for n = 2

Figure 5. The Internal Structure of each Node in DG

Furthermore, in performing additions, there will encounter the carry problem;
we use carry save method to retain and then return the carry to the next basic
unit. In addition, the input carries of the least significant unit should be zeroes
and its control signal is similar to the latch signal. To effectively utilize idled basic
units, the output from the vertical pipeline that can reduce the number of basic
units is designed to feedback as input; this is controlled by Mux back signal.

Note that we have implemented the chip interface with 16-bit parallel in-
put/output as illustrated in Figure 8. It has four 16-bit shift registers for buffering
the input/output n-bit data A, B, N and Rout in a bit-serial form. As the input
and output all are in serial bit form, the electrical circuit for the Montgomery
algorithm is the bit–serial systolic array.

3.4 Control Module

In RSA encryption/decryption control flow, first step is to read data needed for
the operation, in the sequence of exponent E or D, message M or C, modulus
N then constant Kp. Once the data are read, the modified modular exponen-
tiation algorithm will be performed, from pre–processing, normal processing to
post–processing. Following the steps stated above, Figure 9 shows the finite state
machine of the control module; Figure 10 is the status diagram which is used to

8

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

Figure 6. Signal Flow Graph of the Modular Multiplication

Figure 7. Process Element of Bit–serial Systolic Array Electrical Circuit for Montgomery Algorithm

Table 1. Comparisons on RSA(n-bit) Hardware Resources with Number of Full Adders, Registers, Mul-
tiplexes, Memory and the Required Computation Clock Cycles.

Authors FA MUX Reg RAM clocks
Juang (Juang, Lu, Lee, & Chen, 1989) 2n 10n 14n 10 × n 6n2

Eldridge (Eldridge & Walter, 1993) 4n 9n 16n 0 4n2

Wang I (Wang, Tsai, & Shung, 1997) 2n 10n 13n 0 1.5n2

Wang II (Wang et al., 1997) 4n 20n 26n 0 n2

Sheu I (Sheu, Shieh, Wu, & Sheu, 1998) 3.18n 9n 10.24n 0 2.4n2

Sheu II (Sheu et al., 1998) 3.38n 19.1n 10.38n 0 2.5n2

This Design n + 2 n + 2 n + 2 4 × n 4.5n2

complete the RSA computation.

9

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

Figure 8. Architecture of the Chip IO Interface

Figure 9. Finite State Machine of the RSA Chip

Figure 10. Controller Follow Diagram of the RSA Chip

4. Experimental Result

We have modeled the presented systolic based RSA in VHDL and synthesized it by
Synopsys Design Compiler with TSMC/CIC 0.35 µm 1P4M standard cell library.
At the end, we used the Cadence Silicon Ensemble to perform the Auto Place
Route where Figure 11 shows the chip layout. The post-sim power consumption is

10

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

CLK

(system)

RESET

(system)

ACT

(system)

DATA_IN<

15:0>

(system)

BUSY

(chip)

Data_READY

(chip)

DATA_OUT

<15:0>

(chip)

REC

(system)
Reset Load

Data

E/D Data

OutputComputing

Figure 11. IC layout of the proposed 2048-bit RSA chip design

Table 2. Characteristics of this RSA Encryption/Decryption Chip (TSMC 0.35 µm 1P4M Silicide CMOS).

Proposed Hisakado 2006 Chen 2007 Zheng 2008 Miyamoto 2011
Tech TSMC 0.35 TSMC 0.18 UMC 0.18 TSMC 0.18 STM 0.09
RSA bit 2048bit 2048bit 1024bit 2048bit 2048bit
Voltage 3.3V 1.8V 1.8V 1.8V 1.2V
Frequency 100 MHz 40 MHz 370 MHz 200 MHz 433 MHz
Baud rate 10.84kbps unknown 83kps 107.5kps 8.64kbps
Power 307.8 mW 61.5 mW unknown 32.5mW unknown
Frequency (normalized) 100 MHz 19.6 MHz 181.3 MHz 100 MHz 104 MHz
Baud rate (normalized) 10.84 kbps unknown 40.67kps 52.675kps 2.07kbps
Power (normalized) 307.8 mW 232.5 mW unknown 122.9 mW unknown
Gate count 37.5K 98.5K 175.8K 61.0K 49.8K

estimated by the fast spice PowerMill with random patterns. The die area without
the DFT is 3.9 × 3.9 mm2 and 4.58 × 4.58 mm2 with DFT. Table 2 lists charac-
teristics of this chip while Table 1 lists the hardware resources and the complexity
of clock cycles of our design as compared with those of other designs. In Table 2,
compared to other 2048-bit RSA Chip Designs, the gate counts of the proposed
design is minimal. Although the throughput is not fast, the area is smallest due
to the architecture of systolic array. Compared to (Zheng, Liu, & Peng, 2008), the
proposed design’s normalized power dissipation is higher but it required much less
gate counts. Compared to (Miyamoto, Homma, Aoki, & Satoh, 2011), we can ob-
tain a higher baud rate with less gate counts. It provides the comparable computing
time among the other approaches but requires smaller chip area.

The average number of clock cycles needed to complete 2048-bit encrypt-
ing/decrypting operation of this chip is: Ttotal ≡ Tin + Tm + Tm × (n + n/2) +
Tm +Tout

∼= 4.5n2 +8n = 18.9 M, for n=2048, where Tin is the number of clock cy-
cles needed for data input, Tm is the number of clock cycles needed for one modular
multiplication, Tout is the number of clock cycles needed for data output, and n is
the number of bits for the key. Since the time complexity is Tm × (n + n/2), when
Tm is 3n, it requires 4.5n2. According to the post–simulation of the TimeMill, the
average baud rate under a 100 MHz clock is (n× f)/Ttotal = 2048 × 100 M / 18.9
M ∼= 10.84 Kbps.

In comparison with the other designs in Table 1, the proposed systolic based
RSA chip needs only n + 2 adders, multiplexers, and registers but 4 × n SRAM.
Although the proposed architecture required 4×n bit for storage, the SRAM cell is
much smaller than the full adder as shown in the left-bottom layout. In the mean-
time, high destiny 6–T SRAM cell is already available for the advanced technology
node (Sinangil, Mair, & Chandrakasan, 2011). Therefore, the proposed systolic

11

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

based RSA design complexity is O(n). The scalability can be achieved by

reconfiguring the parameter of hardware description language for direct

expansion 4096-bit RSA in the future.

Finally, there are two applications that benefit from the proposed O(N) hardware
complexity 2048-bit RSA core. Since the proposed design has integrated with a
simple 16-bit handshake I/O module as shown in Figure 8, which is very suitable
for the low-cost 8051 MCU controller as a RSA SecurID reader. Besides, it can be
integrated as a sub-system IP core into a SoC embedded processor design for being
extended to secure the important data in portable devices, such as Virtual credit
card on smart-phone or NFC reader as well.

5. Conclusion

In this paper, we employ the binary method to split modular exponentiation into
a series of modular multiplications, which is then achieved by using the Walter
algorithm. We applied the concept of systolic array to design this configurable RSA
encryption / decryption chip based on the Montgomery algorithm with modified
architecture by using VHDL hardware language. The design was implemented and
verified by the TimeMill with TSMC/CIC 0.35 µm 1P4M technology that its area
can be reduced to 3.93.9 mm2 without the DFT and its average baud rate can
reach 10.84 Kbps under a 100MHz clock.

References

Blum, T. (1999, Apr). Montgomery modular exponentiation on reconfigurable
hardware. In Ieee symposium on computer arithmetic (p. 70-77).

Chen, P.-S., Hwang, S.-A., & Wu, C.-W. (1996, May). A systolic rsa public key
cryptosystem. In Ieee international symposium on circuits and systems (Vol. 4,
p. 408-411).

Eldridge, S. E., & Walter, C. D. (1993). Hardware implementation of montgomerys
modular multiplication algorithm. IEEE Transactions on Computers, 42 (6),
693-699.

Juang, Y.-J., Lu, E.-H., Lee, J.-Y., & Chen, C.-H. (1989). A new architecture for
fast modular multiplication. In Ieee international symposium on vlsi technology,
system and application (p. 357-360).

Knuth, D. E. (1969). Art of computer programming, volume 2: Seminumerical
algorithms. Addison-Wesley.

Miyamoto, A., Homma, N., Aoki, T., & Satoh, A. (2011, July). Systematic design of
rsa processors based on high-radix montgomery multipliers. IEEE Transactions
on Very Large Scale Integration Systems,, 19 (7), 1136-1146.

Montgomery, P. L. (1985). Modular multiplication without trial division. Mathe-
matics of Computation, 44 (170), 519-521.

Pellegrini, A., Bertacco, V., & Austin, T. (2010). Fault-based attack of rsa au-
thentication. In Design, automation & test in europe (date) (p. 855-860).

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital
signature and public-key cryptosystems. Communications of The ACM , 21 (2),
120-126.

Sheu, J.-L., Shieh, M.-D., Wu, C.-H., & Sheu, M.-H. (1998). A pipelined architec-
ture of fast modular multiplication for rsa cryptography. In Ieee international
symposium on circuits and systems (Vol. 2, p. 121-124).

12

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

January 5, 2016 International Journal of Electronics tetn-2013-0645-File003

Sinangil, M. E., Mair, H., & Chandrakasan, A. P. (2011, February). A 28nm high-
density 6t sram with optimized peripheral-assist circuits for operation down to
0.6v. In Ieee international solid-state circuits conference (p. 260-262).

Singh, A., & Datta, B. (1935). History of hindu mathematics 1.
Walter, C. D. (1993). Systolic modular multiplication. IEEE Transactions on

Computers, 42 (3), 376-378.
Walter, C. D. (1995). Still faster modular multiplication. Electronics Letters,

31 (4), 263-264.
Walter, C. D. (1999, October). Montgomery exponentiation need no final subtrac-

tions. Electronics Letters, 35 (21), 1831-1832.
Wang, P., Tsai, W., & Shung, C. (1997). New vlsi architecture of rsa public-key

cryptosystem. In Ieee international symposium on circuits and systems (Vol. 2,
p. 2040-2043).

Yang, C.-C., Jen, C.-W., & Chang, T.-S. (1996, November). The ic design of a
high speed rsa processor. In Ieee asia pacific conference on circuits and system
(p. 33-36).

Zheng, X., Liu, Z., & Peng, B. (2008, October). Design and implementation
of an ultra low power rsa coprocessor. In International conference on wireless
communications, networking and mobile computing (p. 1-5).

13

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
C

al
if

or
ni

a,
 S

an
 D

ie
go

]
at

 2
1:

28
 2

9
Fe

br
ua

ry
 2

01
6

