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Abstract

This paper precedes chaos control of fractional-order chaotic systems in presence of uncertainty and
external disturbances. Based on some basic properties on fractional calculus and the stability theorems, we
present a hybrid adaptive intelligent backstepping-sliding mode controller (FAIBSMC) for the finite-time
control of such systems. The FAIBSMC is proposed based on the concept of active control technique. The
asymptotic stability of the controller is shown based on Lyapunov theorem and the finite time reaching to
the sliding surfaces is also proved. Illustrative and comparative examples and simulation results are given to
confirm the effectiveness of the proposed procedure, which consent well with the analytical results.
& 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

One of the mathematical topics with more than three centuries history is fractional calculus
theory which can be traced back to Leibniz, Riemann, Liouville, Grünwald, and Letnikov [1–3].
Although, it did not attract much attention for a long time, but, in the recent years, due to high
modeling accuracy of real physical systems by fractional order equations, these systems have
been increasingly used for modeling in many areas such as physics [4] and engineering [5]. In
interdisciplinary fields, many systems have been found which can be described by fractional
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differential equations. For instance, electrochemical processes [6], viscoelastic systems, dielectric
polarization and electromagnetic waves [2,7], and some biological systems [8] can be
encountered in this category. Applying latent possibilities of fractional calculus, in order to
improve the performance of classical controllers, is one of the recent applications of this
mathematical topic.
One of the phenomena which are frequently observed in the fractional order nonlinear systems

is chaos phenomenon. Chaotic systems are a prominent class of nonlinear systems, which have
various special properties, such as phenomenal sensitivity to system initial conditions, chaotic
attractors, and fractal motions. Study of chaotic systems with fractional orders is one of the
hottest research areas. Up to now, researchers have studied the fractional order nonlinear
dynamics of many popular chaotic systems, such as fractional order Lorenz system [9–11],
fractional order Rössler system [12,13], fractional order Chen system [12,14], fractional order Lü
system [15,16] and fractional order Genesio-Tesi system [17] and some other chaotic systems.
One of the most attractive topics in the nonlinear science which has been comprehensively
studied in the recent decades is Chaos control and synchronization. Therefore, many control
procedures such as sliding mode control (SMC) [18–22], linear control [23], adaptive control
theory [24–26], backstepping control [27–30], active control [31], fuzzy sliding mode control
[32], adaptive sliding mode control [33,34] and some other methods [35–38] have been
successfully applied to chaos control and synchronization. Backstepping method is a recursive
procedure which was proposed for designing controls for a special type of nonlinear dynamical
systems by choosing Lyapunov functions skillfully and a systematic design approach, and it can
guarantee global stability, good tracking and transient performance for most of strict-feedback
systems. Therefore, it has become one of the important and popular approaches for nonlinear
systems [39,40]. Sliding mode control technique has been known as a powerful strategy to
design robust control for linear and nonlinear systems in recent years. The significant
superiorities of SMC are its robustness to parameters uncertainty and its immutability to external
disturbances. It is also a strong robust procedure for controlling the nonlinear dynamic systems
[41–43], especially for uncertain systems. It has been studied extensively and received many
applications due to its insensitivity to system parameter variations, external disturbances
rejection, fast dynamic and good transient response which made it applicable for the control
problem of chaotic system [18–22,32–34]. In this control scheme, for conducting an effective
switching surface and guaranteeing the stability of an SMC system, a good estimation of the
uncertainty bound, including the unknown dynamics, parameter variation, and external
disturbance must be available at the outset of the design. Since, in practice, such bounds
cannot be estimated easily, some conservative control strategies are also need to be applied for
ensuring stability of the closed loop system.
Due to the universal approximation ability of fuzzy systems and neural networks it has been

widely used in chaos control problems [44–46]. Recently, the learning abilities of neural
networks to realize to design of fuzzy systems have been recognized as a powerful approach
[47]. The neuro-fuzzy-network (NFN) possesses the merits of low-level learning and
computation power of neural networks, and the high-level human-like thinking and reasoning
of fuzzy theory. However, in complicated situations, where plant parameters are subject to
perturbations or when the dynamics of the systems are too complex for a mathematical model to
describe, adaptive schemes should be used online to gather data and adjust the control
parameters, automatically.
Recently, many significant results have been obtained by using hybrid adaptive intelligent

control techniques for uncertain chaotic systems [48–53]. For fractional-order systems, this idea
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has been extended to some extent, by the researchers, in the literature. For example, in [54],
uncertain fractional-order Liu system is controlled via fuzzy fractional-order sliding mode
method. In [55], adaptive fuzzy sliding mode control has been employed for synchronization of
uncertain fractional order chaotic systems, in which, a fuzzy Lyapunov synthesis approach is
proposed to tune free parameters of the adaptive fuzzy controller on line by output feedback
control law and adaptive law. Synchronization of uncertain fractional order chaotic systems via
adaptive interval type-2 fuzzy sliding mode control was considered in [56] to handle high level
uncertainties facing the fuzzy logic controller (FLC) in dynamic fractional order chaotic systems
such as uncertainties in inputs to the FLC, uncertainties in control outputs, linguistic
uncertainties and uncertainties associated with the noisy training data. In [57], an adaptive
fuzzy sliding mode control was designed to synchronize two different uncertain fractional-order
time-delay chaotic systems, where, the adaptive time-delay fuzzy-logic system is constructed to
approximate the unknown fractional-order time-delay-system functions. In [58], the design of
adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems was
studied for a class of high-order nonlinear systems while the structure of the system is unknown
and no prior knowledge about uncertainty is available. The proposed scheme was employed to
construct equivalent control term and an Adaptive Proportional-Integral (A-PI) controller for
implementing switching term to provide smooth control input. Next attempt ([59]) deals with the
synchronization for Arneodo chaotic system and response system with unknown nonlinear
function. Based on backstepping method, a fuzzy adaptive control scheme by combining fuzzy
logic system with parameter was presented to achieve synchronization. In [60], a fractional-
order adaptive intelligent controller was designed based active control method, in which, the
unknown boundaries of the lumped uncertainties are estimated via an adaptive neuro-fuzzy
approximator.

In this paper, in order to merge the capabilities of backstepping control and sliding mode
control, an adaptive intelligent backstepping sliding mode controller is proposed for stabilization
of fractional order chaotic systems in finite time. The intelligent neuro-fuzzy controller is used to
estimate unknown functions. The use of auxiliary controller is in order to improve velocity and
performance of the proposed control system and to dispel the uncertainties, external disturbances
and error approximation. These three factors are unknown bounded, and so the controller will
take advantage of robust adaptive design. In design of the control law, neuro-fuzzy network
parameters and the uncertainties bound estimator, external disturbances bound estimator and
approximation error, are adjusted as an adaptive scheme. The asymptotic stability of the
controller is shown based on Lyapunov theorem and the finite reaching time to the sliding
surfaces is also proved. The results are indicative of the Lyapunov stability of the closed loop
system, robustness against uncertainties, external disturbances and approximation errors, while
the control signal remains bounded.

The rest of this paper is organized as follows: In Section 2, the definitions and some basic
properties of fractional calculus are introduced. Section 3, presents dynamic models of fractional
order chaotic systems which are used in this paper and in Section 4 description of the neuro-
fuzzy network structure is presented. Problem description is described in Section 5. Numerical
simulation results which confirm the validity and feasibility of the designed controllers, are
shown in Section 6. Finally, conclusions are given in Section 7.
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2. Preliminaries on fractional calculus

Three of the most prominent definitions which are used for fractional derivatives are:
Riemann-Liouville, Grunwald-Letnikov, and Caputo definitions. Caputo definition is extensively
utilized in engineering applications since it takes on the same form as for integer-order
differential equations in the initial conditions. Therefore, the following sections are based on
Caputo derivative definition.

Definition 1. The Caputo fractional derivative of order α of a continuous function f :Rþ-R is
defined as:

1
Γðm�αÞ

R t
0

f mð ÞðτÞ
ðt� τÞα�mþ1 dτ; m�1oαom

dm

dtm f tð Þ; α¼m

8<
: ð1Þ

where Γ is the well-known Gamma function, and

ΓðzÞ ¼
Z t

0
e� t tz�1dt; and Γðzþ 1Þ ¼ zΓðzÞ ð2Þ

It should be noted that the fractional integral of order α40 is denoted by D�α
t . In what

follows, we list several basic facts of fractional derivatives and integrals.

Fact 1. For α¼ n, where n is an integer, the operation Dn
t f ðtÞ gives the same result as classical

calculus of integer-order n. In particular, When α¼ 1, the operation D1
t f ðtÞ coincides with the

ordinary derivative df ðtÞ=dt.

Fact 2. For α¼ 0, the operation Dα
t f ðtÞ is the identity operation:

D0
t f ðtÞ ¼ f ðtÞ ð3Þ

Fact 3. Similar to integer-order calculus, fractional differentiation and fractional integration are
both linear operations.

Dα
t ½af tð Þ þ bg tð Þ� ¼ aDα

t f tð Þ þ bDα
t gðtÞ ð4Þ

where a and b are constants.

Fact 4. The additive law of exponents (semi-group property) holds.

Dα
t D

β
t f tð Þ ¼Dα

t D
β
t f tð Þ ¼Dαþβ

t f ðtÞ ð5Þ

Fact 5. For α40, the following equation holds:

Dα
t D

�α
t f tð Þ ¼D0

t f tð Þ ¼ f ðtÞ ð6Þ
Which means that the fractional differentiation operator is a left inverse to the fractional
integration operator of the same order a.
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Lemma 2.1. (Fractional order extension of Lyapunov direct method [61]). Let x¼ 0 be an
equilibrium point for either Caputo or RL fractional non-autonomous system:

Dq
t x tð Þ ¼ f ðx; tÞ ð7Þ

where qA ð0; 1Þ and f ðx; tÞ satisfies the Lipschitz condition with Lipschitz constant l40. Assume
that there exits a Lyapunov function Vðt; x tð ÞÞ satisfying

α1‖x‖arVðt; xðtÞÞrα2‖x‖
_V t; xð Þr�α3 xkk ð8Þ

where α1; α2; α3 and a are positive constants and ‖:‖denotes an arbitrary norm. Then the
equilibrium point of system (7) is asymptotically stable.

Lemma 2.2. (Barbalat's lemma [62]). If η:R-R is a uniformly continuous function for tZ0 and
if the limit of the integral

R t
0 ηðωÞdω exists and is finite, then lim

t-1
ηðtÞ ¼ 0.
3. The example systems description

3.1. The fractional order energy resources demand–supply system

The fractional order energy resources demand–supply system is described as follows [63]:

Dq1x1 ¼ a1x1 1�x1=M
� ��a2 x2 þ x3ð Þ

Dq2x2 ¼ b1x2�b2x3 þ b3x1 N�ðx1�x3Þð Þ
Dq3x3 ¼ c1x3 c2x1�c3ð Þ ð9Þ

where ða1; a2; b1; b2; b3; c1; c2; c3;M;NÞ ¼ ð0:1; 0:3; 0:01; 0:02; 0:2; 0:5; 0:8; 0:1; 2; 1Þ and
q¼ ½0:98; 0:85; 0:92�, the system shows chaotic behavior as shown in Fig. 1.
Fig. 1. The chaotic attractor of the fractional order energy resources demand–supply system.
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3.2. The fractional order Chen system

The fractional order Chen system is given as follows [14]:

Dqx1 ¼ β1ðx2�x1Þ
Dqx2 ¼ β2�β1

� �
x1�x1x3 þ β2x2

Dqx3 ¼ x1x2�β3x3 ð10Þ
where β1 ¼ 35; β2 ¼ 28; β3 ¼ 3, By choosing q¼ 0:995, system of Eq. (10) has chaotic attractor
as seen in Fig. 2.
4. Neuro-fuzzy network estimator

Recently, neuro-fuzzy networks have been demonstrated in a lot of researches such as control
application and information processing [46,47,64]. Neuro-fuzzy networks have the advantages of
fuzzy systems and neural networks, simultaneously: one is the inference characteristic of the
fuzzy system; and the other one is the learning ability of the neural network which can be applied
for the adjustment of the fuzzy rules. The architecture of a hybrid neuro-fuzzy system is shown in
Fig. 3. Fig.4 shows the structure of a hybrid five layer NFN, which is comprised of the input, the
membership, the rule, the normalization, and the output layers. In following, the operation
functionalities of the nodes in each layer of the NFN model are described, in short. In the
following description, yðlÞ denotes the output of a node in the lth layer.
Fig. 2. The chaotic attractor of the fractional order Chen system.

Input data Fuzzification 
Layer

Fuzzy Rule 
Layer

Defuzzification 
Layer

Output data 

Fig. 3. The schematic diagram of a hybrid neuro-fuzzy network.
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Layer 1 (Input layer): No computation is performed in this layer. Each node in this layer is an
input node, which corresponds to one input variable, and only transmits input values to the
next layer directly:

yð1Þi ¼ xi; i¼ 1; 2;…; n ð11Þ
Layer 2 (Membership function layer): Nodes in this layer correspond to a single linguistic

label of the input variables in Layer 1. Therefore, the calculated membership value specifies the
degree to which an input value belongs to a fuzzy set in layer 2. The implemented Gaussian
membership function in layer 2 is:

yð2Þij ¼ exp �
y 1ð Þ
i �mij

h i2
2sij2

0
B@

1
CA; i¼ 1; 2;…; n;j¼ 1; 2;…;M ð12Þ

where mijand sij are the mean and variance of the Gaussian membership function, respectively,
related to the jth term of the ith input variable xi.

Layer 3 (Rule layer): Nodes in this layer represent the preconditioned part of a fuzzy logic
rule. They receive one-dimensional membership degrees of the associated rule from the nodes
of a set in layer 2. Here, the product operator is adopted to perform the IF condition matching
of the fuzzy rules. As a result, the output function of each inference node is:

Sð3Þj ¼ yð3Þj ¼∏
i
yð2Þij ; i¼ 1; 2;…; n;j¼ 1; 2;…;M ð13Þ

Layer 4 (Normalization layer): Nodes in this layer are called normalization nodes. The inputs
to a node in layer 4 are the outputs of layer 3. For such a node, we have:

Sð4Þj ¼ yð4Þj ¼ yð3Þj

XM
k ¼ 1

yð3Þk

 !
; j¼ 1; 2;…;M

,
ð14Þ

Layer 5 (Output layer): Each node in this layer corresponds to a single output variable. The
node integrates all of the actions recommended by linear combination of outputs of layers
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4 and parameter vector W ¼ ½w1;w2;…;wM �T and acts as a defuzzifier with:

O¼
XM
k ¼ 1

wky
ð4Þ
k ¼WTS ð15Þ

Remark 1. It is assumed that the structure of the NFN system and the membership function
parameters are properly specified in advance by the designer. This means that the designer
decision is needed to determine the structure of the NFN system, that is, pertinent inputs, number
of membership functions for each input, membership function parameters, and number of rules
and the consequent parameters, i.e., W , must be calculated by learning adaptive algorithms.
5. Problem formulation and the proposed hybrid adaptive intelligent controller design

Consider a class of fractional uncertain chaotic systems which can be described by the
following differential equation:

Dq1x1 ¼ f 1 x1; x2; x3ð Þ þ Δf 1 xð Þ þ d1 tð Þ þ U1 tð Þ
Dq2x2 ¼ f 2 x1; x2; x3ð Þ þ Δf 2 xð Þ þ d2 tð Þ þ U2 tð Þ
Dq3x3 ¼ f 3 x1; x2; x3ð Þ þ Δf 3ðxÞ þ d3 tð Þ þ U3ðtÞ ð16Þ

where xi i¼ 1; 2; 3ð Þ are the system states, f iði¼ 1; 2; 3Þ are unknown continuous functions, and
Ui tð Þði¼ 1; 2; 3Þ denote the control inputs. Besides, Δf i xð Þði¼ 1; 2; 3Þ are the plant uncertainties
and di tð Þði¼ 1; 2; 3Þ denote the unknown, but bounded external disturbance applied to the
system. It is desired to design a robust controller against the uncertainties in the system model,
uncertainties and the disturbances. For this purpose, the fractional adaptive intelligent back
stepping-sliding mode controller (FAIBSMC) is proposed. The controller design procedure can
be described as:

Step 1. Assume that z1 ¼ x1, then its derivative can be obtained as:

Dq1z1 ¼ f 1 z1;φ1ðz1Þ;φ2 z1; z2ð Þ� �þ l1ðt; zÞ þ U1 tð Þ ð17Þ
where l1ðt; zÞ ¼ Δf 1 xð Þ þ d1 tð Þ refers to the lumped uncertainty. Besides, x2 ¼ φ1ðz1Þ and
x3 ¼ φ2 z1; z2ð Þ are considered as virtual controllers which should be determined. The sliding
surface can be chosen as:

s1 ¼ k1D
�1z1 þ Dq1�1z1 ð18Þ

where k140 is the sliding surface parameter which will be chosen, later. According to sliding
mode method, the condition which guarantees the trajectory of the system arrives at the sliding
surface is s1 _s1o0, and the existence of the sliding mode requires the following conditions to be
satisfied:

s1 ¼ 0 ð19Þ

_s1 ¼ 0 ð20Þ
That is,

_s1 ¼ k1z1 þ Dq1z1 ¼ 0
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¼ f 1 z1;φ1 z1ð Þ;φ2 z1; z2ð Þ� �þ l1 t; zð Þ þ U1 tð Þ þ k1z1 ¼ 0 ð21Þ
Then, the ideal equivalent control law U1

� tð Þ can be derived as follows:

U1
� tð Þ ¼ � f 1 z1;φ1 z1ð Þ;φ2 z1; z2ð Þ� �� l1 t; z1ð Þ�k1z1 ð22Þ

It has been shown that there exists an ideal sliding mode controller for achieving control
objectives for the mentioned subsystem in (22). Now, it is turn to show how to develop a neuro-
fuzzy network system to adaptively approximate the unknown continuous function. If it is
considered that

Dq1φ1 z1ð Þ ¼ �k21z1 ð23aÞ

Dq2φ2 z1; z2ð Þ ¼ �k31z1�k32z2 ð23bÞ
where k21, k31; and k32 are constants and z2 ¼ x2�φ1 z1ð Þ (which is ideally equal to zero).
Therefore, it is concluded that f 1 z1;φ1 z1ð Þ;φ2 z1; z2ð Þ� �¼ f 1 z1ð Þ. By the universal approximation
theory, there exists an ideal NFN estimator W1

T�
ϕðz1Þ such that

f 1 z1ð Þ ¼W1
T
n

ϕðz1Þ þ δ1 ð24Þ
where δ1 is an approximation error and W1

n

is the optimal value of the parameter W1. Since the
optimal NFN cannot be obtained, an NFN estimator is used to estimate the optimal NFN; this
NFN estimator is defined as:

f̂ 1 z1ð Þ ¼ Ŵ
T
1ϕðz1Þ ð25Þ

where Ŵ1 is the estimated matrix of W1
n

. Parameter W1
n

is determined through the following
optimization problem:

W1
n

9argmin sup W1
Tϕðz1Þ� f 1 z1ð Þ

���� �� ð26Þ

Assumption 1. We consider that the unknown uncertainties Δf i xð Þ and the external disturbances
di tð Þ are to be bounded as:

Δf i xð Þ
��rα1i zi þα2ijj

�� ð27Þ

d1 tð Þ
��rα3i

�� ð28Þ
where α1i, α2i and α3i are unknown positive parameters.

Assumption 2. The approximation error δi and the lumped uncertainty li t; zð Þ satisfy the
following conditions:

liðt; zÞ
��rλ1i zi þλ2ijj

�� ð29Þ

δi
��rλ3i

�� ð30Þ
where λ1i, λ1i and λ3i are unknown positive parameters.
Then, the following robust controller based on neuro-fuzzy network can be constructed as:

U1 ¼U11 þ UNFN1 þ URob1 ð31Þ
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In Eq. (26), the signals U11, UNFN1 and URob1 can be designed as:

U11 ¼ �k1z1�γ1s1 ð32Þ

UNFN1 ¼ �Ŵ
T
1ϕðz1Þ ð33Þ

URob1 ¼ � λ̂11 z1
��þ λ̂21 þ λ̂31

�� i
Sgnðs1Þ

h
ð34Þ

In the robust controller designed in (30), U11 is a state feedback controller, which is used to
control the nominal error system, UNFN1 is a neuro-fuzzy network controller which is used to
control the unknown assistant function and URob1 is an adaptive controller which is used to
compensate the approximation errors, lumped uncertainty and effects of the functions
approximations in the design process on the controlled system.

Theorem 1. Consider the fractional-order z1-subsystem of Eq. (17) with unknown bounded
uncertainties and external disturbances. The controller structure is designed as described in Eqs.
(31)–(34). If the on-line adapting laws for parameters are as follows:

_̂W 1 ¼ θ1s1ϕðz1Þ ð35Þ

_̂λ 11 ¼ l11 s1 z1jjjj ð36Þ

_̂λ 21 ¼ l21 s1jj ð37Þ

_̂λ 31 ¼ l31 s1jj ð38Þ
where θ1, l11, l21, l31 are the learning rates with positive constants, then the tracking error
converge asymptotically to the origin and all signals in the closed loop system are bounded.

Proof. Let the Lyapunov functional candidate be given by:

V1ðtÞ ¼
1
2
s1

2 þ 1
2θ1

~W
T
1
~W 1 þ

1
2l11

~λ
T
112þ

1
2l21

~λ
T
212þ

1
2l31

~λ
T
312 ð39Þ

where ~W 1 ¼W1�Ŵ 1, ~λi1 ¼ λi1� λ̂i1ði¼ 1; 2; 3Þ. The time derivative of V1 along the trajectories
of the z1-subsystem of Eq. (17) is obtained as:

_V 1ðtÞ ¼ s1 _s1�
1
θ1

~W
T
1
_̂W 1�

1
l11

~λ11
_̂λ 11�

1
l21

~λ21
_̂λ 21�

1
l31

~λ31
_̂λ 31 ð40Þ

Substituting (21) into (40), it results in:

_V 1ðtÞ ¼ s1½k1z1 þ Dq1z3��
1
θ1

~W
T
1
_̂W 1�

1
l11

~λ11
_̂λ 11�

1
l21

~λ21
_̂λ 21�

1
l31

~λ31
_̂λ 31 ð41Þ

By augmentation of Eqs. (17) and (41), it yields:

_V 1 ¼ s1 k1z1 þ f 1 z1;φ1 z1ð Þ;φ2 z1; z2ð Þ� �þ l1 t; zð Þ þ U1 tð Þ� �� 1
θ1

~W
T
1
_̂W 1�

1
l11

~λ11
_̂λ11

� 1
l21

~λ21
_̂λ 21� 1

l31
~λ31

_̂λ 31 ð42Þ
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where φ1 z1ð Þ and φ2 z1; z2ð Þ are considered as in Eqs. (23a) and (23b) and from Eqs. (24) and
(25), with applying U11 and ideal intelligent estimator, the following result can be obtained as:

_V 1 tð Þ ¼ s1 W1
T�
ϕ z1ð Þ þ δ1 þ l1 t; zð Þ�γ1s1 þ UNFN1 þ URob1

� �� 1
θ1

~W
T
1
_̂W 1�

1
l11

~λ11
_̂λ11

� 1
l21

~λ21
_̂λ21�

1
l31

~λ31
_̂λ31 ð43Þ

With applying URob1 and UNFN1 , Eq. (43) can be rewritten as:

_V 1ðtÞ ¼ s1 W1
T�
ϕ z1ð Þ þ δ1 þ l1 t; zð Þ�γ1s1�Ŵ

T
1ϕ z1ð Þ� λ̂11 z1

��þ λ̂21 þ λ̂31
�� i

Sgn s1ð Þ
h ih

� 1
θ1

~W
T
1
_̂W 1� 1

l11
~λ11

_̂λ 11� 1
l21

~λ21
_̂λ 21� 1

l31
~λ31

_̂λ 31 ð44Þ

Accordingly, one obtains:

_V 1ðtÞ ¼ s1 ~W
T
1ϕ z1ð Þ þ δ1 þ l1 t; zð Þ�γ1s1�

h
λ̂11
��z1��þ λ̂21 þ λ̂31

i
Sgn s1ð Þ

	
� 1

θ1
~W
T
1
_̂W 1




� 1
l11

~λ11
_̂λ11� 1

l21
~λ21

_̂λ21� 1
l31

~λ31
_̂λ31 ð45Þ

Using the adaptive laws in (35)–(38) and substituting s1:Sgn s1ð Þ with s1jj , it is clear that
Eq. (45) can be rewritten as:

_V 1 ¼ ~W
T
1 s1ϕ z1ð Þ� 1

θ1
_̂W 1

	
þ s1 δ1 þ l1 t; zð Þ½ ��js1j

h
λ̂11
��z1��þ λ̂21 þ λ̂31

i
�γs1

2




� 1
l11

~λ11
_̂λ11�

1
l21

~λ21
_̂λ21�

1
l31

~λ31
_̂λ31 ð46Þ

Eq. (46) can be rewritten as:

_V 1ðtÞ ¼ s1 δ1 þ l1ðt; zÞ½ ��js1j λ̂11
��z1��þ λ̂21 þ λ̂31

h i
�γs1

2�js1j ~λ11
��z1��þ ~λ21 þ ~λ31

� �
ð47Þ

It is obvious that:

_V 1r js1j
�jδ1j þ jl1ðt; zÞ

����js1j
h
λ̂11
��z1 þλ̂21 þ λ̂31

i���
�γs1

2�js1j ~λ11jz1j þ ~λ21 þ ~λ31
� � ð48Þ

where ~λi1 ¼ λi1� λ̂i1ði¼ 1; 2; 3Þ, we have:

_V 1r js1j
h
jδ1j þ

��l1ðt; zÞ��i�js1j
h
λ̂11jz1j þ λ̂21 þ λ̂31

i
�γs1

2� s1 ~λ11 z1 þ~λ21 þ ~λ31
�� �������� ð49Þ

Eq. (49) can be rewritten as:

_V 1ðtÞr
��s1 l1ðt; zÞ �λ11 z1

���λ21
�� �þ s1 δ1

���λ31
�� ��γs1

2
������������ ð50Þ

According to Assumption 2, Eq. (50) can be rewritten as:

_V 1ðtÞr js1j
h��l1ðt; zÞ���λ11

��z1���λ21
i
þ js1j

�jδ1j�λ31
��γs1

2r0 ð51Þ
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Since _V 1 is negative semi definite, the stability in the Lyapunov sense is proved. It can imply
that all signals in the closed loop system are bounded. That is:

_V 1ðtÞr s1 l1ðt; zÞ �λ11 z1 �λ21j � þ s1 δ1 �λ31j ��γs1
2 � �QðtÞr0

������������������ ð52Þ
Integrating QðtÞ with respect to time, it gives:Z t

0
Q tð ÞdtrV1 0ð Þ�V1 tð Þ ð53Þ

Because V1 0ð Þ is bounded, and V1 tð Þ is nonincreasing and bounded (based on Eq. (51), the
following result can be obtained:Z t

0
Q tð Þdtr1 ð54Þ

In addition, since _Q tð Þ is bounded, according to Lemma 2.2 (Barbalat's Lemma), it can be
shown that:

lim
t-1

Q tð Þ ¼ 0 ð55Þ

Eq. (55) implies that, s1ðtÞ-0 as t-1. Therefore, the state trajectories of the controlled
z1-subsystem of Eq. (17) can be forced onto the predefined sliding surface. This proved that the
fractional z1-subsystem of Eq. (17) with uncertainty and external disturbance can be stabilized
via the proposed control law of Eq. (31). Therefore, the proof is completed.

Remark 2. It is worth mentioning that the learning rates are selected by means of trial and error
considering the design requirements. The selection of these parameters affects the convergence
rate of the adaptive parameters, and consequently the convergence of the system's response. □

Theorem 2. For the given fractional subsystem of Eq. (17), when the sliding surface is defined
as Eq. (18), and U1 defined as in Eqs. (31)–(34), then the system trajectories converge to the
sliding surface in finite time.

Proof. Choosing a Lyapunov candidate function in the following form:

V11ðtÞ ¼
1
2
s1

2 ð56Þ

Taking the time derivative of V11 and following the same procedure of Eqs. (40)–(51), we
have:

_V 11 tð Þr js1j½jl1 t; zð Þj�λ11 z1j�λ21j �r�js1j ¼ �
ffiffiffi
2

p

2
V

1
2
11ðtÞ ð57Þ

From simple calculation, we get:

dtr�
ffiffiffi
2

p
V

� 1
2

11 dV11 ð58Þ
Taking integral of both sides of (58) from t0 to the reaching time tr and letting V11 trð Þ ¼ 0

(from Theorem 1), we have:

trr t0 þ 2
ffiffiffi
2

p
V11ðt0Þ ð59Þ
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Denoting the reaching time as T1ðt0Þ ¼ tr� t0, the proof results in:

T1ðt0Þr2
ffiffiffi
2

p
V11ðt0Þ ð60Þ

Therefore, the state trajectories of the mentioned fractional subsystem converge to the surface
s1 ¼ 0 in finite time and the proof is completed. □

Step 2. Since the virtual control function φ1ðz1Þ is estimative, the error between x2 and φ1ðz1Þ is
defined as follows:

z2 ¼ x2�φ1ðz1Þ ð61Þ
Thus, based on Eqs. (16), (17) and (23), the ðz1�z2Þ-subsystem dynamics can be represented

as:

Dq1z1 ¼ f 1 z1;φ1ðz1Þ;φ2 z1; z2ð Þ� �
þl1ðt; zÞ�k1z1�γ1s1�Ŵ

T
1ϕðz1Þ�½λ̂11 z1 þλ̂21 þ λ̂31�Sgnðs1Þ

����
Dq2z2 ¼ f 2 z1; z2 þ φ1ðz1Þ;φ2 z1; z2ð Þ� �þ k21z1 þ l2ðt; zÞ þ U2 tð Þ ð62Þ

In order to stabilize the ðz1�z2Þ-subsystem of Eq. (62), the sliding surface can be chosen as:

s2 ¼ k2D
�1z2 þ Dq2�1z2 ð63Þ

where k2 is a positive constant which to be designed later. Similar to first step, the condition
which guarantees the trajectory of the system arrives at the sliding surface is s2_s2o0, that
requires the following conditions to be satisfied:

s2 ¼ 0 ð64Þ

_s2 ¼ 0 ð65Þ

_s2 ¼ k2z2 þ Dq2z2 ¼ f 2 z1; z2 þ φ1ðz1Þ;φ2 z1; z2ð Þ� �þ k21z1 þ l2ðt; zÞ þ U2 tð Þ
þk2z2 ¼ 0 ð66Þ

From Eq. (23), the ideal equivalent control U2
� tð Þ is calculated by:

U2
� tð Þ ¼ � f 2 z1; z2ð Þ� l2 t; z2ð Þ�k2z2�k21z1 ð67Þ

Similarly will be shown that how to develop a neuro-fuzzy network system to adaptively
approximate the unknown continuous function, there exists an ideal NFN estimatorW2

T�
ϕðz1; z2Þ

such that:

f 2 z1; z2ð Þ ¼W2
T�
ϕðz1; z2Þ þ δ2 ð68Þ

where δ2 is an approximation error, and W2
� is the optimal value of the parameter W2. Since

the optimal NFN cannot be obtained, an NFN estimator is used to estimate the optimal NFN.
This NFN estimator is defined as:

f̂ 2 z1; z2ð Þ ¼ Ŵ
T
2ϕðz1; z2Þ ð69Þ

And Ŵ 2 is the estimated matrix of W2
�. Parameter W2

�is determined through following
optimization problem:

W2
�9arg min sup W2

Tϕðz1; z2Þ� f 2 z1; z2ð Þ
���� �� ð70Þ
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Next, the robust controller based on neuro-fuzzy network is computed by:

U2 tð Þ ¼U21 þ UNFN2 þ URob2 ð71Þ
In Eq. (66), the signals U21, UNFN2 and URob2 can be designed as:

U21 ¼ �k21z1�k2z2�γ2s2 ð72Þ

UNFN2 ¼ �Ŵ
T
2ϕðz1; z2Þ ð73Þ

URob2 ¼ �
h
λ̂12
��z2��þ λ̂22 þ λ̂32

i
Sgnðs2Þ ð74Þ

In the robust controller designed in Eq. (71), U21 is a state feedback controller, which is used
to control the nominal error system, UNFN2 is a neuro-fuzzy network controller which is
employed to control the unknown assistant function and URob2 is an adaptive controller which is
employed to compensate the approximation errors, lumped uncertainty and effects of the
function approximations in design process on the controlled system.

Theorem 3. Consider the fractional-order ðz1�z2Þ-subsystem of Eq. (62) with unknown
bounded uncertainties and external disturbances. Then, the controller structure is designed as
described in Eqs. (72)–(74). If the on-line adapting laws for parameters are as follows:

_̂W 2 ¼ θ2s2ϕðz1; z2Þ ð75Þ
_̂λ 12 ¼ l12 s2 z2jjjj ð76Þ
_̂λ 22 ¼ l22 s2jj ð77Þ
_̂λ 32 ¼ l32 s2jj ð78Þ

where θ2, l12, l22, l32 are the learning rates with positive constants, then the tracking error
converge asymptotically to origin and all signals in the closed loop system are bounded. Besides,
the system trajectories converge to the sliding surface in finite time.

Proof. Let the Lyapunov functional candidate be given by:

V2 ¼ V1 þ 1
2
s2

2 þ 1
2θ2

~W
T
2
~W 2 þ 1

2l12
~λ
T
122þ

1
2l22

~λ
T
222þ

1
2l32

~λ
T
322 ð79Þ

where ~W 2 ¼W2�Ŵ 2, ~λi2 ¼ λi2� λ̂i2ði¼ 1; 2; 3Þ. Similar to the proof of Theore.1, it can be
shown that by applying controller U2 tð Þ to the ðz1�z2Þ-subsystem, _V 2r0 which will be shown
that following ðz1�z2Þ-subsystem is stable and state trajectories of the controlled ðz1�z2Þ-sub-
system (62) can be forced onto the predefined sliding surface. This proved that the fractional
ðz1�z2Þ-subsystem (62) with uncertainty and external disturbance can be stabilized via the
proposed control law (71).
Next, by choosing an auxiliary Lyapunov candidate function in the following form:

V22ðtÞ ¼
1
2
s2

2 ð80Þ

and following the same procedure as the proof of Theorem 2, it can be shown that the trajectories
converge to the sliding surface s2 in finite time, as well.
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Step 3. Suppose that z3 ¼ x3�φ2 z1; z2ð Þ, then the dynamic of z1�z2�z3ð Þ-system is
represented as:

Dq1z1 ¼ f 1ðz1;φ1ðz1Þ;φ2 z1; z2ð Þ
þl1 t; zð Þ�k1z1�γ1s1�Ŵ

T
1ϕ z1ð Þ�

h
λ̂11
��z1 þλ̂21 þ λ̂31

i
Sgnðs1Þ

���
Dq2z2 ¼ f 2 z1; z2 þ φ1ðz1Þ;φ2 z1; z2ð Þ� �þ l2 t; zð Þ�k2z2�γ2s2�Ŵ

T
2ϕ z1; z2ð Þ

��λ̂12��z2 þλ̂22 þ λ̂32
�
Sgnðs2Þ

��
Dq3z3 ¼ f 3 z1; z2 þ φ1 z1ð Þ; z3 þ φ2 z1; z2ð Þ� �þ l3 t; zð Þ þ U3 tð Þ þ k31z1 þ k32z2 ð81Þ

The sliding surface can be chosen as:

s3 ¼ k3D
�1z3 þ Dq3�1z3 ð82Þ

where k3 is a positive constant which is to be designed later. Similar to previous steps, the
condition which guarantees the trajectory of the system attains to the sliding surface is s3 _s3o0,
that requires the following conditions to be satisfied:

s3 ¼ 0 ð83Þ
_s3 ¼ 0 ð84Þ
_s3 ¼ k3z3 þ Dq3z3 ¼ f 3 z1; z2; z3ð Þ þ l3 t; zð Þ þ U3 tð Þ þ k31z1 þ k32z2 þ k3z3 ¼ 0 ð85Þ

Then, the ideal equivalent control U3
� tð Þ is computed as:

U3
� tð Þ ¼ � f 3 z1; z2; z3ð Þ� l3 t; zð Þ�k31z1�k32z2�k3z3 ð86Þ

Following the same procedure as the past steps, it will be shown that a neuro-fuzzy network
system which approximate the unknown continuous function, an ideal NFN estimator
W3

T�
ϕðz1; z2; z3Þ exists such that:

f 3 z1; z2; z3ð Þ ¼W3
T�
ϕðz1; z2; z3Þ þ δ3 ð87Þ

In Eq. (87), δ3 is an approximation error and W3
� is the optimal value of the parameter vector

of W3. A NFN estimator is used to estimate the optimal NFN defined as:

f̂ 3 z1; z2; z3ð Þ ¼ Ŵ
T
3ϕðz1; z2; z3Þ ð88Þ

where Ŵ 3 is the estimated matrix of W3
�. Parameter W3

� is determined through the following
optimization problem:

W3
�9argmin sup W3

Tϕðz1; z2; z3Þ� f 3 z1; z2; z3ð Þ
���� �� ð89Þ

The, the robust controller based on neuro-fuzzy network is calculated as:

U3 tð Þ ¼U31 þ UNFN3 þ URob3 ð90Þ
In (90), the signals U31, UNFN3 and URob3 can be designed as:

U31 ¼ �k31z1�k32z2�k3z3�γ3s3 ð91Þ

UNFN3 ¼ �Ŵ
T
3ϕðz1; z2; z3Þ ð92Þ

URob3 ¼ �
h
λ̂13
��z3 þλ̂23 þ λ̂33

i
Sgnðs3Þ

��� ð93Þ
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where U31 is a state feedback controller, UNFN3 is a neuro-fuzzy network controller which is
used to control the unknown assistant function. Besides, URob3 is an adaptive controller which is
used to compensate for the approximation errors, lumped uncertainty and effects of the functions
approximation in design process on the controlled system.

Theorem 4. Consider the fractional-order ðz1�z2�z3Þ-subsystem of Eq. (81) with unknown
bounded uncertainties and external disturbances, then, the controller structure is designed as
described in Eqs. (91)–(93). If the on-line adapting laws for parameters are as follows:

_̂W 3 ¼ θ3s3ϕðz1; z2; z3Þ ð94Þ
_̂λ 13 ¼ l13 s3 z3jjjj ð95Þ
_̂λ 23 ¼ l23 s3jj ð96Þ
_̂λ 33 ¼ l33 s3jj ð97Þ

where θ3, l13, l23, l33 are the learning rates with positive constants, then the tracking error
converge asymptotically to origin and all signals in the closed loop system are bounded.
Additionally, the system trajectories converge to the sliding surface in finite time.

Proof. Let the Lyapunov functional candidate be given by:

V3 ¼ V2 þ
1
2
s3

2 þ 1
2θ3

~W
T
3
~W 3 þ

1
2l13

~λ
T
132þ

1
2l23

~λ
T
232þ

1
2l33

~λ
T
332 ð98Þ

where ~W 3 ¼W3�Ŵ 3, ~λi3 ¼ λi3� λ̂i3ði¼ 1; 2; 3Þ. Similar to the past steps, it will be proved that
applying the controller U3 tð Þ to the ðz1�z2�z3Þ-subsystem, results in _V 3r0. That is, it
represents however that ðz1�z2�z3Þ-subsystem is stable and all the state trajectories of the
controlled ðz1�z2�z3Þ-subsystem of Eq. (81) can be forced onto the predefined sliding surface.
In this manner, it is proved that the fractional ðz1�z2�z3Þ-subsystem of Eq. (81) with
uncertainty and external disturbance can be stabilized via the proposed control law of Eq. (90). It
means that in the ðz1�z2�z3Þ-system coordinates the equilibrium ð0; 0; 0Þ is stable.
Fig. 5. The normalized Fuzzy membership function for the inputs of NFN system in provided examples.
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Consequently, by considering the definitions of z1, z2 and z3; the state variables x1; x2; x3
converge to zero, as well.

Next, the auxiliary Lyapunov candidate function is selected as:

V33ðtÞ ¼
1
2
s3

2 ð99Þ

Following the same procedure as the proof of Theorem 2, it can be shown that the sliding
surface s3is reached in finite time.

6. Simulation results

In this section, two numerical examples are presented to illustrate the performance of the
proposed fractional hybrid adaptive intelligent controller. In all two examples, for each input
variable to the NFN system, three Gaussian membership functions have been defined which are
uniformly distributed in the interval [�2.5,2.5] as shown in Fig. 5 where the system inputs has
been scaled accordingly, in these examples.

Example 1. The fractional-order energy resources demand-supply system: In order to
validate the efficiency and effectiveness of the proposed control scheme numerical simulations
are made for chaotic fractional order energy resources demand–supply system with parameters
ða1; a2; b1; b2; b3; c1; c2; c3;M;NÞ ¼ ð0:1; 0:3; 0:01; 0:02; 0:2; 0:5; 0:8; 0:1; 2; 1Þ. This system is
non-commensurate and has fractional orders of q¼ ½0:98; 0:85; 0:92�. The initial conditions of
the system are assumed to be x0 ¼ ½�15; �18; 15; 10�T . At first, the following model
uncertainty vector is added to the system:

Δg xð Þ ¼ ½0:1 Sin πx2x3ð ÞCos πx1ð Þ; 0:1 Sin πx1x3ð ÞCos πx2ð Þ; 0:1 Sin πx2x1ð ÞCos πx3ð Þ�
In all cases, the external disturbances vector is defined as:

d tð Þ ¼ ½0:1Cos tð Þ; 0:15Cos tð Þ; 0:2Cos tð Þ�
In this case, the control parameters have been set as:
Fig. 6. The states trajectories of the closed-loop fractional order energy resources demand–supply system; (a) x1, (b) x2,
(c) x3.
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Fig. 7. The time responses of the update vector parameters; (a) λ1, (b) λ2, (c) λ3:

Fig. 8. (a) The time evolution of sliding mode surfaces, si; i¼ 1; 2; 3, (b) and (c) some parts of Fig. 8(a) zoomed out.
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l1 ¼ ½0:4; 0:9; 0:7�, l2 ¼ ½4; 5; 8�, l3 ¼ ½2; 4; 6�.
γ ¼ ½25–27�, k ¼ ½5; 7; 10�.
Numerical simulations are carried out using the MATLAB software. The ode45 solver is used

for solving differential equations. Control scheme on energy resources demand–supply fractional
order chaotic system are shown in Figs. 6–9. Fig. 6 illustrates the trajectories of the system states,
where the FAIBSMC inputs are activated at t¼ 30s. Next, at t ¼ 60s the applied uncertainties
and disturbances have been changed to:

Δf xð Þ ¼ ½0:2Cos πx2x3ð ÞCos πx1ð Þ; 0:2Cos πx1x3ð ÞCos πx2ð Þ; 0:2Cos πx2x1ð ÞCos πx3ð Þ�
And, the external disturbances vector is applied as:

d tð Þ ¼ ½0:1 Sin tð Þ; 0:1 Sin tð Þ; 0:1 Sin tð Þ�
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Fig. 9. Control input of the closed-loop fractional order energy resources demand–supply system;Ui; i¼ 1; 2; 3, (b) and
(c) some parts of (a) zoomed out.

Fig. 10. The states trajectories and control inputs of the closed-loop fractional order Chen system with the proposed
FAIBSMC in comparison with FAIC [60]; (a) x1, (b) x2, (c) x3, (d) U1, (e) U2, (f) U3.
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As we can see, the state trajectories converge to the zero after applying the control inputs and
the variations in uncertainties are rejected by the controller as well. The time responses of the
update vector parameters λ1, λ2 and λ3, are depicted in Fig. 7, respectively. Obviously, all of the
update parameters approach to determined constants which verify the feasibility of the proposed
method. In Figs. 8 and 9 the time evolution of sliding mode surfaces and the input control signals
are brought, respectively. To make the figures more traceable, Figs. 8(a) and 9(a) have been
zoomed out for various time scales in Figs. 8(b, c) and 9(b, c), respectively. From these figures, it
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Fig. 11. The states trajectories and control inputs of the closed-loop fractional order Chen system with the proposed
FAIBSMC in comparison with FAIC [60] zoomed out for t Z 10 s; (a) x1, (b) x2, (c) x3, (d) U1, (e) U2, (f) U3.

Fig. 12. The time responses of the update vector parameters of the closed-loop fractional order Chen system; (a), (b),
(c) with the proposed FAIBSMC in comparison with (d), (e) and (f) FAIC [60]; (a , d) λ1, (b, e) λ2, (c ,f) λ3.
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is shown that the proposed controller shows good convergence properties while the control
efforts remain bounded and applicable.
Example 2. Fractional-order Chen system: Now, consider the Chen fractional order chaotic
system with parameters β1 ¼ 35; β2 ¼ 28; β3 ¼ 3: This system is commensurate and its fractional
Please cite this article as: N. Bigdeli, H.A. Ziazi, Finite-time fractional-order adaptive intelligent backstepping sliding
mode control of uncertain fractional-order chaotic systems, Journal of the Franklin Institute. (2016), http://dx.doi.

org/10.1016/j.jfranklin.2016.10.004

http://dx.doi.org/10.1016/j.jfranklin.2016.10.004
http://dx.doi.org/10.1016/j.jfranklin.2016.10.004
http://dx.doi.org/10.1016/j.jfranklin.2016.10.004
http://dx.doi.org/10.1016/j.jfranklin.2016.10.004


Fig. 13. (a), (b), (c) The time evolution of sliding mode surfaces si; i¼ 1; 2; 3, of the closed-loop fractional order Chen
system with the proposed FAIBSMC in comparison with FAIC [60]; (d) s1, (e) s2, (f) s3zoomed out for tZ10 sec.
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order is q¼ 0:9. The initial conditions of the system are assumed to be x0 ¼ ½�15; �18; 15; 10�.
At the beginning of simulation, the following model uncertainty vector is added to the system:

Δf xð Þ ¼ ½2 Sin πx2x3ð ÞCos πx1ð Þ; 2in πx1x3ð ÞCos πx2ð Þ; 2 Sin πx2x1ð ÞCos πx3ð Þ�
In this case, the external disturbances vector is defined as:

d tð Þ ¼ ½0:1Cos tð Þ; 0:1 Sin tð Þ; 0:1Cos tð Þ�
The control parameters are set as:
l1 ¼ ½0:5; 0:9; 0:7�, l2 ¼ ½2; 4; 5�, l3 ¼ ½0:01; 0:04; 0:07�.
γ ¼ ½25–27�, k ¼ ½5; 7; 10�.
The results of the designed controller on the fractional-order chaotic Chen system are shown in

Figs. 10–13; where the performance of the proposed FAIBSMC has been compared with
Fractional Adaptive Intelligent Controller (FAIC), introduced in [60]. Fig. 10 shows the state
trajectories as well as control inputs of the closed-loop fractional order Chen system with the
proposed FAIBSMC in comparison with FAIC, where the control inputs are activated at t¼ 5s.
As we can see, the state trajectories are stabilized to zero by applying the control inputs very
well. Next, at t¼ 10s the applied uncertainties and disturbances have been changed to:

Δf xð Þ ¼ ½5Cos πx2x3ð ÞCos πx1ð Þ; 5Cos πx1x3ð ÞCos πx2ð Þ; 5Cos πx2x1ð ÞCos πx3ð Þ�
And,

d tð Þ ¼ ½0:2 sin tð Þ; 0:2 Sin tð Þ; 0:2 sin tð Þ�
It should be noted that to make the chaotic signals distinguishable, the parameters of the Chen

system have been taken slightly different in the two cases (the parameters are different within the
order of 10�2). In Fig. 11, the figures of Fig. 10 are zoomed out to show the effect of such
variations in system uncertainties and disturbances. Form these figures it is obvious that both of
the controllers have been able to overcome the uncertainties and disturbances very well. But, the
FAIBSMC response is considerably faster as its settling time is less than that of the FAIC.
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Besides, the overshoot/under-shoot of the FAIBSMC control inputs is noticeably less than that of
FAIC, while the control efforts are reasonably bounded and convergent, in both cases. The time
responses of the update vector parameters of λ1, λ2 and λ3 for both of the controllers are shown in
Fig. 12. Obviously, all of the update parameters approach to constant values which verify the
feasibility of the proposed method, at the time period of 5r to10 and try to cope with the
system variations, in continue (10r t). In Fig. 13 the time evolution of sliding mode surfaces of
both controllers are shown. Besides, the plots in Fig. 13(a), (b), (c) have been zoomed out in
Fig. 13(d), (e), and (f) for better clearance. The results are representative of the good convergence
of the sliding surfaces to zero in both cases, but faster convergence is observed for FAIBSMC,
once again.

7. Conclusions

In this paper, in order for stabilization of the fractional uncertain chaotic systems, a novel
hybrid fractional-order robust adaptive intelligent control scheme which is comprised of sliding
mode control, backstepping control, adaptive control, and neuro-fuzzy network is proposed. An
SMC law has been synthesized to guarantee the reachability of the specified sliding surface. The
neuro-fuzzy network is employed to estimate the unknown continuous function. To cope with
lumped uncertainties generated by NFN approximation errors and extra disturbances a robust
structure with adaptive gains is used which on-line adaptive laws of the control system are
derived based on the Lyapunov stability theorem so that the global asymptotic stability of the
dynamical system can be achieved. Furthermore, the finite reaching time to the sliding surfaces
has been proved. As some examples, the proposed technique is applied to control the energy
resources demand–supply fractional order chaotic system and Chen fractional order chaotic
system, these examples demonstrate the validity, effectiveness and good performance of the
proposed FAIBSMC method. Based on the formulations, presented approach can be applied for
stabilization for a large class of fractional uncertain chaotic systems with unknown system
dynamics.
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