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Frozen-phonon calculations on structurally related tetragonal
Cu2ZnSnSe4 and monoclinic Cu2SnSe3 reveal similarities in the
shape and overall composition of vibration spectra, but also
marked deviations in the frequency and nature of certain modes.
These deviations are often induced by different connectivity on
the cation sublattice and can be traced to a specific structural

motive. In the analysis of vibrations, a variety of projection
schemes applied to phonon eigenvectors calculated within the
density functional theory by the SIESTA method help to reveal
different aspects in vibration modes, e.g., strength of particular in-
phase atomic movements, or attribution of specific vibration
modes to particular irreducible representations of the space group.
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1 Introduction Phase diagram of CuZnSnSe system
contains, along with kesterite-type Cu2ZnSnSe4 (CZTSe), a
promising material for photovoltaic applications, secondary
phases with high stability but inferior photovoltaic
characteristics [1]. Discrimination of such phases by
X-ray diffraction is complicated by the closeness of their
underlying structures (generally a zincblende structure with
different cation arrangements). However, vibration spectra,
sensitive to local environments and long-range structural
patterns, may be useful in identifying different phases. First-
principle calculations can serve as important benchmarks
for such identification. Earlier we compared kesterite- and
stannite-type CZTSe (8 atoms per unit cell in each) in view
of their different vibrational properties [2]. Recently, the
monoclinic Cu2SnSe3 secondary phase (CTSe), which
has four formula units, i.e., 24 atoms, per unit cell, became
subject to a detailed comparison with kesterite-type CZTSe
[3]. In the present contribution, we expand this analysis
over symmetry attribution to different modes, that helps to
identify Raman- and infrared-silent ones. In a more broad
context, we overview ways of post-processing the phonon
calculations results on large systems, aimed at extracting
useful information by different projection techniques.

2 Calculation details Vibration modes were extracted
in a frozen phonons scheme, applied at the center of the

Brillouin zone (BZ) of the compound in question. Unless
special efforts taken, longitudinal optical modes are not
sampled. When dealing with a complex semiconductor
superlattice, however, the BZ-center modes include folded
branches from BZ boundary of the underlying zincblende
aristotype, whose longitudinal character is then fully
represented. The force constants follow from a sequence
of finite-displacement calculations (of each atom individu-
ally in �three Cartesian directions out of equilibrium),
without imposing any symmetry constraints. The necessary
“machinery” is provided by the SIESTA calculation method
[4, 5]. Technical aspects of calculation for both systems are
given in Refs. [2, 3]. We specify only that the calculations
used the local density approximation for the exchange-
correlation, norm-conserving Troullier–Martins pseudopo-
tentials with valence states starting from Cu/Zn/Se3d and
In4d, and atom-centered numerical basis functions.

2.1 Total density of modes The results of phonon
calculations are discrete eigenvalues vi and eigenvectors A

a
i

of i ¼ 1;…3N vibration modes (N is the number of atoms
in the unit cell; a number of atoms). The (i, a) component of
A remains a vector in three-dimensional space of Cartesian
displacements. A rather straightforward way to characterize
these results is via the density of modes, which may be
resolved into contributions from atoms within a given
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species @:

I@ðvÞ ¼
X

i

X

a2@
jAa

i j2dðv� viÞ: ð1Þ

Here, d(v) is the d-function for a genuinely discrete
spectrum, but it is often practical to use, instead, a somehow
broadened approximation. The corresponding densities of
modes for both systems are shown in Fig. 1. Each plot shows
two groups of peaks, separated by a gap centered at about
125 cm�1, the upper group being cut at about 240 cm�1. In
CTSe, both groups are much broader – a mere consequence
of a larger unit cell in this compound, whereby more modes
which would have been off-zone-center in underlying
zincblende structure are folded onto q ¼ 0 of the
correspondingly reduced BZ.

2.2 Symmetry-projected density of modes The
symmetry analysis of modes helps to judge which of them
are Raman of infrared active, or otherwise sort out the modes
depending on the conditions of experiment. Such analysis
can be done a priori, using the symmetry coordinates
generated according to different irreducible representations
(IrReps) of the space group in question in place of bare
Cartesian ones, and diagonalizing each symmetry block of
the dynamical matrix independently. Alternatively, the
analysis can be done a posteriori, using the projections of

bare phonon eigenvectors onto the symmetry coordinates,
corresponding to different IrReps. The symmetry coordi-
nates can, e.g., be found on the Bilbao Crystallographic
Center [6], in its Solid State Theory Applications (SAM)
section [7]. Table 1 sums up individual Cartesian displace-
ments of atoms in CZTSe into symmetry coordinates
corresponding to IrReps of the space group I�4 (Nr. 82); the
corresponding densities of modes are shown in Fig. 2. Of
these symmetrized groups of modes, all three are Raman
active; B and E are infrared-active. The symmetry
coordinates for two-dimensional E modes are for conve-
nience expressed via linear combinations of their respective
two partners, that leads to a possible system of symmetry
transformations as shown in Table 2 for anions and in
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Figure 1 Contribution of different chemical species to zone-center
vibration modes in CZTSe (top panel) and CTSe (bottom panel),
calculated according to Eq. (1). An artificial smearing of 2 cm�1

halfwidth parameter is introduced for better visibility (also in the
following figures).

Table 1 Decomposition of vibration modes in the CZTSe structure
(space group I�4) according to symmetries.

Wyckoff
positions

irred. representations modes counting
(sums up to
8 at. � 3 ¼ 24)A B E

(2a) 1 1 1þ 1� 2 ¼ 3
(2b) 1 1 1þ 1� 2 ¼ 3
(2c) 1 1 1þ 1� 2 ¼ 3
(2d) 1 1 1þ 1� 2 ¼ 3
(8g) 3 3 3 3þ 3þ 3� 2 ¼ 12
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Figure 2 Species-resolved vibration spectra in CZTSe, decom-
posed according to projections onto A, B, and E IrReps (see Eq. (2)).
Note that the decomposition into individual modes within A, B,
and E blocks is arbitrary.
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Table 3 – for cations. The anions in (8g) positions have three
free coordinates (x, y, z). They are only minutely different
from “ideal” high-symmetry positions which we indicate in
the header of Table 2 in order to identify the anions. The four
remaining “g” sites are obtained by a translation by 1

2
1
2

1
2.

As for cation positions, “a” and “c” are occupied by Cu, “b”
by Sn, and “d” by Zn.

The (monoclinic) CTSe belongs to the Cc (No. 9) space
group; its only (4a) Wyckoff positions, for each of six
species (two Cu sites, one Sn, and three Se), are obtained by
combining the internal coordinates (x, y, z); x; �y; zþ 1

2 with
translations (0 0 0)þ; 1

2
1
2 0þ. The resulting symmetry

coordinates, grouped into two IrReps A0 and A00, are given in
Table 4, and the (species-resolved) densities of modes
decomposed into A0 and A00 are shown in Fig. 3. All modes
are both Raman and infrared active.

Tables 2–4 specify, for each IrRep n, the projection
vectors (in the three-dimensional space of individual atom
displacements) San

i (i: mode index; a: atom index). With
these, the symmetry-projected (and species-resolved) densi-
ty of modes can be recovered as follows:

In@ðvÞ ¼
X

i

���
X

a2@
Aa

i S
an
i

���
2
dðv� viÞ: ð2Þ

Some remarks concerning these symmetry projections:

(i) In case of multidimensional IrRep, or when several
modes belong to the same symmetry block, the choice

of specific symmetry coordinates is not unique; any
their linear combination will do. Hence the projections
onto individual symmetrized modes have few physical
sense; the sum of squares over modes (or over partners
in multidimensional IrRep) should be taken instead.

(ii) In a calculation done on a unit cell of a perfect
compound, there must be a clean separation of vibration
modes into different IrReps. In a calculation done with
SIESTA method which does not impose any symmetry
constraints, a numerical “noise”may spoil this separation
somehow. In our calculations, the attribution of each
vibration mode to a certain IrRep remained unambigu-
ous. An apparent overlap of the spectra for different
IrReps, e.g., in Fig. 3, is due to a dense placement of
modes in certain frequency intervals.

(iii) Zone-center acoustic modes, corresponding to uniform
displacement of all atoms, must appear in the spectrum;
in fact the closeness of their frequencies to zero is an
important checkpoint for phonon calculations by
SIESTA. Based on the above tables, the symmetry of
these modes can be easily identified. For CZTSe, there
is one B mode (responsible to the z-uniform displace-
ment) and some two combinations of E1, E2 modes
(describing displacements in the x, y-plane). Such
v ¼ 0 acoustic modes are well seen in Fig. 2.

Table 2 Symmetry coordinates in different vibration modes
constructed from individual Cartesian displacements �ðX;Y ;ZÞ of
anions in CSTSe (space group I�4).

modes anion sites: (0 0 0)þ; 1
2

1
2

1
2

� �þ

1
4

3
4

1
8

� �
3
4

1
4

1
8

� �
3
4

3
4

7
8

� �
1
4

1
4

7
8

� �

A #1 Y �Y X �X
A #2 �X X Y �Y
A #3 �Z �Z Z Z
B #1 Y �Y �X X
B #2 �X X �Y Y
B #3 Z Z Z Z
ðE1 þ E2Þ 1 X X — —

ðE1 þ E2Þ 2 Y Y — —

ðE1 þ E2Þ 3 Z �Z — —

ðE1 � E2Þ 1 — — Y Y
ðE1 � E2Þ 2 — — X X
ðE1 � E2Þ 3 — — �Z Z

Table 3 Similar to Table 2, for cations.

modes Wyckoff positions

(2a) (2b) (2c) (2d)

B Z Z Z Z
ðE1 þ E2Þ X X X X
ðE1 � E2Þ Y Y Y Y
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Figure 3 Contribution of different chemical species in vibration
modes of CTSe, according to projections corresponding to the A0

and A0 0 IrReps (see Eq. (2)).

Table 4 Symmetry coordinates constructed from individual
Cartesian displacements of atoms in CTSe according to A0, A00

IrReps of the Cc space group.

sites A
0
modes A0 0 modes

1 2 3 1 2 3

(x, y, z) Z Y X �Z Y �X
(x, �y, z þ1/2) Z �Y X Z Y X
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2.3 q-resolved modes density; enhancement of
q ¼ 0 phonons In solid solutions, where topological
disorder destroys an exact crystal periodicity, the projection
of phonon eigenvectors taken along with a expðiqRÞ plane
wave may help to reveal somehow a smearedv(q) dispersion
trends in a form of, so to say, spectral function:

I@ðv; qÞ ¼
X

i

���
X

a2@
Aa

i ðvÞeiqRa

���
2
dðv� viÞ: ð3Þ

It amplifies the weights of vibrations in which similar
atoms move in phase with a given q-wave throughout the
crystal, and suppresses the movements whose phase are at
random with such wave. In particular, the q ¼ 0 projection
amplifies the “prototype” zone-center TO mode of
zincblende crystal, the quasi rigid movement of the cation
sublattice against the anion one:

I@ðv; q ¼ 0Þ ¼
X

i

���
X

a2@
Aa

i ðvÞ
���
2
dðv� viÞ: ð4Þ

In the present case, we do not deal with a solid solution;
however, a complex structure (12 cations/12 anions per
primitive cell of CTSe) excuses borrowing this tool from
our mixed-crystal instrumentary (see Eq. (3) of Ref. [8] and
related discussion for such “zone-center insight”).

It turns out that such projection “purifies” the spectrum,
reducing it to much better comparable elements shown in
Fig. 4. We see now three clearly separated groups of peaks

(instead of two in Fig. 1). Remarkably, the numbering of
modes within each group is consistent, in view that CTSe has
three times more modes than CZTSe; thus, the throughout
numbers of modes in the middle group are 10–13 in CZTSe
and 30–39 in CTSe. A detailed analysis group by group and
snapshots of characteristic modes can be found in Ref. [3].
In a nutshell, the modes within the softest group are zone-
boundary acoustic branches, folded onto zone center of
CTSe due to a large unit cell size; the middle group hosts
optical modes predominantly stemming from bond bending,
and the upper group contains bond-stretching modes. Some
modes of CTSe are pronouncedly related to specific structure
patterns, in that they “live” on continuous SnSe stripes
(planar zigzag chains) or on CuSe chains, both being
absent in CZTSe. Certain modes are “twinned”, i.e., a given
vibration pattern occurs either in phase, or in counter-phase
(but at almost equal frequency) between two identical
fragments traversing the same unit cell. For comparison, in
CZTSe kesterite the degeneracy of modes occurs exclusively
due to x $ y equivalence in the tetragonal structure.
Moreover, all cation chains in the kesterite structure are
“broken” (i.e., all cations intervene in them in alternation),
and no “pure” continuous chains involving only a certain
cation occur. One can conclude that the existing difference in
vibration spectra are much more due to topological
differences (connectivity on the cation sublattice) than to
chemical aspect (presence or absence of Zn in the formula).

3 Conclusions With this example we wanted to
demonstrate that a combined use of different projection
techniques, applied to the bulk of data resulting from a
phonon calculation on a large system, may be useful for
extracting correlations and underlying essential differences
between possibly complex spectra.
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Figure 4 Species-resolved spectra of [zincblende q] ¼ 0 vibration
modes in CZTSe and CTSe, calculated according to Eq. (4). For
meaning of three groups of peaks, see text.
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