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ABSTRACT: A simple analytical model is proposed to describe the effects 
of local buckling of circular cross section on the maximum strength and 
behavior of tubular beam-columns. The behavior is presented in the 
form of load-deflection and load-shortening relationships. These re
lationships are developed on the basis of an assumed deflection method 
coupled with the moment-thrust-curvature relationship including the 
softening branch of the relationship due to the local cross-sectional 
distortion. The analytically obtained maximum strength interaction 
curves of beam-columns show a reasonably good agreement with the 
available experimental results. The trend of the analytical load-de
flection and load-shortening curves is very similar to that of the available 
experimental results. It is found that the effects of the local buckling on 
the behavior and strength of tubular beam-columns become more severe 
with an increase in diameter-to-thickness ratio, and with a decrease in 
slenderness ratio. 

INTRODUCTION 

The post-buckling behavior of tubular beam-columns has been the 
subject of intensive research in recent years (Chen and Han 1985; Han and 
Chen 1983a, 1983b; Toma and Chen 1983). In these analytical studies, it 
has been assumed that the cross section of the circular tubular members 
remains circular even in the post-buckling range. However, at large 
deformations, significant, local buckling or distortion of the cross section 
may occur. The local buckling of the cross section will significantly reduce 
the maximum load-carrying capacity and the energy absorption capacity of 
these thin-walled tubular members. In this paper, a simple analytical 
method is proposed to describe the effects of this local buckling on the 
maximum strength and energy absorption capacity of the tubular beam-
columns. 

The maximum load-carrying capacity of an ideal column can be taken as 
its bifurcation load. The bifurcation load of an imperfect column provides 
an upper limit on its maximum load-carrying capacity. The load-deflection 
method of analysis is used to include the effect of imperfections and lateral 
loads. To determine the energy absorption capacity of members, both the 
pre- and post-maximum load-deflection curve should be traced. In the 
load-deflection approach, the section moment-thrust-curvature relation
ship must be known before any beam-column analysis can be performed. 
The local buckling of thin-walled tubular sections causes a significant 
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FIG. 1. Closed Form Expressions for Complete M-P-9 Curves 

softening in sectional moment-curvature behavior (Fig. 1). A simple 
kinematic model (Sohal and Chen 1987) was used to develop the softening 
branch (Fig. 1, branch 3-4) of a complete moment-thrust-curvature re
lationship. 

The behavior of beam-columns is presented in the form of load-
deflection and load-shortening relationships. The analytical expressions 
for these relationships are developed by supplementing the modified 
assumed deflection method with a complete moment-thrust-curvature 
relationship including the softening branch due to the local buckling of the 
circular cross section (Sohal and Chen 1987). These analytical expressions 
significantly reduce the computational time required to trace the load-
deflection and load-shortening relationships and yet give reasonably accu
rate results. 

The maximum strength interaction curves for tubular beam-columns are 
compared both with the available experimental results (Sherman 1981) and 
with the analytical results in which local buckling of the cross section was 
not considered (Toma and Chen 1979). The load-deflection and load-
shortening behavior curves are also compared with the available experi
mental results (Sherman 1980) and with the analytical results obtained 
without considering the local buckling of the cross section (Toma and Chen 
1983). The effects of various parameters on the behavior of beam-columns 
are also investigated. 
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The loading conditions considered here are the combinations of lateral 
loads, equal moment at both ends, and axial load. The support condition of 
the beam-column is either pin-ended or fix-ended. 

GENERALIZED STRESS-STRAIN RELATIONSHIPS 

In any structural analysis, knowledge of the stress-strain relationship is 
essential. For the beam-column analysis, moment-thrust-curvature 
(M-P-<$>) and thrust-curvature-axial strain (P-$-e0) relations are used as the 
generalized stress-strain relationships (Chen and Han 1985). 

For the moment-thrust-curvature relationship, the closed-form ex
pressions have been developed previously (Sohal and Chen 1984, 1987). 
The general form of the M-P-Q? curve was divided into four parts (Fig. 1): 
(1) Elastic (curve 0-1); (2) primary yielded (curve 1-2); (3) secondary 
yielded (curve 2-3); and softened (curve 3-4). The constants a, b, c, d and 
/ in Fig. 1 were determined such that the curves fit closely to the more 
rigorous solutions (Sohal and Chen 1984). In the figure, mpc = MpcIMy is 
the plastic moment capacity of the tubular section, normalized by the yield 
moment (My) of the section, and reduced for a given axial thrust P. The 
curvature at which the local buckling of the cross section starts is §ib = 
QiblQy, which is normalized by the initial yield curvature (<t>y) of the 
section. The slope of the softening branch at the start of the local buckling 
of the cross section is (£7)max . 

The thrust-curvature-strain (P-<P-e0) relationship for a circular tube can 
be obtained theoretically by assuming that the wall thickness of the section 
is thin in comparison with its diameter (Chen and Han 1985). Here, for 
simplicity, it is assumed that for a given curvature <i>, the P-e0 relationship 
is not affected significantly by the local buckling of the cross section. Thus, 
the P-<P-e0 relationship for a circular tube, the one used in the pre-
local-buckling regime, is used throughout the analysis. 

MODIFIED ASSUMED DEFLECTION METHOD 

The behavior of steel structures has been investigated in the past only 
under a monotonically increasing moment-curvature condition. The 
softening part of a moment-curvature relationship is encountered only 
when the effect of local buckling is considered. For concrete beam-
columns, however, the softening part has been encountered due to the 
cracking and spalling of the concrete. Therefore, in recent years, analytical 
methods have been proposed to include the softening branch of a complete 
moment-curvature relationship (Darvall 1984; Darvall and Mendis 1985). 
Most of these analytical methods require the use of a hinge length. No 
analytical method is yet available to determine the hinge length; it must be 
determined from empirical relations. 

Here, in the beam-column analysis, the softening branch of a complete 
moment-curvature relationship is included by assuming the deflected 
shape of a beam-column, without the use of a hinge length. In this method, 
we need to consider equilibrium of external loads and internal resistance at 
only one critical section, which leads to analytical expressions of the 
load-deflection relation. These analytical expressions drastically reduce 
the computational time required for tracing the load-deflection and load-
shortening relationships. 
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To obtain accurate results, the assumed deflected shape should be as 
close to the actual deflected shape as possible. In the linear portion of 
M-P-<$> relationship, Fig. 1, the exact deflected shapes of the beam-
columns are well-known. For example, the deflected shape of an axially 
loaded beam-column is sinusoidal. Deflected shapes for beams subjected 
to lateral loads or end moments are polynomial functions. These shapes 
will be called elastic deflected shapes from here onwards. In the nonlinear 
portions of M-P-& relationship, the deflected shape is a combination of the 
elastic deflected shape and the failure mechanism shape. 

Herein, the deflected shape is assumed to be the elastic deflected shape 
in the pre-buckling region. In the post-buckling region, the deflected shape 
is assumed to vary smoothly from the elastic deflected shape to the failure 
mechanism shape. The deflection W, at a given distance x, from the end of 
a beam-column can be written as 

W= Wm[fwFe + (1 - / W ) F J •'. . . . . . (1) 

in which Wm is the maximum deflection at mid-span of the beam-column, 
Fe is a function representing the elastic deflected shape, Fm is a function 
representing the failure mechanism shape, and/,,, is a weighting factor. 

The elastic deflection shape function Fe, for a pin-ended beam-column 
under axial load can be written as 

TTX 

Fe = sin -j- (2a) 

For a fix-ended beam-column 

1 / 2nx 
Fe = - I I - cos -j- ] (2b) 

in which L is the length of the beam-column. 
The failure mechanism shape for a beam-column is close to a bilinear 

shape (Fig. 2(b)), and can be simulated by assuming the curvature 
distribution as follows: 

» - > . , • • • • . . . . . . . . ( 3 ) 

1 + 

in which <|>m is the maximum curvature at mid-span and fi^ is a parameter 
representing the spread of curvature at failure (Fig. 2(a)). The failure 
mechanism shape function corresponding to the curvature distribution 
given by Eq. 3 can be integrated and written as 

L/2\ . x - Lll\ 1 
tan~> n r - - I n 

x-L/2 
1 + '^I-

tatT1 hr— - - I n 1 + 
20,/ "" \2fsJ 2"" V1 4(J: 

(4) 

The curvature distribution and the failure mechanism function for p, =0 .1 , 
0.01, 0.001, are shown in parts (a) and (b) of Fig. 2. 
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FIG. 2. Distribution of Curvature and Displacement Along Beam-Columns at 
Failure: (a) Curvature; and (b) Displacement 

The weighting factor/,,, is equal to one in the pre-buckling regime. In the 
post-buckling regime, /„, decreases exponentially with the decrease in the 
load-carrying capacity of the beam-column and can be written as follows. 

fw = exp 1 - ^ l f e (5) 

where B2 is a parameter representing the rate of change of the deflected 
shape. The Pmax in Eq. 5 is calculated by the average flow moment method 
as proposed previously by Chen and Atsuta (1972). 

In order to determine the parameters Sj and S2 , the load-deflection and 
load-shortening curves of several beam-columns, obtained from the pro-
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i „ NEWMARK'S METHOD 

1.0 2.0 3.0 
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SHORTENING A / A y 

FIG. 3. Comparison of Load-Deflection and Load-Shortening Curves by New-
mark's and Modified Deflection Methods 

posed deflected shape were compared with those obtained from New-
mark's numerical integration method (Chen and Atsuta 1976), a more 
rigorous method. For beam-columns with an effective slenderness ratio 
(KL/r) between 40 and 120, the most suitable values of (3j and P2 were 
found to be 0.04 and 0.3, respectively; where K = the effective length 
factor; L = the length of the beam-column; and r = the radius of gyration 
of the section. These values of (3j and p2

 w m be used in this paper from 
here onwards. For a pin-ended beam-column with a slenderness ratio equal 
to 80, the load-deflection and load-shortening relationships, obtained by 
the proposed deflection shape, are compared to those obtained by New-
mark's method in Fig. 3. 

LOAD-DEFLECTION RELATION 

The mid-span deflection W0 , due to end moments and/or lateral load is 
calculated from the conventional beam theory. The additional deflection 
Wm due to the axial load is determined by considering the moment 
equilibrium at the critical section. 

For pin-ended beam-columns, the bending moment at mid-span induced 
by external loads is 

Mext = MMQ + P{Wi+WQ+Wm) (6) 

where MMQ = M0 + (QL/4) = bending moment due to the end moment M0 
and/or the lateral load Q; W, = initial imperfection at mid-span; and P = 
axial load. In nondimensionalized form, we have 

^ext = mMQ + ntt + m0P + jj- W,„ {la) 

where mext = Mext/My, mMQ = MMQ/My, m, = P WJMy, and m0P = 
P WJMy . For fix-ended beam-columns, the non-dimensionalized external 
moment can be expressed as 

P Wm 
"text = rriMQ + mi + m0P + Jf ~ Hb) 
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For a given curvature, the internal resisting moment can be obtained 
from the closed form moment-curvature expressions (Sohal and Chen 

> i > <t>2 > $ . lb ; 1984) in terms of the parameters: a, b, c, d,f, m, , m2, mj 
mmax , mmin and (EI)max, Fig. 1. However, in order to obtain the internal 
resisting moment corresponding to a given mid-span deflection, a relation
ship between the mid-span curvature and the mid-span displacement is 
needed. This relationship can be obtained by a double differentiation of the 
assumed deflected shape given by Eq. 1. For pin-ended beam-columns, the 
resulting relationship can be expressed as 

<t>/> = 
WmEI_ 
U M-y \ 

tr% + • 
1-fw 

2pi 
tan - I 

1 1 
23T2 l n 1 + 

40! 

For 0] = 0.04, the above expression reduces to 

(8) 

*p =Wmj£Uw + 3.9(1 -/„,)] (9a) 

in which Pcr is Euler's buckling load. For fix-ended beam-columns, the 
resulting relationship is 

W P 
$p = irw U» + i-95(i -/„)] (96) 

where the parameter/„, is taken the value one in the pre-buckling regime, 
and is given by Eq. 5 in the post-buckling regime. 

In the following sections, load-deflection expressions are obtained by 
equating the external moments due to the applied loads on the beam-
column to the internal resisting moments of the cross section in the elastic, 
primary yielded, secondary yielded and post-local buckling regimes of the 
M-P-<£> relationship. 

Elastic Regime 
In the elastic range, the internal resisting moment at mid-span can be 

expressed as 

minl = a(f>m = a($MQ + <)>/>) (10) 

where mint = MintIMy; a = stiffness constant; 4>,„ = ®m/%, and <j>Me = 
mMQ . For pin-ended beam-columns, by equating Eqs. la and 10 and by 
substituting $p from Eq. 9a, for W,„ £ WlP, the mid-span deflection Wm 
can be expressed as 

Wm = -
IMQ(\ ~ a) + mt + m0P 

a[/H, + 3 . 9 ( 1 - / J ] - p - M 

(Ha) 

For fix-ended beam-columns, for WJ2 WiF, we have 
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W,„ = 2 
mMQ{\ -a) + nii + m0P 

a[fw+ 1.95(1 -/„,)] ~ ^ - J ^ 

(11*) 

in which W1P and W1F are the elastic limit deflections for pin-ended and 
fix-ended beam-columns, respectively. The following expressions for these 
elastic limit deflections are obtained by substituting §P from Eq. 9 and §m 

= 4h inEq. 10. 

M, 
WiP = «,, - mMe)l p--I [ / w + 3 . 9 ( 1 _ / w ) ] 

1 

M, 
W l f - (0,, - mm)\ — I [ / w + L 9 5 ( 1 _ / ) v ) ] 

(12a) 

(12fo) 

Primary Yield Regime 
Similarly, by equating the external bending moment to the internal 

resisting moment in the primary yield range, the expressions for the 
mid-span displacement are obtained. For a pin-ended beam-column, for 
WlP s wm s W2P and Wm =£ W/bP, the resulting expression is 

2 

ITIMQ + mi + m0P — b + 
M, 

Wm 

mMQ + 7 7 Wm[fw + 3.9(1 -/„,)] = c 
M, 

- .̂2 (13a) 

For fix-ended beam-columns, for W1F < Wm/2 < W2F and WJ2 < W/fcF, 
the resulting expression is 

P Wir^
2 

mMQ + mi + m0P - b + jj- -~ 
Mv 

i m M2 + Wy "T [/»'+ L 9 5 ( 1 ~ / J ] \ = °2 (136) 

in which W2F and W2F are the primary yield limit deflections for pin-ended 
and fix-ended beam-columns, respectively, and W/bP and WibF are the 
deflections at the start of the local buckling for pin-ended and fix-ended 
beam-columns, respectively. W2P, W2F. WlbP and WlbF can be expressed 
as follows. 

W2P = (4>2 - mm)l-p 
Mx 1 

W2F = 
M, 

[/;„ +3.9(1-/„,)] 

1 
'IF- (4>2 - « W l / r I [fw+L95(i -A,)] 

/M v \ 1 

(14a) 

(14« 

(15a) 
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(My\ 1 
WlbF - («,,* - rnm)\- [ / i i i + 1 . 9 5 ( 1 _ / w ) ] • (15*) 

Secondary Yield Regime 
For pin-ended beam-columns, for W2P ^ W,„ s W/w>, we have 

mpc - mMQ - m, ~mQP~JJ W 

P I2 

mMQ + d + jf Wm[fw + 3.9(1 - / J ] = / . 

For fix-ended beam-columns, for W2F s WJ2 < W / i F , we have 

" V - mMQ - mi - w0/. - jfi- ~Y 

mMQ + d + ]^^Y LX + 1.95(1 - / J ] [ = / 

(16a) 

(16*) 

Post-Local-Buckling Regime 
For pin-ended beam-columns, for Wm a W;w., we have 

(wmax - mmin) exp 
M, 

Wm[/W + 3.9(1 -fw)l - 4>/fc (0). 

V^max ^ m i n / 
+ OT„ 

: wM 2 + mi + m0p + — W, (17a) 

For fix-ended beam-columns, for WJ2 > W/fcF, we have 

(mmax - mmJ exp 

j? -^ [ /„+ 1.95(1 - / J ] - 4 , 4 (£/)„ 
My 2 

("In W n 

+ mmin = mMQ + rrif + mQP + -^ - y (17*) 

Eqs. 11, 13, 16, and 17 are used to determine both the pre- and 
post-maximum deflections of a beam-column with a given value of axial 
thrust. Eqs. 11, 13, and 16 can be solved directly without any iteration. 
However, a few iterations are required to solve Eq. 17. 

LOAD-SHORTENING RELATIONSHIP 

The total axial shortening of a beam-column consists of two parts: (1) 
The axial shortening due to the axial strain; and (2) the axial shortening due 
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to the lateral deflection. Herein, the axial shortening of the beam-column 
is calculated by dividing the beam-column into a number of segments (N). 

The axial shortening due to the axial strain is calculated by (Chen and 
Han 1985; Toma and Chen 1983) 

*•=£(£)*« - < i 8 > 
in which e0, is the axial strain in segment /. The axial strain e0, is determined 
further in two additional steps. First, curvature is determined from the 
known mid-span deflection and weighting factor/,,,. Then, this curvature 
and the given axial thrust are used to determine the axial strain from the 
thrust-curvature-strain relationship. The thrust-strain (p-e) relationship, 
for a given curvature, is assumed to be unaffected by the change in the 
shape of the cross section. 

The axial shortening due to the lateral deflection is calculated by (Chen 
and Han 1985) 

(19) I 

in which Wu and W2i are the total deflections at the two ends of the 
segment /. The deflections Wv and W2I in Eq. 19 are determined by using 
Eq. 1. 

NUMERICAL STUDIES 

In this section, Newmark's method (Chen and Atsuta 1976) is used first 
to investigate the maximum strengths of concentrically loaded columns 
and of beam-columns with end moments. The modified assumed deflection 
method is used next to investigate the pre-buckling, post-buckling, and > 
post-local-buckling behavior of various beam-columns. The load-deflec
tion and load-shortening relationships computed in the present studies are > 
compared with those in which the effect of the local buckling of the cross 'i 
section was not considered (Toma and Chen 1983). Comparisons are also 
made with the experimental results. The effect of important parameters on 
the behavior and strength of beam-columns is also studied. 

Maximum Strength of Beam-Columns with Equal End Moments 
The maximum strength interaction curves computed both with and 

without considering the local buckling of cross section are compared with \ 
the available experimental data (Sherman 1981) in Fig. 4. The beam-
column with the effective slenderness ratio (KLIr) equal to 30 and the 
diameter-to-thickness ratio (D/t) equal to 77 is chosen for the comparison. 
In Fig. 4, Mp is the full plastic moment capacity of the tubular section, and 
Py is the yield axial load of the tubular section. There is a reasonably good 
agreement between the experimental results and the present interaction 
curve in which the effect of the local buckling of the cross section is ' 
considered. 

For beam-columns with KLIr = 40, 80, and 120, the maximum strength 
interaction curves obtained by considering the local buckling of the cross 

N L 
N~ ^) -W,-w2/)

2 
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section are compared with those obtained without considering the local 
buckling of the cross section, in Figs. 5-7 respectively. In general, the 
effect of the local buckling on the maximum strength increases as the 
diameter-to-thickness ratio increases and as the slenderness ratio de
creases. The effect of the local buckling on the beam-column strength (see 
Figs. 5-7) is found to be more severe for the axial load nondimensionalized 
with yield axial load (P/Py) between 0.1 and 0.4. This happens because 
sectional strength is more affected for PIPy = 0.1 to 0.4 (Sohal and Chen 
1987). 

The effect of the local buckling for the special cases of zero axial load is 
found to be the same for all ratios of KL/r. For this pure bending case, the 
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FIG. 6. Effect of Local Buckling on 
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maximum load-carrying capacity of members is independent of the length 
of members, and it depends only on the strength of the critical section. 

For the special case for which M = 0 (concentrically loaded columns, 
Figs. 5-7), the maximum load-carrying capacity of columns is not affected 
by the local buckling of the cross section. For these columns, the local 
buckling occurs in the post-maximum regions. 

Comparison of Behavior with Results without Local Buckling 
The beam-column with the slenderness ratio (L/r) equal to 80 and with 

the diameter-to-thickness ratio (Dlt) equal to 48 (most commonly used in 
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FIG. 8. Changes of Cross Section Along the Load-Deflection and Load-Shortening 
Curves for Pin-Ended Column: (a) Load-Deflection and Load-Shortening Curves; 
(to) Changes of Cross Sectors • ' 
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offshore frames) has been chosen for the present comparison. The out-
of-straightness is taken as 0.1%. 

Fig. 8(a) shows the comparison of the computed load-deflection and 
load-shortening curves of a pin-ended member under axial load. Before 
local buckling, there is a slight difference between the present results and 
those reported by Toma & Chen (1983). This difference is due to the use of 
the modified assumed deflection shape in the present study. The effect of 
the local buckling starts after the inelastic buckling of the column. In the 
post-buckling branch, the local buckling accelerates the decrease in axial 
load-carrying capacity of the member. The five-stage changes in the shape 
of the cross section during the post-local-buckling regime as marked in Fig. 
8(a) are shown in Fig. 8(b). 

The comparison for the same member in the presence of end moment 
and lateral load is shown in Fig. 9. For these cases, the post-local-buckling 
behavior is similar to the case of zero end moment and zero lateral load. 

Comparison of Behavior with Experimental Results 
The analytical load-deflection and load-shortening curves are compared 

with the experimental results (Sherman 1980) in Figs. 10 and 11. The 
fix-ended beam-columns both with and without lateral loads are chosen for 
the comparison. In both figures, a behavior trend can be observed, in that 
in the post-buckling regime, the local buckling of the cross section 
accelerates the reduction in the load-carrying capacity of a beam-column. 

The analytical results indicate that the local buckling of the cross section 
initiates at the higher loads than those indicated by experimental results. 
This may be due to the fact that the experimental results shown in Figs. 10 
and 11 were performed on beam-columns made from ERW (electrical 
resistance weld) tubes. The moment-curvature relationship used in the 
present study is based on the critical strains (strains at which the local 
buckling of the cross section starts) observed for fabricated tubes (Sohal 
and Chen 1987) which are most commonly used in offshore structures. The 
ERW tubes usually have lesser imperfections and higher critical strains, 
which delay the initiation of local buckling and result in higher load-
deflection and load-shortening curves in post-local-buckling regime. 

1085 

J. Struct. Eng. 1988.114:1073-1090.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
E

 L
A

V
A

L
 o

n 
07

/1
6/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



L
O

A
D

 P
 (

ki
p

s)
 

A
X

IA
L 

40-

30-

2 0 -

1 0 -

DEFLEOTION (MMI 

100 200 300 400 

A \ EXPERIMENTAL.SHERMAN (19801 

\ \ \TOMA & CHEN (1983) 

\v PRESENT—K \ '" - - . - . . 

200 

150 

100 

•so 

0 4 8 12 16 

DEFLECTION (In) 

SHORTENING (MM) 

25 50 75 

40-

3 0 -

20-

10-

r *l P-r - a F-
ID KL/r - 7 2 , D/l - 5 0 

K\ 
\ v N ^ 

0 1 2 3 

SHORTENING (in) 

100 

— P 

. 

FIG. 10. Comparison of Experimental and Numerical Results for Fix-Ended 
Column 

DEFLECTION (MMI 

100 200 300 400 

SHORTENING (MMI 

25 50 75 100 

I 
a. 

i 
i 
3 

< 

30-

20-

10-

0 -

p. ^EXPERIMENTAL.SHERMAN (19801 

\K 
\ ' ' • - , \TOMA 4 CHEN (19831 

\ "V' 
\ . x^. 

PRESENT ^ - ^ ^ v > , __ 

J\ " , - 1 — ' — ' — I 
I KL/r - 7 2 , D/t - 50 
\ q -Q /Qy - 0 . 2 

8 12 16 

DEFLECTION (In) SHORTENING (In) 

FIG. 11. Comparison of Experimental and Numerical Results for Fix-Ended Beam-
Column with Concentrated Lateral Loads 

In both figures, in general; the deflections and shortenings from the 
experiments are higher than those from the analysis. There are many 
factors contributing to this difference. In the analytical studies, the ends of 
the members are assumed perfectly restrained. In the experiments, the 
ends were welded to the tubes split lengthwise. The flexibility of the split 
tubes has resulted in additional shortenings and lateral deflections. The 
residual stresses and geometric imperfections produced by the end welds 
have not been considered in the present analysis. The other contributing 
factors might be the eccentricity of axial load and strain hardening of the 
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material. Note that if the experimental curves are shifted to match the peak 
points of the analytical curves, the post-buckling branches of the experi
mental curves would be much closer to those of the analytical curves 
obtained by considering the local buckling of the cross section. 
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FIG. 12. Effect of: (a) Diameter-to-Thickness Ratio; and (b) Slenderness Ratio on 
Member Behavior 
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Parametric Studies 
The parameters considered here are diameter-to-thickness ratio {DIt) 

and slenderness ratio (L/r). The effect of DIt on the behavior of a pin-ended 
tubular column is shown in Fig. 12(a). Two diameter-to-thickness ratios 
are considered: 36 and 72. For the member with DIt equal to 36, the effect 
of the local buckling starts at shortening approximately equal to 1.75 times 
the yield shortening Ay , and it is very small. For the member with DIt equal 
to 72, the effect of the local buckling starts at an axial shortening less than 
the yield shortening, and it is very severe. The steeper negative slopes of 
softening branches of moment-curvature curves for cross sections with 
higher D/t's contribute to the severe effect for members with higher D/fs. 

Fig. 12(b) shows the behavior of members with slenderness ratios (L/r) 
equal to 60, 80, and 100. The effect of the local buckling is greater for the 
column with slenderness ratio equal to 60 and it becomes lesser as 
slenderness ratio increases. In other words, columns are less sensitive to 
the decrease in strength of critical section. 

SUMMARY AND CONCLUSIONS 

A simple analytical method is proposed to include the effect of the local 
buckling on the maximum strength and behavior of tubular beam-columns. 

The maximum strength of concentrically loaded columns and eccentri
cally or laterally loaded beam-columns is investigated by using Newmark's 
method. The effect of the local buckling on the maximum strength of 
concentrically loaded columns can be ignored for all practical purposes. 
The maximum strength of beam-columns may significantly be affected by 
the local buckling of the cross section. The analytical maximum strength 
interaction curve for beam-columns, shows a reasonably good agreement 
with the available experimental results (Sherman 1981). 

The load-deflection expressions are developed by supplementing the 
modified deflection method with a complete moment-thrust-curvature 
relationship including the softening branch of the relationship due to the 
cross-sectional distortion. The load-deflection and load-shortening re
lationships of several beam-columns are investigated by using these 
expressions. In the post-buckling regime, the local buckling of the cross 
section accelerates the reduction in the strength of beam-columns. This 
acceleration in the reduction of the strength is mainly due to the softening 
in the moment-thrust-curvature relationship. The faster change in the 
deflected shape, from smooth elastic to bilinear mechanism shape, also 
contributes to the rapid reduction in the post-local-buckling strength of 
beam-columns. The trend of the analytical load-deflection and load-
shortening relationships is the same as that of the available experimental 
results. 

In general, the effect of the local buckling on the behavior and strength 
of beam-columns increases with an increase in diameter-to-thickness ratio 
and with a decrease in slenderness ratio. For the beam-columns with a 
diameter-to-thickness ratio equal to or greater than 48, the local buckling 
effect becomes significant; therefore, it must be considered in the analysis 
and design of tubular structures. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

a,b,c,d,f = constants defining the shape of moment-curvature 
curves; 

D = diameter of the tubular cross section; 
EI = bending rigidity; 
F = deflected shape function; 

/„, = a weighting factor representing the combination of 
deflected shapes; 

K = effective length factor; 
L = length of the beam-column; 

M = bending moment; 
m = bending moment normalized by the yield moment of 

the cross section; 
N = number of segments of the beam-column; 
P = axial thrust; 
p - axial thrust normalized by the yield axial thrust of the 

cross section; 
/- = radius of gyration; 
t - wall thickness of the beam-column; 

W = lateral deflection; 
x = distance along the beam-column; 
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$r = parameter defining the spread of curvature; 
p2 = parameter defining the rate of change of the deflection 

shape; 
A = axial shortening; 
e = axial strain; 

$ = curvature; and 
<j> = curvature normalized by the yield curvature of the 

cross section. 

1090 

J. Struct. Eng. 1988.114:1073-1090.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
E

 L
A

V
A

L
 o

n 
07

/1
6/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.




