
Applied Mathematics and Computation 218 (2012) 11125–11137
Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
Training feedforward neural networks using hybrid particle swarm
optimization and gravitational search algorithm

SeyedAli Mirjalili ⇑, Siti Zaiton Mohd Hashim, Hossein Moradian Sardroudi
Soft Computing Research Group, Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
a r t i c l e i n f o

Keywords:
FNN
Neural network
Learning neural network
Gravitational search algorithm
Particle swarm optimization
PSO
Evolutionary algorithm
Multilayer perceptron
0096-3003/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.amc.2012.04.069

⇑ Corresponding author.
E-mail addresses: ali.mirjalili@gmail.com (S. Mir
a b s t r a c t

The Gravitational Search Algorithm (GSA) is a novel heuristic optimization method based
on the law of gravity and mass interactions. It has been proven that this algorithm has good
ability to search for the global optimum, but it suffers from slow searching speed in the last
iterations. This work proposes a hybrid of Particle Swarm Optimization (PSO) and GSA to
resolve the aforementioned problem. In this paper, GSA and PSOGSA are employed as
new training methods for Feedforward Neural Networks (FNNs) in order to investigate
the efficiencies of these algorithms in reducing the problems of trapping in local minima
and the slow convergence rate of current evolutionary learning algorithms. The results
are compared with a standard PSO-based learning algorithm for FNNs. The resulting accu-
racy of FNNs trained with PSO, GSA, and PSOGSA is also investigated. The experimental
results show that PSOGSA outperforms both PSO and GSA for training FNNs in terms of
converging speed and avoiding local minima. It is also proven that an FNN trained with
PSOGSA has better accuracy than one trained with GSA.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Recently, Feedforward Neural Networks (FNNs), especially FNNs with two layers [1], have been widely used. In fact, FNNs
with two layers are the most popular neural network in practical applications. Generally, an FNN with two layers is suitable
for classifications of nonlinearly separable patterns [2,3] and to approximate functions [4,5]. It has been proven that two-
layer FNNs can approximate any continuous and discontinuous function [4]. Learning is an essential part of any neural net-
work and becomes attractive for many researchers. For FNNs, most applications have used the standard [6] or improved [7–
9] Back-Propagation (BP) algorithm as their training method. The BP algorithm is a gradient-based algorithm which has some
drawbacks, such as slow convergence [10] and the tendency to become trapped in local minima [11].

In FNNs, during the learning process, the goal is to find the best combination of connection weights and biases in order to
achieve the minimum error. However, most of the time FNNs converge to points which are the best solution locally but not
globally. In other words, learning algorithms lead FNNs to local minima rather than the global minimum. According to [10],
the convergence of the BP algorithm is highly dependent on the initial values of weights, biases, and its parameters. These
parameters include learning rate and momentum. In the literature, using novel heuristic optimization methods or evolution-
ary algorithms is a popular solution to enhance the problems of BP-based learning algorithms.

Various heuristic optimization methods have been used to train FNNs, such as Simulated Annealing (SA) [12,13], Genetic
Algorithms (GAs) [14], Particle Swarm Optimization (PSO) algorithms [15–19], Magnetic Optimization Algorithm (MOA)
[20], and Differential Evolution (DE) [21]. According to [10], some, such as SA and GA, could reduce the probability of
trapping in local minima, but they still suffer from slow convergence rates. According to [16,22], PSO is one of the most
. All rights reserved.

jalili), sitizaiton@utm.my (S.Z. Mohd Hashim), hosseinmoradian@gmail.com (H. Moradian Sardroudi).

http://dx.doi.org/10.1016/j.amc.2012.04.069
mailto:ali.mirjalili@gmail.com
mailto:sitizaiton@utm.my
mailto:hosseinmoradian@gmail.com
http://dx.doi.org/10.1016/j.amc.2012.04.069
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

11126 S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137
efficient and practical optimization algorithms in terms of reducing both of the aforementioned drawbacks. In this paper, the
efficiencies of GSA and PSOGSA are investigated for training FNNs in comparison with PSO [23].

The rest of the paper is organized as follows: Sections 2–4 present a brief introduction to the concepts of PSO, GSA, and
PSOGSA, respectively. Section 5 discusses the method of applying PSO, GSA, and PSOGSA to FNNs as evolutionary training
algorithms. The experimental results are demonstrated in Section 6. Finally, Section 7 concludes the paper.

2. Particle swarm optimization

PSO is an evolutionary computation technique which is proposed by Kennedy and Eberhart [24]. The PSO was inspired by
the social behaviour of bird flocking. It uses a number of particles (candidate solutions) which fly around in the search space
to find the best solution. Meanwhile, the particles all look at the best particle (best solution) in their paths. In other words,
particles consider their own best solutions as well as the best solution found so far.

Each particle in PSO should consider the current position, the current velocity, the distance to pbest, and the distance to
gbest in order to modify its position. PSO was mathematically modelled as follows:
v tþ1
i ¼ wv t

i þ c1 � rand� pbesti � xt
i

� �
þ c2 � rand� gbest � xt

i

� �
; ð2:1Þ

xtþ1
i ¼ xt

i þ v tþ1
i ; ð2:2Þ
where v t
i is the velocity of particle i at iteration t, w is a weighting function, cj is an acceleration coefficient, rand is a random

number between 0 and 1, xt
i is the current position of particle i at iteration t, pbesti is the pbest of agent i at iteration t, and

gbest is the best solution so far.
The first part of (2.1), wv t

i , provides exploration ability for PSO. The second and third parts, c1 � rand � pbesti � xt
i

� �
and

c2 � rand � gbest � xt
i

� �
, represent private thinking and collaboration of particles respectively. The PSO starts by randomly

placing the particles in a problem space. In each iteration, the velocities of particles are calculated using (2.1). After defining
the velocities, the positions of particles can be calculated as (2.2). The process of changing particles’ positions will continue
until an end criterion is met.

3. Gravitational search algorithm

In 2009, Rashedi et al. [25] proposed a new heuristic optimization algorithm called the Gravitational Search Algorithm
(GSA) for finding the best solution in problem search spaces using physical rules. The basic physical theory from which
GSA is inspired is Newton theory, which says: ‘‘Every particle in the universe attracts every other particle with a force that is
directly proportional to the product of their masses and inversely proportional to the square of the distance between them’’
[26]. GSA can be considered as a collection of agents (candidate solutions) which have masses proportional to their value
of fitness function. During generations all masses attract each other by the gravity forces between them. The heavier the
mass, the bigger the attraction force. Therefore, the heaviest masses which are probably close to the global minimum attract
the other masses in proportion to their distances.

According to [25,27], suppose there is a system with N agents. The position of each agent (masses) which is a candidate
solution for the problem is defined as follows:
Xi ¼ x1
i ; . . . ; xd

i ; . . . ; xn
i

� �
; i ¼ 1;2; . . . ;N; ð3:1Þ
where N is the dimension of the problem and xd
i is the position of the ith agent in the dth dimension.

The algorithm starts by randomly placing all agents in a search space. During all epochs, the gravitational forces from
agent j on agent i at a specific time t are defined as follows:
Fd
ijðtÞ ¼ GðtÞMpiðtÞ �MajðtÞ

RijðtÞ þ e
xd

j ðtÞ � xd
i ðtÞ

� �
; ð3:2Þ
where Maj is the active gravitational mass related to agent j, Mpi is the passive gravitational mass related to agent i, G(t) is a
gravitational constant at time t, e is a small constant, and Rij(t) is the Euclidian distance between two agents i and j.

The gravitational constant G and the Euclidian distance between two agents i and j are calculated as follows:
GðtÞ ¼ G0 � expð�a� iter=maxiterÞ; ð3:3Þ
RijðtÞ ¼ kXiðtÞ;XjðtÞk2; ð3:4Þ
where a is the descending coefficient, G0 is the initial gravitational constant, iter is the current iteration, and maxiter is the
maximum number of iterations.

In a problem space with the dimension d, the total force that acts on agent i is calculated by the following equation:
Fd
i ðtÞ ¼

XN

j¼1;j–i

randjF
d
ijðtÞ; ð3:5Þ
where randj is a random number in the interval [0,1].

S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137 11127
According to the law of motion, the acceleration of an agent is proportional to the resultant force and inverse of its mass,
so the accelerations of all agents are calculated as follows:
ad
i ðtÞ ¼

Fd
i ðtÞ

MiiðtÞ0
; ð3:6Þ
where d is the dimension of the problem, t is a specific time, and Mi is the mass of object i.
The velocity and position of agents are calculated as follows:
vd
i ðt þ 1Þ ¼ randi � vd

i ðtÞ þ ad
i ðtÞ; ð3:7Þ

xd
i ðt þ 1Þ ¼ xd

i ðtÞ þ vd
i ðt þ 1Þ; ð3:8Þ
where d is the problem dimension and randi is a random number in the interval [0,1].
As can be inferred from (3.7) and (3.8), the current velocity of an agent is defined as a fraction of its last velocity

(0 6 randi 6 1) added to its acceleration. Furthermore, the current position of an agent is equal to its last position added
to its current velocity.

Agents’ masses are defined using fitness evaluation. This means that an agent with the heaviest mass is the most efficient
agent. According to the above equations, the heavier the agent, the higher the attraction force and the slower the movement.
The higher attraction is based on the law of gravity (3.2), and the slower movement is because of the law of motion (3.6) [25].

The masses of all agents are updated using the following equations:
miðtÞ ¼
fitiðtÞ �worstðtÞ

bestðtÞ �worstðtÞ ; ð3:9Þ
where fiti(t) is the fitness value of the agent i at time t; best(t) is the strongest agent at time t, and worst(t) is the weakest
agent at time t.

best(t) and worst(t) for a minimization problem are calculated as follows:
bestðtÞ ¼ min
j2f1;...;Ng

fitjðtÞ; ð3:10Þ

worstðtÞ ¼ max
j2f1;...;Ng

fitjðtÞ: ð3:11Þ
best(t) and worst(t) for a maximization problem are calculated as follows:
bestðtÞ ¼ max
j2f1;...;Ng

fitjðtÞ ð3:12Þ

worstðtÞ ¼ min
j2f1;...;Ng

fitjðtÞ: ð3:13Þ
The normalization of the calculated masses (3.9) is defined by the following equation:
MiðtÞ ¼
miðtÞXN

j¼1

mjðtÞ
: ð3:14Þ
In the GSA, at first all agents are initialized with random values. Each agent is a candidate solution. After initialization, the
velocity and position of all agents will be defined using (3.7) and (3.8). Meanwhile, the other parameters such as the grav-
itational constant and masses will be calculated by (3.3) and (3.9). Finally, the GSA will be stopped by meeting an end cri-
terion. The steps of GSA are represented in Fig. 1.

In all population-based algorithms which have social behaviour like PSO and GSA, two intrinsic characteristics should be
considered: the ability of the algorithm to explore whole parts of search spaces and its ability to exploit the best solution.
Searching through the whole problem space is called exploration whereas converging to the best solution near a good solu-
tion is called exploitation. A population-based algorithm should have these two vital characteristics to guarantee finding the
best solution. In PSO, the exploration ability has been implemented using Pbest and the exploitation ability has been imple-
mented using Gbest. In GSA, by choosing proper values for the random parameters (G0 and a), the exploration can be guar-
anteed and slow movement of heavier agents can guarantee the exploitation ability [25,28].

Rashedi et al. [25] provided a comparative study between GSA and some well-known heuristic optimization algorithms
like PSO. The results proved that GSA has merit in the field of optimization. However, GSA suffers from slow searching speed
in the last iterations [29]. In this paper a hybrid of this algorithm with PSO, called PSOGSA, is proposed in order to improve
this weakness.

4. The hybrid PSOGSA algorithm

The basic idea of PSOGSA is to combine the ability for social thinking (gbest) in PSO with the local search capability of
GSA. In order to combine these algorithms, (4.1) is proposed as follows:

Generate initial population Evaluate the fitness for all agents
Update the G, best(t) and worst(t) for

the population

Calculate M and a for all agentsUpdate velocity and position
Meeting end

criterion?

Return the best solution

Yes

No

Fig. 1. General steps of the gravitational search algorithm [25].

Generate initial population Evaluate the fitness for all agents
Update the G and gbest for the

population

Calculate M, forces and
accelerations for all agents

Update velocity and position
Meeting end

criterion?

Return the best solution
(gbest)

Yes

No

Fig. 2. Steps of PSOGSA [30].

11128 S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137
Viðt þ 1Þ ¼ w� ViðtÞ þ c01 � rand� aciðtÞ þ c02 � rand� ðgbest � XiðtÞÞ; ð4:1Þ
where Vi(t) is the velocity of agent i at iteration t; c0j is an acceleration coefficient, w is a weighting function, rand is a random
number between 0 and 1, aci(t) is the acceleration of agent i at iteration t, and gbest is the best solution so far.

In each iteration, the positions of agents are updated as follows:
Xiðt þ 1Þ ¼ XiðtÞ þ Viðt þ 1Þ: ð4:2Þ
In PSOGSA, at first, all agents are randomly initialized. Each agent is considered as a candidate solution. After initialization,
the gravitational force, gravitational constant, and resultant forces among agents are calculated using (3.2), (3.3) and (3.5)
respectively. After that, the accelerations of particles are defined as (3.6). In each iteration, the best solution so far should
be updated. After calculating the accelerations and updating the best solution so far, the velocities of all agents can be cal-
culated using (4.1). Finally, the positions of agents are updated by (4.2). The process of updating velocities and positions will
be stopped by meeting an end criterion. The steps of PSOGSA are represented in Fig. 2.

To see how PSOGSA is efficient, the following remarks are noted:

� In PSOGSA, the quality of solutions (fitness) is considered in the updating procedure.
� The agents near good solutions try to attract the other agents which are exploring different parts of the search space.
� When all agents are near a good solution, they move very slowly. In this case, gbest helps them to exploit the global best.
� PSOGSA uses a memory (gbest) to save the best solution found so far, so it is accessible at any time.
� Each agent can observe the best solution (gbest) and tend toward it.
� By adjusting c01 and c02, the abilities of global searching and local searching can be balanced.

The above-mentioned remarks make PSOGSA powerful enough to solve a wide range of optimization problems [30]. In
the following subsections, mechanisms for training FNNs using PSO, GSA, and PSOGSA, called FNNPSO, FNNGSA, and
FNNPSOGSA, respectively, are introduced and evaluated.

S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137 11129
5. PSO, GSA, and PSOGSA for training FNNs

Generally, there are three methods of using a heuristic algorithm for training FNNs. First, heuristic algorithms are used for
finding a combination of weights and biases which provide the minimum error for an FNN. Second, heuristic algorithms are
employed as a way to find a proper structure for an FNN in a particular problem. The last method is to use an evolutionary
algorithm to tune the parameters of a gradient-based learning algorithm, such as the learning rate and momentum.

In the first case, the structure is fixed before training FNNs. The duty of a training algorithm is to find a proper value for all
connection weights and biases in order to minimize the overall FNNs’ error. In the second case, the structures of FNNs vary. A
training algorithm is applied to an FNN to determine the best structure for a certain problem. Changing the structure can be
accomplished by manipulating the connections between neurons, the number of hidden layers, and the number of hidden
nodes in each layer of the FNN.

In this paper, PSO, GSA, and PSOGSA are applied to an FNN using the first method; these mechanisms are called FNNPSO,
FNNGSA, and FNNPSOGSA, respectively. This means that the structure of the FNN is fixed; PSO, GSA, and PSOGSA find a com-
bination of weights and biases which yield the minimum error for the FNN. In order to design FNNPSO, FNNGSA, and
FNNPSOGSA, the following basic elements need to be defined.

First, a fitness function using the error of the FNN should be defined to evaluate agents’ fitness in FNNPSO, FNNGSA, and
FNNPSOGSA. Second, an encoding strategy should be defined to encode the weights and biases of the FNN for the agents of
FNNPSO, FNNGSA, and FNNPSOGSA. These elements are described below.

5.1. Fitness function

The fitness function which is used in this article is calculated as follows [10]:
Fig. 3 shows an FNN with two layers (one input, one hidden, and one output layer), where the number of input nodes is

equal to n, the number of hidden nodes is equal to h, and the number of output nodes is m. In each epoch of learning, the
output of each hidden node is calculated as follows:
f ðsjÞ ¼ 1= 1þ exp �
Xn

i¼1

wij � xi � hj

 ! ! !
; j ¼ 1;2; . . . ; h ð5:1Þ
where sj ¼
Pn

i¼1wij � xi � hj, n is the number of the input nodes, wij is the connection weight from the ith node in the input
layer to the jth node in the hidden layer, hj is the bias (threshold) of the jth hidden node, and xi is the ith input.

After calculating outputs of the hidden nodes, the final output can be defined as follows:
ok ¼
Xh

i¼1

wkj � f ðsjÞ � hk; k ¼ 1;2; . . . ;m; ð5:2Þ
where wkj is the connection weight from the jth hidden node to the kth output node and hk is the bias (threshold) of the kth
output node.

Finally, the learning error E (fitness function) is calculated as follows:
Ek ¼
Xm

i¼1

ok
i � dk

i

� �2
ð5:3Þ

E ¼
Xq

k¼1

Ek

q
ð5:4Þ
where q is the number of training samples, dk
i is the desired output of the ith input unit when the kth training sample is used,

and yk
i is the actual output of the ith input unit when the kth training sample is used.
Fig. 3. Structure of two-layer FNNs.

Fig. 4. FNN with a 2-3-1 structure.

11130 S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137
Therefore, the fitness function of the ith training sample can be defined as follows:
FitnessðXiÞ ¼ EðXiÞ ð5:5Þ
5.2. Encoding strategy

After defining the fitness function for FNNPSO, FNNGSA, and FNNPSOGSA, the next stage is to choose an encoding strategy
in order to represent the weights and biases of the FNN for every agent in FNNPSO, FNNGSA, and FNNPSOGSA. According to
[10], there are three methods of encoding and representing the weights and biases of FNNs for every agent in evolutionary
algorithms. These are the vector, matrix, and binary encoding methods. In vector encoding, every agent is encoded as a vec-
tor. To train an FNN, each agent represents all the weights and biases of the FNNs structure. In matrix encoding, every agent
is encoded as a matrix. In binary encoding, agents are encoded as strings of binary bits. Each of these strategies has its own
advantages and disadvantages that can be useful in a particular problem.

According to [10], in the first strategy, the encoding phase is easy, but the decoding process (decoding particles’ vectors to
a weights and biases matrix) is complicated. This method is often used in the function optimization field. In the second strat-
egy, the decoding stage is easy but the encoding is difficult for neural networks with complex structures. This method is very
suitable for the training processes of neural networks because the encoding strategy makes it easy to execute decoding for
neural networks. In the third strategy, we need to represent particles’ variables in binary form. The length of each particle
will increase when the structure becomes more complex. Therefore, the process of decoding and encoding becomes very
complicated.

In this article, the matrix encoding strategy has been used because we are dealing with training FNNs. An example of this
encoding strategy for the FNN of Fig. 4 is provided as follows:
particleð:; :; iÞ ¼ W1;B1;W
0
2;B2

� �
; ð5:6Þ

W1 ¼
w13 w23

w14 w24

w15 w25

2
64

3
75; B1 ¼

h1

h2

h3

2
64

3
75; W 0

2 ¼
w36

w46

w56

2
64

3
75; B2 ¼ ½h4�; ð5:7Þ
where W1 is the hidden layer weight matrix, B1 is the hidden layer bias matrix, W2 is the output layer weight matrix, W 0
2 is

the transpose of W2, and B2 is the hidden layer bias matrix.

6. Results and discussion

In this section, three benchmark problems are used to compare the abilities of FNNPSO, FNNGSA, and FNNPSOGSA in
training FNNs. They are three-bit parity, function approximation, and the Iris classification problem, which are presented
in Sections 6.1, 6.2 and 6.3, respectively. In these problems, it is assumed that every particle is randomly initialized in the
range of [0,1]. The other assumptions are as follows:

For FNNPSO, C1 and C2 are set to 2, r1 and r2 are two random numbers in the interval [0,1], w decreases linearly from 0.9 to
0.4, and the initial velocities of particles are randomly generated in the interval [0,1].

For FNNGSA, a is set to 20, the gravitational constant (G0) is set to 1, the initial velocities of particles are randomly gen-
erated in the interval [0,1], and initial values of acceleration and mass are set to 0 for each particle.

For FNNPSOGSA, c01 and c02 are set to 1, w decreases linearly from 0.9 to 0.4, and the initial velocities of agents are ran-
domly generated in the interval [0,1].

The population sizes of FNNPSO, FNNGSA, and FNNPSOGSA for the first, second, and third problems are equal to 50, 200,
and 200, respectively.

Table 1
Three bits parity problem (3-bit XOR).

Input Output

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Table 2
Average, median, standard deviation, and best of MSE for all training samples over 30 independent runs for FNNPSO, FNNGSA, and FNNPSOGSA in a 3-bit XOR
problem.

Hidden nodes (S) Algorithm Average MSE Median MSE Std dev MSE Best MSE

5 FNNPSOGSA 1.3175e�02 1.5760e�06 2.6085e�02 3.1772e�10
FNNPSO 2.2400e�02 2.2461e�03 3.6093e�02 8.9964e�09
FNNGSA 1.7953e�01 1.9648e�01 5.5945e�02 4.3492e�02

6 FNNPSOGSA 4.5125e�03 4.0238e�06 1.5887e�02 1.2319e�09
FNNPSO 8.8953e�03 8.5529e�04 2.0499e�02 4.1943e�12
FNNGSA 1.4230e�01 1.6426e�01 6.4535e�02 3.7346e�02

7 FNNPSOGSA 2.7122e�03 3.0954e�07 1.2818e�02 1.4208e�11
FNNPSO 1.0325e�02 5.3893e�04 2.7711e�02 3.8274e�24
FNNGSA 1.2565e�01 1.4032e�01 6.5325e�02 1.2422e�02

8 FNNPSOGSA 2.0399e�05 1.8349e�07 6.2884e�05 1.2591e�11
FNNPSO 5.1294e�03 1.3468e�05 2.2972e�02 3.3166e�13
FNNGSA 1.1464e�01 1.0255e�01 7.6374e�02 7.1257e�03

9 FNNPSOGSA 7.7205e�06 1.0106e�07 2.6532e�05 5.5311e�12
FNNPSO 5.0104e�03 3.6779e�05 2.2776e�02 1.3058e�24
FNNGSA 9.4026e�02 6.9627e�02 5.8491e�02 2.1135e�02

10 FNNPSOGSA 6.1340e�06 8.4584e�08 2.8868e�05 1.5503e�10
FNNPSO 1.2894e�02 4.9998e�05 3.8024e�02 4.4242e�09
FNNGSA 8.0449e�02 7.0787e�02 5.4407e�02 1.0597e�02

11 FNNPSOGSA 1.8259e�05 6.4874e�08 7.6978e�05 4.6565e�10
FNNPSO 4.3063e�03 2.3309e�06 2.2798e�02 2.0963e�23
FNNGSA 7.7604e�02 2.2714e�02 4.3129e�02 1.2058e�02

13 FNNPSOGSA 4.1675e�02 7.7728e�08 2.2822e�02 1.6510e�10
FNNPSO 9.2572e�03 9.9122e�05 3.1521e�02 3.5649e�50
FNNGSA 6.5790e�02 6.4600e�02 3.1967e�02 1.0404e�02

15 FNNPSOGSA 4.1675e�03 2.3626e�08 2.2822e�02 4.6680e�11
FNNPSO 5.0059e�03 3.1100e�05 2.2812e�02 2.2852e�15
FNNGSA 6.9776e�02 6.1100e�02 4.1229e�02 9.2803e�03

20 FNNPSOGSA 1.6813e�02 1.6077e�08 4.3167e�02 6.2804e�13
FNNPSO 3.3754e�02 3.9900E � 05 5.6000E � 02 1.2035E � 12
FNNGSA 7.5058e�02 6.0155e�02 4.7876e�02 1.2029e�02

30 FNNPSOGSA 4.1671e�03 9.5787e�10 2.2822e�02 8.9801e�14
FNNPSO 2.5016e�02 6.4170e�06 5.0838e�02 1.7768e�11
FNNGSA 6.2372e�02 4.9286e�02 3.9109e�02 1.4439e�02

S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137 11131
6.1. The N bits parity (XOR) problem

The N bit parity problem is a famous nonlinear benchmark problem. The problem is to recognize the number of ‘‘1s’’ in
the input vector. The XOR result of the input vector should be returned. In other words, if the input vector contains an odd
number of ‘‘1s’’, the output is ‘‘1’’. If the input vector contains an even number of ‘‘1s’’, the output is ‘‘0’’. Table 1 shows the
inputs and desirable outputs of this problem for three bits:

The XOR problem is not linearly separable, and we cannot solve it using an FNN without hidden layers (Perceptron). In
this section, we use an FNN with the structure 3-S-1 to solve this problem, where S is the number of hidden nodes, and we
compare the performance of FNNs with S = 5, 6, 7, 8, 9, 10, 11, 13, 15, 20, and 30.

We compare FNNPSO, FNNGSA, and FNNPSOGSA based on the average, median, standard deviation, and best of the Mean
Square Error (MSE) for all training samples (5.4) over 30 independent runs. The criterion for finishing the training process is

0 100 200 300 400 500
10

-2

10
-1

10
0

 Iteration

 A
ve

ra
ge

 o
f M

S
E

 fo
r a

ll t
ra

in
in

g
sa

m
pl

es FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
ge

 o
f M

S
E

 fo
r a

ll t
ra

in
in

g
sa

m
pl

es

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-6

10
-4

10
-2

10
0

10
2

 Iteration

 A
ve

ra
ge

 o
f M

S
E

 fo
r a

ll t
ra

in
in

g
sa

m
pl

es

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500

10
-4

10
-2

10
0

 Iteration

 A
ve

ra
ge

 o
f M

S
E

 fo
r a

ll t
ra

in
in

g
sa

m
pl

es

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

 Iteration

 A
ve

ra
ge

 o
f M

S
E

 fo
r a

ll t
ra

in
in

g
sa

m
pl

es FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

 Iteration

 A
ve

ra
ge

 o
f M

S
E

 fo
r a

ll t
ra

in
in

g
sa

m
pl

es FNNPSOGSA
FNNPSO
FNNGSA

a b

c d

e f

Fig. 5. Convergence curves of FNNPSO, FNNGSA, and FNNPSOGSA based on averages of MSE for all training samples over 30 independent runs in a 3-bit XOR
problem. (a), (b), (c), (d), (e), and (f) are the convergence curves for FNNs with S = 5, 7, 9, 11, 15, and 30, respectively.

11132 S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137
to complete the maximum number of iterations (equal to 500 in this paper). The experimental results for this problem are
shown in Table 2. The best results are indicated in bold type.

From Table 2, it can be seen that the FNNPSOGSA apparently performs better than the FNNPSO and FNNGSA for the aver-
age, median, and standard deviation of MSE. The results of these statistical variables prove that FNNPSOGSA has the best
ability to avoid local minima. For the best MSE, FNNPSO has better results, so the results show that FNNPSO is more accurate
than FNNGSA and FNNPSOGSA.

Fig. 5 shows the convergence curves of FNNPSO, FNNGSA, and FNNPSOGSA based on averages of the MSE for all training
samples over 30 independent runs. Parts (a), (b), (c), (d), (e), and (f) of Fig. 5 are the convergence curves for FNN with S = 5, 7,
9, 11, 15, and 30, respectively. These figures confirm that FNNPSOGSA apparently has the best convergence rate for all FNNs.

6.2. Function approximation problem

In this section, FNNs with the structure 1-S-1 are trained to approximate the function y = sin (2x)e�x, where S is the num-
ber of hidden nodes, and we compare the performance of FNNs with S = 3, 4, 5, 6, and 7. Fig. 6 illustrates this function. In this
study, we use a dataset in the interval [0,p] with increments of 0.03, so the number of training data is 105. The comparison

0 0.5 1 1.5 2 2.5 3 3.5
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

X

Y

Fig. 6. Function y = sin(2x)e�x.

Table 3
Average, median, standard deviation, and best of MSE for all training samples over 30 independent runs for FNNPSO, FNNGSA, and FNNPSOGSA in the function
approximation problem.

Hidden nodes (S) Algorithm Average MSE Median MSE Std dev MSE Best MSE

3 FNNPSOGSA 9.6113e�03 9.9619e�03 2.7267e�03 5.5411e�03
FNNPSO 1.7118e�02 1.1945e�02 1.7241e�02 2.5563e�03
FNNGSA 6.882e�02 7.2232e�02 1.1630e�02 4.5684e�02

4 FNNPSOGSA 7.4686e�03 6.0540e�02 3.4799e�03 1.7598e�03
FNNPSO 1.0292e�02 9.7328e�03 3.8812e�03 3.0212e�03
FNNGSA 6.0834e�02 6.8970e�02 1.5084e�02 3.6454e�02

5 FNNPSOGSA 7.2789e�03 5.2391e�02 3.6151e�03 1.4629e�03
FNNPSO 7.3565e�03 7.1217e�03 3.6697e�03 1.4705e�03
FNNGSA 5.6646e�02 5.9142e�02 1.6858e�02 3.2538e�02

6 FNNPSOGSA 6.0633e�03 5.0239e�02 3.5212e�03 1.5045e�03
FNNPSO 7.4143e�03 7.1026e�03 4.3036e�03 1.4328e�03
FNNGSA 6.4594e�02 6.6303e�02 1.3256e�02 4.6777e�02

7 FNNPSOGSA 6.7104e�03 5.4945e�03 5.4070e�03 9.5455e�04
FNNPSO 6.9547e�03 6.1180e�03 3.9005e�03 2.3657e�03
FNNGSA 5.9256e�02 6.0936e�02 1.4731e�02 3.6341e�02

S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137 11133
between FNNPSO, FNNGSA, and FNNPSOGSA for training FNNs in order to solve this benchmark problem is presented in Ta-
ble 3 and Fig. 7. The best results are indicated in bold type.

The results in Table 3 show that FNNPSOGSA has better results for the average, median, and standard deviation of the MSE
over 30 independent runs. These results prove that FNNPPSOGSA also has better ability than FNNPSO and FNNGSA to avoid
local minima in this benchmark problem. For the best MSE over 30 runs, FNNPSOGSA and FNNPSO have very close results,
but FNNPSO still has the most accurate results. As can be inferred from Table 3, the best performance is that of FNNPSOGSA
for the FNN with S = 7.

Fig. 7 shows the convergence curves of FNNPSO, FNNGSA, and FNNPSOGSA based on averages of MSE for all training sam-
ples over 30 independent runs. Parts (a), (b), (c), (d), and (e) of Fig. 7 are the convergence curves for FNN with S = 3, 4, 5, 6,
and 7, respectively. These figures confirm that FNNPSOGSA achieves the best convergence rate for all values of hidden num-
bers in this benchmark problem as well. FNNGSA has the worst convergence speed because of the slow searching process of
its GSA.

6.3. Iris classification problem

The Iris classification problem has been widely used in the FNN field. The Iris dataset has 150 samples which can be di-
vided into three classes: Setosa, Versicolor, and Virginica. All samples have four features: sepal length, sepal width, petal
length, and petal width. Consequently, we use FNNs with the structure 4-S-3 to solve this classification problem, where S
in the number of hidden nodes, and we compare the performance of FNNs with S = 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and
15. Left-one cross-validation is used for training FNNs. In this method, in each generation, 149 different samples from the

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
g

e
o

f M
S

E
 fo

r
al

l t
ra

in
in

g
 s

am
p

le
s

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
g

e
o

f M
S

E
 fo

r
al

l t
ra

in
in

g
 s

am
p

le
s

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
g

e
o

f M
S

E
 fo

r
al

l t
ra

in
in

g
 s

am
p

le
s

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
g

e
o

f M
S

E
 fo

r
al

l t
ra

in
in

g
 s

am
p

le
s

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
g

e
o

f M
S

E
 fo

r
al

l t
ra

in
in

g
 s

am
p

le
s

FNNPSOGSA
FNNPSO
FNNGSA

a b

c d

e

Fig. 7. Convergence curves of FNNPSO, FNNGSA, and FNNPSOGSA based on averages of MSE for all training samples over 30 independent runs in a function
optimization problem. (a), (b), (c), (d), and (e) are the convergence curves for FNNs with S = 3, 4, 5, 6, and 7, respectively.

11134 S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137
Iris dataset are selected and used to train the FNN, and the remaining sample is used to test the FNN. The results of training
FNNs to solve this problem are presented in Table 4.

As shown in Table 4, for all hidden nodes, FNNPSOGSA has more than two of the best values for three statistical variables
(average, median, and standard deviation) over 30 independent runs. These results prove that FNNPSOGSA also improves the
capability of the FNN to avoid local minima in this benchmark problem. For the best MSE over 30 runs, FNNPSOGSA and FNN-
PSO have very close results, but FNNPSO still has the most accurate results in most of the cases.

Fig. 8 shows the convergence curves of FNNPSO, FNNGSA, and FNNPSOGSA based on averages of the MSE for all training
samples over 30 independent runs. Parts (a), (b), (c), (d), and (e) of Fig. 8 are the convergence curves for FNNs with S = 5, 7, 9,
11, 13, and 15, respectively. These figures confirm that FNNPSOGSA has the best convergence rate for all values of hidden
numbers.

From Fig. 9, it can be inferred that FNNPSOGSA has a better recognition rate than FNNPSO, and FNNPSO has a better rec-
ognition rate than FNNGSA. With regard to the mean recognition rate, FNNPSOGSA shows a more stable rate than FNNPSO
and FNNGSA. With regard to the best recognition rate, PSOGSA also shows the best results for all FNNs. The best recognition

Table 4
Average, median, standard deviation, and best of MSE for all training samples over 30 independent runs for FNNPSO, FNNGSA, and FNNPSOGSA in the Iris
classification problem.

Hidden nodes (S) Algorithm Average MSE Median MSE Std dev MSE Best MSE

4 FNNPSOGSA 2.0926e�02 2.0540e�02 2.8907e�03 1.6538e�02
FNNPSO 2.7648e�02 2.0880e�02 2.3825e�02 9.0291e�03
FNNGSA 5.1936e�02 4.8319e�02 1.0393e�02 4.0493e�02

5 FNNPSOGSA 1.9027e�02 1.7768e�02 2.7267e�03 1.6285e�02
FNNPSO 2.6816e�02 2.1881e�02 1.7528e�02 1.3419e�02
FNNGSA 5.4355e�02 5.4115e�02 1.1371e�02 4.1670e�02

6 FNNPSOGSA 1.6593e�02 1.5815e�02 2.4582e�03 1.3613e�02
FNNPSO 1.9053e�02 1.9382e�02 9.2553e�03 9.3087e�03
FNNGSA 1.1541e�01 5.1797e�02 1.4374e�01 4.4200e�02

7 FNNPSOGSA 1.6082e�02 1.5533e�02 1.8746e�03 1.4428e�02
FNNPSO 1.7181e�02 1.4900e�02 4.7723e�03 1.3333e�02
FNNGSA 4.8626e�02 5.0297e�02 8.6222e�03 3.8858e�02

8 FNNPSOGSA 1.9142e�02 1.5357e�02 9.2745e�03 1.4611e�02
FNNPSO 2.0554e�02 1.8288e�02 5.2498e�03 1.5378e�02
FNNGSA 4.7041e�02 4.4749e�02 7.2863e�03 3.9507e�02

9 FNNPSOGSA 1.6394e�02 1.6585e�02 4.5993e�03 1.0470e�02
FNNPSO 2.4615e�02 1.8431e�02 1.2549e�02 1.4001e�02
FNNGSA 5.8214e�02 5.8671e�02 1.3757e�02 4.4793e�02

10 FNNPSOGSA 1.6021e�02 1.6208e�02 1.1821e�03 1.4421e�02
FNNPSO 2.9265e�02 3.4564e�02 1.3342e�02 1.3427e�02
FNNGSA 5.4245e�02 5.5153e�02 1.0514e�02 4.3230e�02

11 FNNPSOGSA 1.6146e�02 1.5686e�02 2.0309e�03 1.3840e�02
FNNPSO 1.6203e�02 1.6036e�02 1.1120e�02 1.0293e�03
FNNGSA 5.1535e�02 5.2502e�02 8.7323e�03 3.8938e�02

12 FNNPSOGSA 1.6806e�02 1.6272e�02 2.9391e�03 1.3849e�02
FNNPSO 1.7889e�02 1.4919e�02 6.9515e�03 1.3409e�02
FNNGSA 1.2098e�01 6.3867e�02 1.3702e�01 4.2516e�02

13 FNNPSOGSA 1.6453e�02 1.5672e�02 1.8690e�03 1.5421e�02
FNNPSO 1.7012e�02 1.5593e�02 5.9498e�03 9.8958e�03
FNNGSA 1.1424e�01 5.2206e�02 1.3744e�01 4.3250e�02

14 FNNPSOGSA 1.5770e�02 1.5502e�02 1.1286e�03 1.4592e�02
FNNPSO 1.4341e�02 1.3779e�02 2.9371e�03 1.0897e�02
FNNGSA 6.4177e�02 6.3476e�02 1.7704e�02 4.2140e�02

15 FNNPSOGSA 1.4689e�02 1.5220e�02 1.8930e�03 1.1709e�02
FNNPSO 1.6457e�02 1.6382e�02 4.4336e�03 1.0284e�02
FNNGSA 9.4039e�02 5.3571e�02 8.2463e�02 4.8570e�02

S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137 11135
rate for FNNPSOGSA and FNNPSO for all hidden nodes is 99.33%, while the best recognition rate for FNNGSA is 98%.
FNNPSOGSA reaches 99.33% for all hidden nodes. These results prove that FNNPSOGSA is capable of solving the Iris classi-
fication problem more reliably and accurately than FNNPSO and FNNGSA. FNNPSOGSA achieves this reliability because it re-
duces the probability of trapping in local minima.

Generally, in all results produced, it could be observed that FNNGSA does not give a good performance because of the slow
searching process of the GSA, which affects FNNGSAs exploitation ability. However, GSA has strong exploration ability
among all evolutionary algorithms [25]. Learning algorithms for FNNs need not only strong exploration ability but also pre-
cise exploitation ability. Referring to the results of the classification accuracy obtained by FNN based algorithms, it is shown
that FNNPSO performs better than FNNGSA due to the more precise exploitation ability of PSO, but it still suffers from the
problem of trapping in local minima. This weakness means that FNNPSO has unstable performance. The results obtained by
FNNPSOGSA prove that it has both strong exploitation and good exploration abilities. In other words, the strength of PSO and
GSA has been successfully utilized and gives outstanding performance in FNN training. This means that FNNPSOGSA is capa-
ble of solving the problem of trapping in local minima and gives fast convergence speed.

7. Conclusion

In this paper, two new training algorithms called FNNGSA and FNNPSOGSA are introduced and investigated utilizing GSA
and PSOGSA. Three benchmark problems: 3-bit XOR, function approximation, and Iris classification, are employed to eval-
uate the efficiencies of these new learning algorithms. The results are compared with FNNPSO. For all benchmark problems,
FNNPSOGSA shows better performance in terms of convergence rate and avoidance of local minima. It is observed that

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
g

e
o

f M
S

E
 fo

r
al

l t
ra

in
in

g
 s

am
p

le
s

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
g

e
o

f M
S

E
 fo

r
al

l t
ra

in
in

g
 s

am
p

le
s

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
g

e
o

f M
S

E
 fo

r
al

l t
ra

in
in

g
 s

am
p

le
s

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
g

e
o

f M
S

E
 fo

r
al

l t
ra

in
in

g
 s

am
p

le
s

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
g

e
o

f M
S

E
 fo

r
al

l t
ra

in
in

g
 s

am
p

le
s

FNNPSOGSA
FNNPSO
FNNGSA

0 100 200 300 400 500
10

-3

10
-2

10
-1

10
0

10
1

 Iteration

 A
ve

ra
g

e
o

f M
S

E
 fo

r
al

l t
ra

in
in

g
 s

am
p

le
s

FNNPSOGSA
FNNPSO
FNNGSA

a b

c d

e f

Fig. 8. Convergence curves of FNNPSO, FNNGSA, and FNNPSOGSA based on averages of MSE for all training samples over 30 independent runs in the Iris
classification problem. (a), (b), (c), (d), (e), and (f) are the convergence curves for FNNs with S = 5, 7, 9, 11, 13, and 15, respectively.

4 5 6 7 8 9 10 11 12 13 14 15
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 Hidden nodes (S)

 M
ea

n
 r

ec
o

g
n

iti
o

n
 r

at
e

FNNPSOGSA
FNNPSO
FNNGSA

4 5 6 7 8 9 10 11 12 13 14 15
0.9

0.95

1

 Hidden nodes (S)

 B
es

t r
ec

o
g

n
iti

o
n

 r
at

e

FNNPSOGSA
FNNPSO
FNNGSA

a b

Fig. 9. Correct recognition rate of FNNPSO, FNNGSA, and FNNPSOGSA for the Iris benchmark problem. (a) best recognition rate and (b) average correct
recognition rate.

11136 S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137

S. Mirjalili et al. / Applied Mathematics and Computation 218 (2012) 11125–11137 11137
FNNPSO gives the highest accuracy while FNNGSA shows the worst. Therefore, it can be concluded that the proposed
FNNPSOGSA improves the problem of trapping in local minima with very good convergence speed. The results for FNNGSA
also prove that GSA is not good for training FNNs because of its slow searching speed. In summary, the results prove that
FNNPSOGSA boosts the problem of trapping in local minima and enhances the convergence speed compared to the existing
learning algorithms for FNNs.

References

[1] B. Irie, S. Miyake, Capability of three-layered perceptrons, in: Proceedings of IEEE International Conference on Neural Networks, San Diego, USA, 1998,
pp. 641–648.

[2] C. Lin, Cheng-Hung, C. Lee, A self-adaptive quantum radial basis function network for classification applications, in: IEEE International Joint Conference
on Neural Networks, 2004, pp. 3263–3268.

[3] N. Mat Isa, Clustered-hybrid multilayer perceptron network for pattern recognition application, Applied Soft Computing 11 (1) (2011).
[4] K. Homik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989) 359–366.
[5] B. Malakooti, Y. Zhou, Approximating polynomial functions by feedforward artificial neural network: capacity analysis and design, Appl. Math. Comput.

90 (1998) 27–52.
[6] D.R. Hush, N.G. Horne, Progress in supervised neural networks, IEEE Signal Process Mag. 10 (1993) 8–39.
[7] M.T. Hagar, M.B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Trans. Network 5 (6) (1994) 989–993.
[8] H. Adeli, S.L. Hung, An adaptive conjugate gradient learning algorithm for efficient training of neural networks, Appl. Math. Comput. 62 (1994) 81–102.
[9] N. Zhang, An online gradient method with momentum for two-layer feedforward neural networks, Appl. Math. Comput. 212 (2009) 488–498.

[10] J.R. Zhang, J. Zhang, T.M. Lock, M.R. Lyu, A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training,
Appl. Math. Comput. 128 (2007) 1026–1037.

[11] M. Gori, A. Tesi, On the problem of local minima in back-propagation, IEEE Trans. Pattern Anal. Mach. Intell. 14 (1) (1992) 76–86.
[12] S. Shaw, W. Kinsner, Chaotic simulated annealing in multilayer feedforward networks, in: Canadian Conference on Electrical and Computer

Engineering, 1996, pp. 265–269.
[13] S.K. Chang, O.A. Mohammed, S. Y Hahn, Detection of magnetic body using article neural network with modified simulated annealing, IEEE Trans. Magn.

30 (1994) 3644–3647.
[14] D.J. Monata, L. Davis, Training feedforward neural networks using genetic algorithms, in: 11th International Joint Conference on Artificial Intelligence,

1989, pp. 762–767.
[15] S. Kiranyaz, T. Ince, A. Yildirim, M. Gabbouj, Evolutionary artificial neural networks by multi-dimensional particle swarm, Neural Networks 22 (10)

(2009) 1448–1462.
[16] M. Cells, B. Rylander, Neural network learning using particle swarm optimization, Advances in Information Science and Soft Computing, 2002, pp. 224–

226.
[17] C. Zhang, Y. Li, H. Shao, A new evolved artificial neural network and its application, in: 3rd World Congress on intelligent Control and application, Hefei,

China, 2000, pp. 1065–1068.
[18] F. Van den Bergli, A.P. Engelbrecht, Cooperative learning in neural network using particle swarm optimization, South African Computer Journal 26

(2000) 84–90.
[19] C. Zhang, H. Shao, Y. Li, Particle swarm optimization for evolving artificial neural network, in: IEEE international Conference on System, Man, and

Cybemetics, 2000, pp. 2487–2490.
[20] S. Mirjalili, A. Safa Sadiq, Magnetic optimization algorithm for training multi layer perceptron, in: IEEE International Conference on Industrial and

Intelligent Information (ICIII 2011), vol. 2, Indonesia, 2011, pp. 42–46.
[21] T. Si, S. Hazra, N. Jana, Artificial neural network training using differential evolutionary algorithm for classification, in: S. Satapathy, P. Avadhani, A.

Abraham (Eds.), Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012 (INDIA 2012) held in
Visakhapatnam, India, January 2012, Springer, Berlin/Heidelberg, AISC 132, pp. 769–778.

[22] M. Settles, B. Rodebaugh, T. Soule, Comparison of genetic algorithm and particle swarm optimizer when evolving a recurrent neural network, Genetic
and Evolutionary Computation – GECCO’2003, vol. 2723, Springer, Berlin/Heidelberg, 2003, pp. 148–149.

[23] S. Mirjalili, Hybrid particle swarm optimization and gravitational search algorithm for multilayer perceptron learning, Universiti Teknologi Malaysia
(UTM), Johor Bahru, Malaysia, M.Sc. Thesis 2011.

[24] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–
1948.

[25] E. Rashedi, S. Nezamabadi, S. Saryazdi, GSA: a gravitational search algorithm, Information Sciences 179 (13) (2009) 2232–2248.
[26] I. Newton, In experimental philosophy particular propositions are inferred from the phenomena and afterwards rendered general by induction, 3rd

ed.: Andrew Motte’s English translation published, 1729, vol. 2.
[27] A.A. Atapour, A. Ghanizadeh, S.M. Shamsuddin, Advances of Soft Computing Methods in Edge Detection, Int. J. Advance. Soft Comput. Appl. 1 (2) (2009)

162–202.
[28] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, BGSA: binary gravitational search algorithm, Natural Computing 9 (3) (2009) 727–745.
[29] S. Sinaie, Solving shortest path problem using Gravitational Search Algorithm and Neural Networks, Universiti Teknologi Malaysia (UTM), Johor Bahru,

Malaysia, M.Sc. Thesis 2010.
[30] S. Mirjalili and S.Z. Mohd Hashim, A New Hybrid PSOGSA Algorithm for Function Optimization, in: International Conference on Computer and

Information Application(ICCIA 2010), 2010, pp. 374-377.

	Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
	1 Introduction
	2 Particle swarm optimization
	3 Gravitational search algorithm
	4 The hybrid PSOGSA algorithm
	5 PSO, GSA, and PSOGSA for training FNNs
	5.1 Fitness function
	5.2 Encoding strategy

	6 Results and discussion
	6.1 The N bits parity (XOR) problem
	6.2 Function approximation problem
	6.3 Iris classification problem

	7 Conclusion
	References

