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Alus, the short interspersed repeated sequences (SINEs), are retrotransposons that litter the human genomes and have long been
considered junk DNA. However, recent �ndings that these mobile elements are transcribed, both as distinct RNA polymerase
III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are
biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex
regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic
diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that
these mobile retroelements are in fact genomic gems rather than genomic junks.

1. Introduction

Alu repeat elements are the most abundant interspersed
repeats in the human genome. ey are a family of short
interspersed nuclear elements (SINEs) that use the reverse
transcriptase and nuclease encoded by long interspersed
nuclear elements (LINEs) to integrate into the host genome
[1–3] and are found in the human genome in a number
of ∼1.100,000 copies, covering ∼10% of its total length [4].
Functioning as transacting regulators of gene expression, pol
III transcribed Alu and B1/2 (Alu-like elements in mouse)
RNAs can interact with pol II and repress mRNA transcrip-
tion [5–7]. Inverted Alu repeats are target for A-to-I editing
by adenosine deaminases (ADARs) and can cause alternative
splicing and drive proteome diversity [8]. Beside its role
in human genomic evolution and diversity, Alu insertions
and Alu-mediated unequal recombination contribute to a
signi�cant proportion of human genetic diseases [9]. Alu
RNAs can also induce age-related macular degeneration
following direct cytotoxicity to retinal pigment epithelium
(RPE) cells [10].

In this brief paper, the author will describe the struc-
ture of human (Alu) and murine (B1, B2, ID, and B4)
retroelements, a broad overview of the contribution of Alu
retrotransposition to human diseases, and �nally describe in
depth a novel role of double-strandedAlu RNAs affecting the

progression of age-related macular degeneration (AMD) and
Alu editing by ADARs.

2. Structure of Alu and
MurineMobile Elements

Alu typical sequences are ∼300 nucleotides long and are
classi�ed into subfamilies according to their relative ages
(for review see [11]). ey have a dimeric structure and are
composed of two similar but distinct monomers: le and
right arms of 100 and 200 nucleotides long, respectively,
held together by an A-rich linker and terminated by a short
poly(A) tail (Figure 1(a)). Each of theAlu subunits originated
from 5′ and 3′ terminal segments of 7 SL RNA [12–14]. Alu
sequences contain internal Pol III promoter elements (Box A
and Box B) and they are CG and CpG rich [11]. Alu subunits
fold independently and conserve secondary structure motifs
of their progenitor 7 SLRNA (Figure 1(b)).eywere initially
considered as sel�sh entities propagating in the host genome
as “junk DNA” [15]. Now, it becomes more and more evident
that the evolution of Alu subfamilies interacts in a complex
way with other aspects of the whole genomic dynamics. Alu
elements are speci�c to primates [11] and only one type of
SINE in the human genome. e mouse genome contains
four distinct SINE families: B1, B2, ID, and B4. B1 and B2
elements occupy approximately 5% of the mouse genome
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(a)

(b)

(c)

F 1: Architecture of Alu, B1, and B2 repeat elements. (a) Alu elements are about 300 nucleotides long composed of two arms joined by
a mid. A-stretch and terminated by a poly (A) stretch. ey contain two boxes (A and B) of the RNA polymerase III internal promoter. (b)
Alu RNA secondary structure (adapted from [23]) and (c) B1 and B2 RNA secondary structure (adapted from [24]).

with about 550,000 and 350,000 copies, respectively [16].
Similar to Alu, B1 SINEs are also thought to be derived from
7SL RNA and transcribed by pol III into ∼135 nucleotide B1
RNA, which approximates the le arm of Alu [17] (Figure
1(c)). B1 SINEs are monomers with an internal 29 nucleotide
duplication [18]. Like the B1 element, B2 is transcribed by
the polymerase III promoter sequence. Unlike B1, it shares

signi�cant homology at the 5′-end with tRNA, and they are
believed to be derived from tRNA [19] and encode the ∼200
nucleotide B2 RNA (Figure 1(c)) [20]. ID repeat elements are
believed to be derived from a neuronally expressed BC1 gene,
and they are 69 nucleotides long and are small in number
about 42,200 copies; however, they have major presence in
the rat genome [21]. e B4 repeat element appears to be a
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result of fusion of ID element at 5′-end and the B1 element at
the 3′-end [22], and they are 147 nucleotides long and about
329,838 copies.

3.Alu and Human Genomic Diversity

Alu mobile elements were identi�ed originally 30 years ago
in the human DNA [25] and were named for an internal
AluI restriction enzyme recognition site [26]. e sequence
and structure analysis indicated that Alu elements were
ancestrally derived from the 7SL RNA gene which is a
component of the ribosomal complex [13].eywere present
at 500,000 copies [27], and they recently have arisen to a copy
number in excess of one million within the human genome
[28].e ampli�cation ofAlu elements is thought to occur by
the reverse transcription of an Alu-derived RNA polymerase
III transcript in a process called retrotransposition [1]. A
self-priming mechanism of reverse transcription by the Alu
RNAs has also been proposed [29]. Because Alu elements
have no open reading frames, they use for their ampli�cation
themachinery and the exogenous enzymatic function of long
interspersed nuclear elements (LINEs) [2, 30–32]. In addi-
tion, the poly(A) tails of LINEs and Alu elements are thought
to be the common structural features that are involved in the
competition of these mobile elements for the same enzymatic
machinery for mobilization [33]. Alu sequences within the
human genome can be divided into subfamilies based upon
diagnostic mutations shared by subfamilymembers, and they
appear to be of different genetic ages [34–39].e earliestAlu
elements were the J subfamily, followed by S subfamilies that
include Sx, Sq, Sp, and Sc, and followed by the more recent
Y subfamilies including Ya5 and Yb8 the most dominant in
humans [11, 40, 41]. e young Alu elements provide new
information about the genomic fossils for the study of human
genetic diversity. e rate of Alu ampli�cation is estimated to
be of the order of one new Alu insertion in every 20 births
[42, 43]. Homologous recombination between dispersed Alu
elementsmight result in various genetic exchanges, including
duplications, deletions, and translocation which could be a
mechanism for the creation of genetic diversity in the human
genome. e �xation of speci�c mobile element insertion
sites in a population can be used as a distinct character
for phylogenetic analysis and could be useful markers for
studies of human population diversity and origins [44–47]. It
has been reported that there have been about 5,000 lineage-
speci�c insertions �xed in the human genome since their
divergence [48, 49]. However, Alu insertion could also have
negative consequences and could induce damage to the
human genome.

4.Alu-Mediated Recombination and
Insertional Mutagenesis Contribution to
Human Diseases

Several genetic disorders can result from different types
of mutations that arise following the insertion of an Alu
retroelement.e human genome project hg18 identi�ed 584
human reference-speci�c Alu insertions [43]. Alu insertion

can in�uence the genome stability, and it accounts for
0.1% of all human genetic disorders [9] such as hereditary
desmoid disease [50], cystic �brosis [51], Dent’s disease [52,
53], X-linked agammaglobulinemia [54–57], hemophilia A
and B [58–60], autoimmune lymphoproliferative syndrome
[61], Apert syndrome [62], neuro�bromatosis type 1 [63],
benign isolated glycerol kinase de�ciency [64], hyper IgM
with immunode�ciency syndrome [65], Menkes disease
[66], Alstrom syndrome [67], retinitis pigmentosa [68],
acholinesterasemia [69], autosomal dominant optic atrophy
[70], hemolytic anemia [24], autosomal branchio-oto-renal
syndrome [71], acute intermittent porphyria [72], mucol-
ipidosis II [73], and several type of cancer [23, 74–77] to
cite a few. ere are several mechanisms by which Alu can
alter genomic structure. In addition to the potential impact
of Alu retroelement insertions in causing human diseases,
their broad dispersion throughout the genome provides
opportunity for unequal homologous recombination and
cross-over. Recombination betweenAlu retroelements on the
same chromosome results in either duplication or deletion
of the sequences between the Alus. When the recombination
occurs on different chromosomes, it leads to chromosomal
translocations or rearrangements. Several human diseases
have been reported to be associated with Alu recombination
events such as Gaucher’s disease [78], hypercholesterolemia
[79–82], chronic granulomatous disease [83], 𝛼𝛼-thalassaemia
[84, 85], diabetes [86], thrombophilia [87], hypobetalipopro-
teinemia [88], and spastic paraplegia type 11 [89].

e vastmajority ofAlu insertions that have led to human
disease insert into coding exons, near the promoter/enhancer
regions, or into introns relatively near an exon.Alu insertions
contribute to disease by either altering the transcription of
a gene by affecting its promoter (changing the methylation
status or introducing an additional regulatory sequence) or
disrupting a coding region, or disrupting the splicing of
a gene. ese mechanisms have been intensively discussed
previously, and the reader is directed to several elegant
reviews [11, 90–92]. Although Alu elements are broadly
spread throughout the human genome, some genes, chromo-
somes, and regions seem to bemore prone to disease-causing
insertions than others.

5.Alu RNA Accumulation Induces Age-Related
Macular Degeneration (AMD)

Alu RNA expression and accumulation, rather than retro-
transposition, insertion, or recombination per se, has been
recently shown to be involved in the advanced “dry” age-
related macular degeneration disease [10], the leading cause
of blindness in elderly worldwide [10, 93]. is atrophic
form, geographic atrophy (GA), involves alterations of pig-
ment distribution, loss of RPE cells and photoreceptors and
diminished retinal function due to an overall atrophy of the
cells [94]. All studies con�rm the strong age dependence of
the disease, which likely arises from a complex interaction
of metabolic, functional, genetic, and environmental factors
[95–97]. Although the molecular mechanisms underpinning
this disease are not completely understood, there is intriguing
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evidence that exogenous double-stranded RNA (dsRNA) can
activate toll-like receptor-3- (TLR3-) mediated in�ammatory
and chemokine protein secretion and -induced RPE cell
death [98–100]. TLR3 knockout mice are protected against
RPE degeneration induced by exogenous dsRNAs [100]. e
phenomenon observed in mouse model for AMD has led
to the hypothesis that the activation of TLR3 by endoge-
nous dsRNAs may cause AMD in humans. Kaneko and
coworkers [10] detected abundant dsRNA immunoreactivity
in the RPE from diseased but not normal human eyes.
Sequence-independent ampli�cation of these immunopre-
cipitated and isolated dsRNAs showed amplicons belongs to
the Alu Sq subfamily (GenBank accession nos. HN176584
and HN176585). It has become clear that bidirectional
transcription and dsRNA formation are more prevalent than
had been previously thought [101–103]. Alus are capable of
folding back to generate hairpin structures. Two close (<2 kb)
Alu elements in opposite orientation might base pair leading
to the formation of a long stable dsRNA and becoming
a major target for adenosine deaminase acting on RNA
(ADARs) A-to-I editing [104]. Although the precise role of
RNA editing is still speculative, it might in�uence the stability
of dsRNA and its nuclear retention [105–107]. Alu RNAs
seem to be free and nonembedded polymerase III transcripts
[10] and were accumulated mainly in the cytoplasm of RPE
cells indicating that they might escape ADARs editing and
nuclear retention. However, there are no available data, to the
best of our knowledge, concerning ADARs and paraspeckle-
associated complex activity in the RPE from GA compared
to normal eye, and this area will undoubtedly need further
investigations. Once in the cytoplasm,Alus should be cleaved
by DICER1 since they have been shown to be substrates
for DICER1. e RNase DICER1, micro RNA- (miRNA-)
processing key enzyme, has been shown to be dramatically
downregulated in the RPE from GA compared to normal
eye which explains the accumulation of Alu RNAs [10].
Interestingly, DICER1 which is also expressed in the nucleus
of RPE cells and its function (whether dicing Alu or not)
as well as its nuclear expression levels in GA compared
to normal eye are still unknown. In parallel experiment
in mice, loss of Dicer1 induced B1/B2 (Alu-like elements)
accumulation and RPE cell degeneration. Alternatively, this
leads to additional biological questions such as in normal
conditions where DICER1 is fully functional, what are the
Alu- (or B1/B2-) cleaved products? How long are they? And
what is (are) their biological function(s)?

Unexpectedly and in contrast to exogenous dsRNAs,
Alus induced RPE cell death independently of miRNA and
TLR3 as well as a variety of other TLRs and RNA sensors
[108]. In vivo and in vitro functional studies showed that
Alus induced RPE cell death via innate immune sensing
pathway and activated NLR family, pyrin domain containing
3 (NLRP3) in�ammasome [108]. Activation of the NLRP3
in�ammasome triggered activation of caspase-1 and induced
maturation of interleukin-18 (IL-18) which in turn acti-
vated the myeloid differentiation primary response gene
88 (MyD88) pathway (phosphorylation of interleukin-1
receptor-associated kinase-1 and -4 (IRAK1 and IRAK4))

[108] (Figure 2). e effect of Alu RNA on RPE cell degener-
ation was mediated also via activation of extracellular signal-
regulated kinase (ERK)1/2 MAPK [109]; however, the up-
and downstream cascades are still unknown and further
investigations are warranted. It is conceivable that ERK1/2
activation might be downstream of IL-18 and MyD88 [110–
112], and several other potential Alu-mediated signaling
pathways might be involved.

6. ADARGene Family andAlu RNA Editing

e adenosine deaminases acting on RNA (ADARs) are
proteins that bind to double-stranded RNA and cause the
modi�cation of adenosine to inosine via a hydrolytic deam-
ination reaction [113]. Editing of RNA from A to I in
the coding regions of speci�c genes can lead to functional
alterations of the protein product [114, 115], whereas editing
of the noncoding regions may affect splicing, stability, or the
translational efficiency of these target mRNAs [116, 117].e
precise role of RNAediting is still speculative, andADARmay
act as an antiviral defense mechanism against dsRNA viruses
[118], or antagonize dsRNA subjected to the RNAi-mediated
gene silencing pathway [119, 120], and/or against dsRNA
formed by Alu repeat elements or by sense and antisense
transcripts.

ree ADAR family members have been identi�ed [121–
125], and they are conserved in their C-terminal deaminase
region as well as in their double-stranded RNA-binding
domains. Mammalian ADAR1 and ADAR2 are ubiquitously
expressed in many tissues; however, ADAR3 is mainly
expressed in the brain [126]. ADAR3 has been shown
to contain both single- and double-stranded RNA-binding
domains. e dsRBDs of ADARs resemble those of dsRNA-
activated protein kinase PKRwhich is an interferon inducible
involved in antiviral mechanisms [127, 128] as well as Drosha
and Dicer, key enzymes involved in miRNA biogenesis
[129]. e ADAR editing efficiency increases with longer
dsRNA [130]. RNA secondary structural features consisting
of hairpins containing mismatches, bulges, and loops are
edited more selectively than completely base-paired duplex
RNA. e editing efficiency depends also on the sequence
context of nucleotides surrounding the adenosine moiety to
be edited [131]. Intriguingly ADAR3 is not active on the
other known substrates of ADAR1/2 or on long dsRNA in
vitro. ADARs act as a dimer in mammals, and ADAR1 and
2 do not form heterodimers and must form homodimers to
be active [132]; however, ADAR3 does not dimerize which
explains its lack of activity.ere are two isoforms of ADAR1,
the longer ADAR1p150 which is expressed in the cytoplasm
and the nucleus and the shorter ADAR1p110 which remains
in the nucleus [133]. Both isoforms harbor a nuclear local-
ization signal [134]. Both ADAR1 and ADAR2 are present
in the nucleolar compartment and are translocated to the
nucleoplasm upon the presence of an active editing substrate
[135, 136]. ey are upregulated by in�ammation and in
presence ofmRNA rich in inosine [137].eADARs proteins
as well as their dsRNA substrates that mediate the A-to-I
editing are important, and both of them determine what will
be the overall effect of RNA editing.
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F 2: Model for the fate of Alu RNAs in the RPE from GA eye. Alus can form long duplex RNA structures and pose as targets for ADAR
A-to-I RNA editing activity.e editedAluRNAsmay be bound by the paraspeckle that contains the nuclear proteins P54nrb, PSF andmartin
3 and are expected to be retained on the nuclear matrix in normal eye. In diseased eye, DICER1 is dysregulated and Alu RNAs are exported
and accumulated in the cytoplasm leading to the activation of NLRP3 in�ammasome and MyD88, which in turn may activate ERK1�2 and
induce RPE cell degeneration.

Alus are the major targets of ADAR A-to-I editing [104,
138–141] because they create long hairpin structures for
which ADARs can deaminate. A computational analysis
showed that 88% of the A-to-I editing events were found
to be located in the Alus, even though they only comprise
20% of the total length of transcripts [140], and the editing
was found to be the most prevalent in the brain compared
to other tissues [139]. One may ask a question whether the
Alu hairpin structures upon editing become more stable or
unstable (reduced in its double strandness)? Previous studies
are inconsistent; Levanon’s and Blow’s groups [139, 141]
indicated that the effect of editing is aimed at destabilization
of Alu dsRNA; however, Athanasiadis et al. [104] suggested
that the overall effect is to stabilize the Alu dsRNA and
this area need further investigations. e next question is
what are the functional and biological consequences of Alu
editing by ADARs? As the authors mentioned previously,Alu
editing by ADARs may regulate the transcriptional activities
of Alu during cellular stress or affect processing, stability

(destability), nuclear retention, and export of Alu RNAs.
While there is no direct biochemical evidence for RNAi-
mediated chromatin silencing in higher eukaryotes, there
is hypothesis that in mammalian cells nuclear dsRNA can
induce transcriptional gene silencing associated with DNA
methylation [142]. Furthermore, recent studies indicate a
direct connection of the involvement of ADARs in the RNAi
gene silencing pathway [143].

6.1. Other Cellular Mechanisms at May Deal with Alu
dsRNAs. More than twenty proteins harboring dsRNA-
binding domains (DRBPs) have been identi�ed, and there
are several distinct ways in which dsRNAs might be detected
and resolved. e nuclear factors associated with dsRNA
(NFAR) [144–147], nuclear members of the DRBPs, may
interact with Alu dsRNA, although Alu dsRNAs induce RPE
cell degeneration independently of PKR [108] and NFARs
are physically associated with PKR, and they may function
in PKR-mediated signaling events in the cell [147]. Alu
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dsRNA may also interact with spermatid perinuclear RNA-
binding protein (SPNR) which is expressed in several tissues
including testis, ovary, and brain. Although SPNR protein
expression is limited to testis, neurological defects in mice
lacking SPNR function indicate other roles for SPNR outside
spermatogenesis [148]. Alu dsRNA might be degraded by
dsRNA-speci�c nucleases [149] or unwound by dsRNA heli-
cases [150, 151]. e RNA helicase A (RHA) has two DRBPs
and binds to dsRNA as well as to ssRNA and ssDNA through
a carboxyl-terminal RGG box [152, 153]. Other nuclear
members of DRBPs such as the negative regulatory element
binding protein (NREBP) [154, 155] and kanadaptin [156,
157] may interact with Alu dsRNA, although their role is still
speculative.We have shown that Dicer dysregulation induced
Alu accumulation and cytotoxicity in RPE cells, but we
cannot rule out a potential involvement of other cytoplasmic
members of DRBPs such as protein activator of PKR (PACT)
[158] and staufen [159], and further studies are needed to
determine whether Alu dsRNA binds to these nuclear and
cytoplasmic DRBPs and their biological relevance in normal
and diseased eye.

7. Concluding Remarks

Repeat elements are landscape-determining components of
our genome, and they are “hot spots” elements that can
affect our health through at least two known different
mechanisms: (1) self-propagation and retrotransposition and
(2) accumulation and cytotoxicity. Still, several questions
remain unresolved: why and how Alu RNAs accumulate in
the RPE of GA patients? It is possible that chronic stress
insults (oxidative stress, heat shock, viral infection, etc.) in
combination with increasing age and senescence induce Alu
RNA accumulation [160–163]. Another important question
is: are Alu RNAs accumulated in other age-related neurode-
generative diseases? However, some studies have suggested
that the central nervous system is a privileged environment
for transposition. In addition, DICER1 and the �ne tuning
of the miRNA gene network have been shown to be crucial
for neuronal integrity. Indeed, genetic ablation of DICER1
induces neurodegeneration via hyperphosphorylation of tau
protein and activation of ERK1/2 [164, 165]. Furthermore,
the NALP3 in�ammasome has been shown to be involved
in Alzheimer’s disease (AD) [166]. Altered DICER1 and
miRNA regulation have been shown to be involved in other
neurodegenerative diseases such as Huntington’s [167] and
Parkinson’s diseases [168]; however, the Alu RNA pro�ling
has not been reported yet.

e new sequencing technologies combined with rigor-
ous functional analyses are available to study the mobilome,
and they will certainly yield more valuable insights into
both functional properties of the genomic gems and disease
pathogenesis.
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